ACS Publications. Most Trusted. Most Cited. Most Read
Direct Imaging of Band Profile in Single Layer MoS2 on Graphite: Quasiparticle Energy Gap, Metallic Edge States, and Edge Band Bending
My Activity
    Letter

    Direct Imaging of Band Profile in Single Layer MoS2 on Graphite: Quasiparticle Energy Gap, Metallic Edge States, and Edge Band Bending
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Physics, University of Texas at Austin, Austin, Texas 78712, United States
    Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan
    *(C.-K.S.) E-mail: [email protected]
    Other Access Options

    Nano Letters

    Cite this: Nano Lett. 2014, 14, 5, 2443–2447
    Click to copy citationCitation copied!
    https://doi.org/10.1021/nl501133c
    Published May 1, 2014
    Copyright © 2014 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Using scanning tunneling microscopy and spectroscopy, we probe the electronic structures of single layer MoS2 on graphite. The apparent quasiparticle energy gap of single layer MoS2 is measured to be 2.15 ± 0.06 eV at 77 K, albeit a higher second conduction band threshold at 0.2 eV above the apparent conduction band minimum is also observed. Combining it with photoluminescence studies, we deduce an exciton binding energy of 0.22 ± 0.1 eV (or 0.42 eV if the second threshold is use), a value that is lower than current theoretical predictions. Consistent with theoretical predictions, we directly observe metallic edge states of single layer MoS2. In the bulk region of MoS2, the Fermi level is located at 1.8 eV above the valence band maximum, possibly due to the formation of a graphite/MoS2 heterojunction. At the edge, however, we observe an upward band bending of 0.6 eV within a short depletion length of about 5 nm, analogous to the phenomena of Fermi level pinning of a 3D semiconductor by metallic surface states.

    Copyright © 2014 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 405 publications.

    1. Ke Xiao, Tengfei Yan, Chengxin Xiao, Feng-Ren Fan, Ruihuan Duan, Zheng Liu, Kenji Watanabe, Takashi Taniguchi, Stuart S. P. Parkin, Wang Yao, Xiaodong Cui. Exciton–Exciton Interaction in Monolayer MoSe2 from Mutual Screening of Coulomb Binding. ACS Nano 2024, 18 (46) , 31869-31876. https://doi.org/10.1021/acsnano.4c08212
    2. Jialong Wang, Yue Lu, Wenzhi Quan, Jingyi Hu, Pengfei Yang, Ge Song, Jiatian Fu, You Peng, Lianming Tong, Qingqing Ji, Yanfeng Zhang. Epitaxial Growth of Monolayer WS2 Single Crystals on Au(111) Toward Direct Surface-Enhanced Raman Spectroscopy Detection. ACS Nano 2024, 18 (38) , 26359-26368. https://doi.org/10.1021/acsnano.4c09187
    3. Albert Minj, Vivek Mootheri, Sreetama Banerjee, Ankit Nalin Mehta, Jill Serron, Thomas Hantschel, Inge Asselberghs, Ludovic Goux, Gouri Sankar Kar, Marc Heyns, Dennis H. C. Lin. Direct Assessment of Defective Regions in Monolayer MoS2 Field-Effect Transistors through In Situ Scanning Probe Microscopy Measurements. ACS Nano 2024, 18 (15) , 10653-10666. https://doi.org/10.1021/acsnano.4c03080
    4. Tomohiro Fukui, Tomonori Nishimura, Yasumitsu Miyata, Keiji Ueno, Takashi Taniguchi, Kenji Watanabe, Kosuke Nagashio. Single-Gate MoS2 Tunnel FET with a Thickness-Modulated Homojunction. ACS Applied Materials & Interfaces 2024, 16 (7) , 8993-9001. https://doi.org/10.1021/acsami.3c15535
    5. Sourav Mondal, Durga Basak. Excitonic Rydberg States in a Trilayer to Monolayer H2-Aided CVD-Grown Large-Area MoS2 Film with Excellent UV to Visible Broad Band Photodetection Applications. ACS Applied Materials & Interfaces 2024, 16 (2) , 2940-2953. https://doi.org/10.1021/acsami.3c15655
    6. Thomas Sayer, Yusef R. Farah, Rachelle Austin, Justin Sambur, Amber T. Krummel, Andrés Montoya-Castillo. Trion Formation Resolves Observed Peak Shifts in the Optical Spectra of Transition-Metal Dichalcogenides. Nano Letters 2023, 23 (13) , 6035-6041. https://doi.org/10.1021/acs.nanolett.3c01342
    7. Henrik Wördenweber, Annika Grundmann, Zhaodong Wang, Susanne Hoffmann-Eifert, Holger Kalisch, Andrei Vescan, Michael Heuken, Rainer Waser, Silvia Karthäuser. The MoS2-Graphene-Sapphire Heterostructure: Influence of Substrate Properties on the MoS2 Band Structure. The Journal of Physical Chemistry C 2023, 127 (22) , 10878-10887. https://doi.org/10.1021/acs.jpcc.3c02503
    8. Meng-Kai Lin, Guan-Hao Chen, Ciao-Lin Ho, Wei-Chen Chueh, Joseph Andrew Hlevyack, Chia-Nung Kuo, Tsu-Yi Fu, Juhn-Jong Lin, Chin Shan Lue, Wen-Hao Chang, Noriaki Takagi, Ryuichi Arafune, Tai-Chang Chiang, Chun-Liang Lin. Tip-Mediated Bandgap Tuning for Monolayer Transition Metal Dichalcogenides. ACS Nano 2022, 16 (9) , 14918-14924. https://doi.org/10.1021/acsnano.2c05841
    9. Miroslav Kolos, Rekha Verma, František Karlický, Sitangshu Bhattacharya. Large Exciton-Driven Linear and Nonlinear Optical Processes in Monolayers of Nitrogen Arsenide and Nitrogen Antimonide. The Journal of Physical Chemistry C 2022, 126 (35) , 14931-14959. https://doi.org/10.1021/acs.jpcc.2c03708
    10. Kang Wang, Takashi Taniguchi, Kenji Watanabe, Jiamin Xue. Natural p–n Junctions at the MoS2 Flake Edges. ACS Applied Materials & Interfaces 2022, 14 (34) , 39039-39045. https://doi.org/10.1021/acsami.2c09457
    11. Chen Xue, Hengming Huang, Sadafumi Nishihara, Vasudevanpillai Biju, Xiao-ming Ren, Takayoshi Nakamura. Inorganic Chain Mediated Excitonic Properties in One-Dimensional Lead Halide Hybrid Perovskites. The Journal of Physical Chemistry Letters 2022, 13 (32) , 7405-7412. https://doi.org/10.1021/acs.jpclett.2c01978
    12. Teodor K. Stanev, Pufan Liu, Hongfei Zeng, Erik J. Lenferink, Akshay A. Murthy, Nathaniel Speiser, Kenji Watanabe, Takashi Taniguchi, Vinayak P. Dravid, Nathaniel P. Stern. Direct Patterning of Optoelectronic Nanostructures Using Encapsulated Layered Transition Metal Dichalcogenides. ACS Applied Materials & Interfaces 2022, 14 (20) , 23775-23784. https://doi.org/10.1021/acsami.2c03652
    13. Si-Si Wu, Teng-Xiang Huang, Xiaolan Xu, Yi-Fan Bao, Xin-Di Pei, Xu Yao, Mao-Feng Cao, Kai-Qiang Lin, Xiang Wang, Dongdong Wang, Bin Ren. Quantitatively Deciphering Electronic Properties of Defects at Atomically Thin Transition-Metal Dichalcogenides. ACS Nano 2022, 16 (3) , 4786-4794. https://doi.org/10.1021/acsnano.2c00096
    14. Zeping Huang, Xuan Song, Yaoyao Chen, Han Yang, Peiwen Yuan, Hang Ma, Jingsi Qiao, Yu Zhang, Jiatao Sun, Teng Zhang, Yuan Huang, Liwei Liu, Hong-Jun Gao, Yeliang Wang. Size Dependence of Charge-Density-Wave Orders in Single-Layer NbSe2 Hetero/Homophase Junctions. The Journal of Physical Chemistry Letters 2022, 13 (8) , 1901-1907. https://doi.org/10.1021/acs.jpclett.1c04138
    15. Han Yang, Teng Zhang, Zeping Huang, Yaoyao Chen, Xuan Song, Xiaoyu Hao, Huixia Yang, Xu Wu, Yu Zhang, Liwei Liu, Hong-Jun Gao, Yeliang Wang. Visualization of Charge-Density-Wave Reconstruction and Electronic Superstructure at the Edge of Correlated Insulator 1T-NbSe2. ACS Nano 2022, 16 (1) , 1332-1338. https://doi.org/10.1021/acsnano.1c09249
    16. Xinzuo Sun, Yan Chen, Zhiwei Li, Yu Han, Qin Zhou, Binbin Wang, Takashi Taniguchi, Kenji Watanabe, Aidi Zhao, Jianlu Wang, Yuan Liu, Jiamin Xue. Visualizing Band Profiles of Gate-Tunable Junctions in MoS2/WSe2 Heterostructure Transistors. ACS Nano 2021, 15 (10) , 16314-16321. https://doi.org/10.1021/acsnano.1c05491
    17. Alvin Tang, Aravindh Kumar, Marc Jaikissoon, Krishna Saraswat, H.-S. Philip Wong, Eric Pop. Toward Low-Temperature Solid-Source Synthesis of Monolayer MoS2. ACS Applied Materials & Interfaces 2021, 13 (35) , 41866-41874. https://doi.org/10.1021/acsami.1c06812
    18. Woojoo Lee, Yi Lin, Li-Syuan Lu, Wei-Chen Chueh, Mengke Liu, Xiaoqin Li, Wen-Hao Chang, Robert A. Kaindl, Chih-Kang Shih. Time-resolved ARPES Determination of a Quasi-Particle Band Gap and Hot Electron Dynamics in Monolayer MoS2. Nano Letters 2021, 21 (17) , 7363-7370. https://doi.org/10.1021/acs.nanolett.1c02674
    19. Jingfeng Li, Sadhu Kolekar, Mahdi Ghorbani-Asl, Tibor Lehnert, Johannes Biskupek, Ute Kaiser, Arkady V. Krasheninnikov, Matthias Batzill. Layer-Dependent Band Gaps of Platinum Dichalcogenides. ACS Nano 2021, 15 (8) , 13249-13259. https://doi.org/10.1021/acsnano.1c02971
    20. Miroslav Kolos, Luigi Cigarini, Rekha Verma, František Karlický, Sitangshu Bhattacharya. Giant Linear and Nonlinear Excitonic Responses in an Atomically Thin Indirect Semiconductor Nitrogen Phosphide. The Journal of Physical Chemistry C 2021, 125 (23) , 12738-12757. https://doi.org/10.1021/acs.jpcc.1c02091
    21. Nataly Herrera-Reinoza, Alisson Ceccatto dos Santos, Luis Henrique de Lima, Richard Landers, Abner de Siervo. Atomically Precise Bottom-Up Synthesis of h-BNC: Graphene Doped with h-BN Nanoclusters. Chemistry of Materials 2021, 33 (8) , 2871-2882. https://doi.org/10.1021/acs.chemmater.1c00081
    22. Charlotte Herbig, Canxun Zhang, Fauzia Mujid, Saien Xie, Zahra Pedramrazi, Jiwoong Park, Michael F. Crommie. Local Electronic Properties of Coherent Single-Layer WS2/WSe2 Lateral Heterostructures. Nano Letters 2021, 21 (6) , 2363-2369. https://doi.org/10.1021/acs.nanolett.0c04204
    23. Qilong Wu, Xiaoshuai Fu, Ke Yang, Hongyu Wu, Li Liu, Li Zhang, Yuan Tian, Long-Jing Yin, Wei-Qing Huang, Wen Zhang, Ping Kwan Johnny Wong, Lijie Zhang, Andrew T. S. Wee, Zhihui Qin. Promoting a Weak Coupling of Monolayer MoSe2 Grown on (100)-Faceted Au Foil. ACS Nano 2021, 15 (3) , 4481-4489. https://doi.org/10.1021/acsnano.0c08513
    24. Zhen Chi, Xiang Zhang, Xiewen Wen, Junfeng Han, Zheng Wei, Luojun Du, Jiawei Lai, Xiangzhuo Wang, Guangyu Zhang, Qing Zhao, Hailong Chen, Pulickel M. Ajayan, Yu-Xiang Weng. Determining Quasiparticle Bandgap of Two-Dimensional Transition Metal Dichalcogenides by Observation of Hot Carrier Relaxation Dynamics. The Journal of Physical Chemistry Letters 2021, 12 (1) , 585-591. https://doi.org/10.1021/acs.jpclett.0c03414
    25. Qifan Chen, Mingwei Chen, Linggang Zhu, Naihua Miao, Jian Zhou, Graeme J. Ackland, Zhimei Sun. Composition-Gradient-Mediated Semiconductor–Metal Transition in Ternary Transition-Metal-Dichalcogenide Bilayers. ACS Applied Materials & Interfaces 2020, 12 (40) , 45184-45191. https://doi.org/10.1021/acsami.0c13104
    26. Clifford Murray, Camiel van Efferen, Wouter Jolie, Jeison Antonio Fischer, Joshua Hall, Achim Rosch, Arkady V. Krasheninnikov, Hannu-Pekka Komsa, Thomas Michely. Band Bending and Valence Band Quantization at Line Defects in MoS2. ACS Nano 2020, 14 (7) , 9176-9187. https://doi.org/10.1021/acsnano.0c04945
    27. Yaqian Wang, Longjiang Deng, Qilin Wei, Yi Wan, Zhen Liu, Xiao Lu, Yue Li, Lei Bi, Li Zhang, Haipeng Lu, Haiyan Chen, Peiheng Zhou, Linbo Zhang, Yingchun Cheng, Xiaoxu Zhao, Yu Ye, Wei Huang, Stephen John Pennycook, Kian Ping Loh, Bo Peng. Spin-Valley Locking Effect in Defect States of Monolayer MoS2. Nano Letters 2020, 20 (3) , 2129-2136. https://doi.org/10.1021/acs.nanolett.0c00138
    28. Girija Shankar Papanai, Indu Sharma, Garima Kedawat, Bipin Kumar Gupta. Qualitative Analysis of Mechanically Exfoliated MoS2 Nanosheets Using Spectroscopic Probes. The Journal of Physical Chemistry C 2019, 123 (44) , 27264-27271. https://doi.org/10.1021/acs.jpcc.9b09191
    29. Junting Xiao, Jinxin Liu, Kuanglv Sun, Yuan Zhao, Ziyi Shao, Xiaoliang Liu, Yongbo Yuan, Youzhen Li, Haipeng Xie, Fei Song, Yongli Gao, Han Huang. PbI2–MoS2 Heterojunction: van der Waals Epitaxial Growth and Energy Band Alignment. The Journal of Physical Chemistry Letters 2019, 10 (15) , 4203-4208. https://doi.org/10.1021/acs.jpclett.9b01665
    30. Yihua Lu, Xi Zhu. Superbound Excitons in 2D Phosphorene Oxides. The Journal of Physical Chemistry A 2019, 123 (1) , 21-25. https://doi.org/10.1021/acs.jpca.8b09683
    31. Blake Birmingham, Jiangtan Yuan, Matthias Filez, Donglong Fu, Jonathan Hu, Jun Lou, Marlan O. Scully, Bert M. Weckhuysen, Zhenrong Zhang. Spatially-Resolved Photoluminescence of Monolayer MoS2 under Controlled Environment for Ambient Optoelectronic Applications. ACS Applied Nano Materials 2018, 1 (11) , 6226-6235. https://doi.org/10.1021/acsanm.8b01422
    32. Jose Martinez-Castro, Diego Mauro, Árpád Pásztor, Ignacio Gutiérrez-Lezama, Alessandro Scarfato, Alberto F. Morpurgo, Christoph Renner. Scanning Tunneling Microscopy of an Air Sensitive Dichalcogenide Through an Encapsulating Layer. Nano Letters 2018, 18 (11) , 6696-6702. https://doi.org/10.1021/acs.nanolett.8b01978
    33. Zhaodong Chu, Ali Han, Chao Lei, Sergei Lopatin, Peng Li, David Wannlund, Di Wu, Kevin Herrera, Xixiang Zhang, Allan H. MacDonald, Xiaoqin Li, Lain-Jong Li, Keji Lai. Energy-Resolved Photoconductivity Mapping in a Monolayer–Bilayer WSe2 Lateral Heterostructure. Nano Letters 2018, 18 (11) , 7200-7206. https://doi.org/10.1021/acs.nanolett.8b03318
    34. Min Hong, Xiebo Zhou, Nan Gao, Shaolong Jiang, Chunyu Xie, Liyun Zhao, Yan Gao, Zhepeng Zhang, Pengfei Yang, Yuping Shi, Qing Zhang, Zhongfan Liu, Jijun Zhao, Yanfeng Zhang. Identifying the Non-Identical Outermost Selenium Atoms and Invariable Band Gaps across the Grain Boundary of Anisotropic Rhenium Diselenide. ACS Nano 2018, 12 (10) , 10095-10103. https://doi.org/10.1021/acsnano.8b04872
    35. Su Kong Chong, Fei Long, Gaoxue Wang, Yung-Chang Lin, Shiva Bhandari, Reza Shahbazian-Yassar, Kazu Suenaga, Ravindra Pandey, Yoke Khin Yap. Selective Growth of Two-Dimensional Heterostructures of Gallium Selenide on Monolayer Graphene and the Thickness Dependent p- and n-Type Nature. ACS Applied Nano Materials 2018, 1 (7) , 3293-3302. https://doi.org/10.1021/acsanm.8b00504
    36. Renhao Dong, Tao Zhang, Xinliang Feng. Interface-Assisted Synthesis of 2D Materials: Trend and Challenges. Chemical Reviews 2018, 118 (13) , 6189-6235. https://doi.org/10.1021/acs.chemrev.8b00056
    37. C. E. Ekuma. Effects of Vacancy Defects on the Electronic and Optical Properties of Monolayer PbSe. The Journal of Physical Chemistry Letters 2018, 9 (13) , 3680-3685. https://doi.org/10.1021/acs.jpclett.8b01585
    38. Alex Henning, Vinod K. Sangwan, Hadallia Bergeron, Itamar Balla, Zhiyuan Sun, Mark C. Hersam, Lincoln J. Lauhon. Charge Separation at Mixed-Dimensional Single and Multilayer MoS2/Silicon Nanowire Heterojunctions. ACS Applied Materials & Interfaces 2018, 10 (19) , 16760-16767. https://doi.org/10.1021/acsami.8b03133
    39. Yu Huang, Fuwei Zhuge, Junxian Hou, Liang Lv, Peng Luo, Nan Zhou, Lin Gan, Tianyou Zhai. Van der Waals Coupled Organic Molecules with Monolayer MoS2 for Fast Response Photodetectors with Gate-Tunable Responsivity. ACS Nano 2018, 12 (4) , 4062-4073. https://doi.org/10.1021/acsnano.8b02380
    40. Yan Chen, Shengxi Huang, Xiang Ji, Kiran Adepalli, Kedi Yin, Xi Ling, Xinwei Wang, Jianmin Xue, Mildred Dresselhaus, Jing Kong, Bilge Yildiz. Tuning Electronic Structure of Single Layer MoS2 through Defect and Interface Engineering. ACS Nano 2018, 12 (3) , 2569-2579. https://doi.org/10.1021/acsnano.7b08418
    41. Kirby K. H. Smithe, Andrey V. Krayev, Connor S. Bailey, Hye Ryoung Lee, Eilam Yalon, Burak Aslan, Miguel Muñoz Rojo, Sergiy Krylyuk, Payam Taheri, Albert V. Davydov, Tony F. Heinz, Eric Pop. Nanoscale Heterogeneities in Monolayer MoSe2 Revealed by Correlated Scanning Probe Microscopy and Tip-Enhanced Raman Spectroscopy. ACS Applied Nano Materials 2018, 1 (2) , 572-579. https://doi.org/10.1021/acsanm.7b00083
    42. Hong Dong, Cheng Gong, Rafik Addou, Stephen McDonnell, Angelica Azcatl, Xiaoye Qin, Weichao Wang, Weihua Wang, Christopher L. Hinkle, and Robert M. Wallace . Schottky Barrier Height of Pd/MoS2 Contact by Large Area Photoemission Spectroscopy. ACS Applied Materials & Interfaces 2017, 9 (44) , 38977-38983. https://doi.org/10.1021/acsami.7b10974
    43. Alexander Kerelsky, Ankur Nipane, Drew Edelberg, Dennis Wang, Xiaodong Zhou, Abdollah Motmaendadgar, Hui Gao, Saien Xie, Kibum Kang, Jiwoong Park, James Teherani, and Abhay Pasupathy . Absence of a Band Gap at the Interface of a Metal and Highly Doped Monolayer MoS2. Nano Letters 2017, 17 (10) , 5962-5968. https://doi.org/10.1021/acs.nanolett.7b01986
    44. Jun Hong Park, Suresh Vishwanath, Steven Wolf, Kehao Zhang, Iljo Kwak, Mary Edmonds, Michael Breeden, Xinyu Liu, Margaret Dobrowolska, Jacek Furdyna, Joshua A. Robinson, Huili Grace Xing, and Andrew C. Kummel . Selective Chemical Response of Transition Metal Dichalcogenides and Metal Dichalcogenides in Ambient Conditions. ACS Applied Materials & Interfaces 2017, 9 (34) , 29255-29264. https://doi.org/10.1021/acsami.7b08244
    45. Kunttal Keyshar, Morgann Berg, Xiang Zhang, Robert Vajtai, Gautam Gupta, Calvin K. Chan, Thomas E. Beechem, Pulickel M. Ajayan, Aditya D. Mohite, and Taisuke Ohta . Experimental Determination of the Ionization Energies of MoSe2, WS2, and MoS2 on SiO2 Using Photoemission Electron Microscopy. ACS Nano 2017, 11 (8) , 8223-8230. https://doi.org/10.1021/acsnano.7b03242
    46. Xiaochun Huang, Jiaqi Guan, Zijian Lin, Bing Liu, Shuya Xing, Weihua Wang, and Jiandong Guo . Epitaxial Growth and Band Structure of Te Film on Graphene. Nano Letters 2017, 17 (8) , 4619-4623. https://doi.org/10.1021/acs.nanolett.7b01029
    47. Xu Cui, En-Min Shih, Luis A. Jauregui, Sang Hoon Chae, Young Duck Kim, Baichang Li, Dongjea Seo, Kateryna Pistunova, Jun Yin, Ji-Hoon Park, Heon-Jin Choi, Young Hee Lee, Kenji Watanabe, Takashi Taniguchi, Philip Kim, Cory R. Dean, and James C. Hone . Low-Temperature Ohmic Contact to Monolayer MoS2 by van der Waals Bonded Co/h-BN Electrodes. Nano Letters 2017, 17 (8) , 4781-4786. https://doi.org/10.1021/acs.nanolett.7b01536
    48. Chaoliang Tan, Xiehong Cao, Xue-Jun Wu, Qiyuan He, Jian Yang, Xiao Zhang, Junze Chen, Wei Zhao, Shikui Han, Gwang-Hyeon Nam, Melinda Sindoro, and Hua Zhang . Recent Advances in Ultrathin Two-Dimensional Nanomaterials. Chemical Reviews 2017, 117 (9) , 6225-6331. https://doi.org/10.1021/acs.chemrev.6b00558
    49. Victor W. Brar, Andrew R. Koltonow, and Jiaxing Huang . New Discoveries and Opportunities from Two-Dimensional Materials. ACS Photonics 2017, 4 (3) , 407-411. https://doi.org/10.1021/acsphotonics.7b00194
    50. Yangyang Wang, Pu Huang, Meng Ye, Ruge Quhe, Yuanyuan Pan, Han Zhang, Hongxia Zhong, Junjie Shi, and Jing Lu . Many-body Effect, Carrier Mobility, and Device Performance of Hexagonal Arsenene and Antimonene. Chemistry of Materials 2017, 29 (5) , 2191-2201. https://doi.org/10.1021/acs.chemmater.6b04909
    51. Philipp Steinleitner, Philipp Merkl, Philipp Nagler, Joshua Mornhinweg, Christian Schüller, Tobias Korn, Alexey Chernikov, and Rupert Huber . Direct Observation of Ultrafast Exciton Formation in a Monolayer of WSe2. Nano Letters 2017, 17 (3) , 1455-1460. https://doi.org/10.1021/acs.nanolett.6b04422
    52. Hrishikesh Bhunia, Abhijit Bera, and Amlan J. Pal . Current Rectification through Vertical Heterojunctions between Two Single-Layer Dichalcogenides (WSe2|MoS2 pn-Junctions). ACS Applied Materials & Interfaces 2017, 9 (9) , 8248-8254. https://doi.org/10.1021/acsami.6b15740
    53. Nicholas J. Borys, Edward S. Barnard, Shiyuan Gao, Kaiyuan Yao, Wei Bao, Alexander Buyanin, Yingjie Zhang, Sefaattin Tongay, Changhyun Ko, Joonki Suh, Alexander Weber-Bargioni, Junqiao Wu, Li Yang, and P. James Schuck . Anomalous Above-Gap Photoexcitations and Optical Signatures of Localized Charge Puddles in Monolayer Molybdenum Disulfide. ACS Nano 2017, 11 (2) , 2115-2123. https://doi.org/10.1021/acsnano.6b08278
    54. Mohnish Pandey, Karsten W. Jacobsen, and Kristian S. Thygesen . Atomically Thin Ordered Alloys of Transition Metal Dichalcogenides: Stability and Band Structures. The Journal of Physical Chemistry C 2016, 120 (40) , 23024-23029. https://doi.org/10.1021/acs.jpcc.6b07283
    55. Yao Guo, Chunru Liu, Qifang Yin, Chengrong Wei, Shenghuang Lin, Tim B. Hoffman, Yuda Zhao, J. H. Edgar, Qing Chen, Shu Ping Lau, Junfeng Dai, Haimin Yao, H.-S. Philip Wong, and Yang Chai . Distinctive in-Plane Cleavage Behaviors of Two-Dimensional Layered Materials. ACS Nano 2016, 10 (9) , 8980-8988. https://doi.org/10.1021/acsnano.6b05063
    56. Xiaolong Liu, Itamar Balla, Hadallia Bergeron, and Mark C. Hersam . Point Defects and Grain Boundaries in Rotationally Commensurate MoS2 on Epitaxial Graphene. The Journal of Physical Chemistry C 2016, 120 (37) , 20798-20805. https://doi.org/10.1021/acs.jpcc.6b02073
    57. Heather M. Hill, Albert F. Rigosi, Kwang Taeg Rim, George W. Flynn, and Tony F. Heinz . Band Alignment in MoS2/WS2 Transition Metal Dichalcogenide Heterostructures Probed by Scanning Tunneling Microscopy and Spectroscopy. Nano Letters 2016, 16 (8) , 4831-4837. https://doi.org/10.1021/acs.nanolett.6b01007
    58. Yu Li Huang, Zijing Ding, Wenjing Zhang, Yung-Huang Chang, Yumeng Shi, Lain-Jong Li, Zhibo Song, Yu Jie Zheng, Dongzhi Chi, Su Ying Quek, and Andrew T. S. Wee . Gap States at Low-Angle Grain Boundaries in Monolayer Tungsten Diselenide. Nano Letters 2016, 16 (6) , 3682-3688. https://doi.org/10.1021/acs.nanolett.6b00888
    59. Xiaodong Zhou, Kibum Kang, Saien Xie, Ali Dadgar, Nicholas R. Monahan, X.-Y. Zhu, Jiwoong Park, and Abhay N. Pasupathy . Atomic-Scale Spectroscopy of Gated Monolayer MoS2. Nano Letters 2016, 16 (5) , 3148-3154. https://doi.org/10.1021/acs.nanolett.6b00473
    60. Jun Hong Park, Suresh Vishwanath, Xinyu Liu, Huawei Zhou, Sarah M. Eichfeld, Susan K. Fullerton-Shirey, Joshua A. Robinson, Randall M. Feenstra, Jacek Furdyna, Debdeep Jena, Huili Grace Xing, and Andrew C. Kummel . Scanning Tunneling Microscopy and Spectroscopy of Air Exposure Effects on Molecular Beam Epitaxy Grown WSe2 Monolayers and Bilayers. ACS Nano 2016, 10 (4) , 4258-4267. https://doi.org/10.1021/acsnano.5b07698
    61. Christopher R. Ryder, Joshua D. Wood, Spencer A. Wells, and Mark C. Hersam . Chemically Tailoring Semiconducting Two-Dimensional Transition Metal Dichalcogenides and Black Phosphorus. ACS Nano 2016, 10 (4) , 3900-3917. https://doi.org/10.1021/acsnano.6b01091
    62. Mohnish Pandey, Filip A. Rasmussen, Korina Kuhar, Thomas Olsen, Karsten W. Jacobsen, and Kristian S. Thygesen . Defect-Tolerant Monolayer Transition Metal Dichalcogenides. Nano Letters 2016, 16 (4) , 2234-2239. https://doi.org/10.1021/acs.nanolett.5b04513
    63. Xiebo Zhou, Jianping Shi, Yue Qi, Mengxi Liu, Donglin Ma, Yu Zhang, Qingqing Ji, Zhepeng Zhang, Cong Li, Zhongfan Liu, and Yanfeng Zhang . Periodic Modulation of the Doping Level in Striped MoS2 Superstructures. ACS Nano 2016, 10 (3) , 3461-3468. https://doi.org/10.1021/acsnano.5b07545
    64. J. Klein, J. Wierzbowski, A. Regler, J. Becker, F. Heimbach, K. Müller, M. Kaniber, and J. J. Finley . Stark Effect Spectroscopy of Mono- and Few-Layer MoS2. Nano Letters 2016, 16 (3) , 1554-1559. https://doi.org/10.1021/acs.nanolett.5b03954
    65. Xiaolong Liu, Itamar Balla, Hadallia Bergeron, Gavin P. Campbell, Michael J. Bedzyk, and Mark C. Hersam . Rotationally Commensurate Growth of MoS2 on Epitaxial Graphene. ACS Nano 2016, 10 (1) , 1067-1075. https://doi.org/10.1021/acsnano.5b06398
    66. Evgeniy Ponomarev, Ignacio Gutiérrez-Lezama, Nicolas Ubrig, and Alberto F. Morpurgo . Ambipolar Light-Emitting Transistors on Chemical Vapor Deposited Monolayer MoS2. Nano Letters 2015, 15 (12) , 8289-8294. https://doi.org/10.1021/acs.nanolett.5b03885
    67. Youngdong Yoo, Zachary P. Degregorio, and James E. Johns . Seed Crystal Homogeneity Controls Lateral and Vertical Heteroepitaxy of Monolayer MoS2 and WS2. Journal of the American Chemical Society 2015, 137 (45) , 14281-14287. https://doi.org/10.1021/jacs.5b06643
    68. Chendong Zhang, Yuxuan Chen, Amber Johnson, Ming-Yang Li, Lain-Jong Li, Patrick C. Mende, Randall M. Feenstra, and Chih-Kang Shih . Probing Critical Point Energies of Transition Metal Dichalcogenides: Surprising Indirect Gap of Single Layer WSe2. Nano Letters 2015, 15 (10) , 6494-6500. https://doi.org/10.1021/acs.nanolett.5b01968
    69. Bo Li, Gang Shi, Sidong Lei, Yongmin He, Weilu Gao, Yongji Gong, Gonglan Ye, Wu Zhou, Kunttal Keyshar, Ji Hao, Pei Dong, Liehui Ge, Jun Lou, Junichiro Kono, Robert Vajtai, and Pulickel M. Ajayan . 3D Band Diagram and Photoexcitation of 2D–3D Semiconductor Heterojunctions. Nano Letters 2015, 15 (9) , 5919-5925. https://doi.org/10.1021/acs.nanolett.5b02012
    70. Chengjun Jin, Filip A. Rasmussen, and Kristian S. Thygesen . Tuning the Schottky Barrier at the Graphene/MoS2 Interface by Electron Doping: Density Functional Theory and Many-Body Calculations. The Journal of Physical Chemistry C 2015, 119 (34) , 19928-19933. https://doi.org/10.1021/acs.jpcc.5b05580
    71. Hyun-Cheol Kim, Hakseong Kim, Jae-Ung Lee, Han-Byeol Lee, Doo-Hua Choi, Jun-Ho Lee, Wi Hyoung Lee, Sung Ho Jhang, Bae Ho Park, Hyeonsik Cheong, Sang-Wook Lee, and Hyun-Jong Chung . Engineering Optical and Electronic Properties of WS2 by Varying the Number of Layers. ACS Nano 2015, 9 (7) , 6854-6860. https://doi.org/10.1021/acsnano.5b01727
    72. Filip A. Rasmussen and Kristian S. Thygesen . Computational 2D Materials Database: Electronic Structure of Transition-Metal Dichalcogenides and Oxides. The Journal of Physical Chemistry C 2015, 119 (23) , 13169-13183. https://doi.org/10.1021/acs.jpcc.5b02950
    73. Heather M. Hill, Albert F. Rigosi, Cyrielle Roquelet, Alexey Chernikov, Timothy C. Berkelbach, David R. Reichman, Mark S. Hybertsen, Louis E. Brus, and Tony F. Heinz . Observation of Excitonic Rydberg States in Monolayer MoS2 and WS2 by Photoluminescence Excitation Spectroscopy. Nano Letters 2015, 15 (5) , 2992-2997. https://doi.org/10.1021/nl504868p
    74. Yu Kobayashi, Shogo Sasaki, Shohei Mori, Hiroki Hibino, Zheng Liu, Kenji Watanabe, Takashi Taniguchi, Kazu Suenaga, Yutaka Maniwa, and Yasumitsu Miyata . Growth and Optical Properties of High-Quality Monolayer WS2 on Graphite. ACS Nano 2015, 9 (4) , 4056-4063. https://doi.org/10.1021/acsnano.5b00103
    75. Aaron J. Bradley, Miguel M. Ugeda, Felipe H. da Jornada, Diana Y. Qiu, Wei Ruan, Yi Zhang, Sebastian Wickenburg, Alexander Riss, Jiong Lu, Sung-Kwan Mo, Zahid Hussain, Zhi-Xun Shen, Steven G. Louie, and Michael F. Crommie . Probing the Role of Interlayer Coupling and Coulomb Interactions on Electronic Structure in Few-Layer MoSe2 Nanostructures. Nano Letters 2015, 15 (4) , 2594-2599. https://doi.org/10.1021/acs.nanolett.5b00160
    76. Jingzhi Shang, Xiaonan Shen, Chunxiao Cong, Namphung Peimyoo, Bingchen Cao, Mustafa Eginligil, and Ting Yu . Observation of Excitonic Fine Structure in a 2D Transition-Metal Dichalcogenide Semiconductor. ACS Nano 2015, 9 (1) , 647-655. https://doi.org/10.1021/nn5059908
    77. Yu-Chuan Lin, Chih-Yuan S. Chang, Ram Krishna Ghosh, Jie Li, Hui Zhu, Rafik Addou, Bogdan Diaconescu, Taisuke Ohta, Xin Peng, Ning Lu, Moon J. Kim, Jeremy T. Robinson, Robert M Wallace, Theresa S. Mayer, Suman Datta, Lain-Jong Li, and Joshua A. Robinson . Atomically Thin Heterostructures Based on Single-Layer Tungsten Diselenide and Graphene. Nano Letters 2014, 14 (12) , 6936-6941. https://doi.org/10.1021/nl503144a
    78. Ming-Hui Chiu, Ming-Yang Li, Wengjing Zhang, Wei-Ting Hsu, Wen-Hao Chang, Mauricio Terrones, Humberto Terrones, and Lain-Jong Li . Spectroscopic Signatures for Interlayer Coupling in MoS2–WSe2 van der Waals Stacking. ACS Nano 2014, 8 (9) , 9649-9656. https://doi.org/10.1021/nn504229z
    79. Meng-Lin Tsai, Sheng-Han Su, Jan-Kai Chang, Dung-Sheng Tsai, Chang-Hsiao Chen, Chih-I Wu, Lain-Jong Li, Lih-Juann Chen, and Jr-Hau He . Monolayer MoS2 Heterojunction Solar Cells. ACS Nano 2014, 8 (8) , 8317-8322. https://doi.org/10.1021/nn502776h
    80. Signe G. Sørensen, Henrik G. Füchtbauer, Anders K. Tuxen, Alex S. Walton, and Jeppe V. Lauritsen . Structure and Electronic Properties of In Situ Synthesized Single-Layer MoS2 on a Gold Surface. ACS Nano 2014, 8 (7) , 6788-6796. https://doi.org/10.1021/nn502812n
    81. Yuhyeon Oh, Mingyu Jung, Shashank Shekhar, Seunghyo Park, Seunghun Hong. Nanoscale mapping of local intrinsic strain-induced anomalous bandgap variations in WSe2 using selective-wavelength scanning photoconductivity microscopy. Materials Today Nano 2024, 28 , 100545. https://doi.org/10.1016/j.mtnano.2024.100545
    82. Xiaoyan Liu, Jiaqi Zhu, Yufeng Shan, Changlong Liu, Changyi Pan, Tianning Zhang, Chixian Liu, Tianye Chen, Jingwei Ling, Junli Duan, Feng Qiu, Saqib Rahman, Huiyong Deng, Ning Dai. An Ultrasensitive and Broad‐Spectrum MoS 2 Photodetector with Extrinsic Response Using Surrounding Homojunction. Advanced Science 2024, 11 (45) https://doi.org/10.1002/advs.202408299
    83. Kibet Too Philemon, Kiprono Kiptiemoi Korir, Robinson Juma Musembi, Francis Nyongesa. Optimizing 2D MoS2 for removal of anionic heavy metals from water: insights from density functional theory study. Indian Journal of Physics 2024, 98 (14) , 4693-4701. https://doi.org/10.1007/s12648-024-03220-5
    84. Achiad Goldreich, Jonathan Prilusky, Neena Prasad, Akshay Puravankara, Lena Yadgarov. Highly Stable CsPbBr 3 @MoS 2 Nanostructures: Synthesis and Optoelectronic Properties Toward Implementation into Solar Cells. Small 2024, 20 (45) https://doi.org/10.1002/smll.202404727
    85. Yaoyao Chen, Yu Zhang, Wei Wang, Xuan Song, Liang‐Guang Jia, Can Zhang, Lili Zhou, Xu Han, Hui‐Xia Yang, Li‐Wei Liu, Chen Si, Hong‐Jun Gao, Ye‐Liang Wang. Visualization of Confined Electrons at Grain Boundaries in a Monolayer Charge‐Density‐Wave Metal. Advanced Science 2024, 11 (37) https://doi.org/10.1002/advs.202306171
    86. Sondes Kaddour, Nouha Mastour, Randa Zaimia, Said Ridene, Noureddine Raouafi. Linear and nonlinear exciton polariton dispersion in MoS 2 nanosheets and its nickel doping dependence. Physica Scripta 2024, 99 (8) , 085955. https://doi.org/10.1088/1402-4896/ad6063
    87. Jun Liu, Mengyu Yan, Mitchell Kaiser, Maria Sushko, Yang Zhou, Hao Tang, Chun-Chih Tseng, Matthew Yankowitz, Jihui Yang, Ying Xia. Measuring and Manipulating Density of States in Two-Dimensional Materials with Electrochemical Capacitance. 2024https://doi.org/10.21203/rs.3.rs-4184677/v1
    88. Fujia Lu, Qianying Hu, Yang Xu, Hongyi Yu. Coupled exciton internal and center-of-mass motions in two-dimensional semiconductors by a periodic electrostatic potential. Physical Review B 2024, 109 (16) https://doi.org/10.1103/PhysRevB.109.165422
    89. Nikhil Thakur, Pawan Kumar, Sanjeev Kumar, Arun Kumar Singh, Hitesh Sharma, Nagesh Thakur, A. Dahshan, Pankaj Sharma. A review of two-dimensional inorganic materials: Types, properties, and their optoelectronic applications. Progress in Solid State Chemistry 2024, 5 , 100443. https://doi.org/10.1016/j.progsolidstchem.2024.100443
    90. Chi Sin Tang, Xinmao Yin. Two‐dimensional Transition Metal Dichalcogenides: A General Overview. 2024, 1-59. https://doi.org/10.1002/9783527838752.ch1
    91. Tong Yang, Zishen Wang, Jiaren Yuan, Jun Zhou, Ming Yang. Emerging Electronic Properties of Polymorphic 2D‐TMDs. 2024, 127-179. https://doi.org/10.1002/9783527838752.ch4
    92. Jannis Krumland, Caterina Cocchi. Electronic Structure of Low‐Dimensional Inorganic/Organic Interfaces: Hybrid Density Functional Theory, G 0 W 0 , and Electrostatic Models. physica status solidi (a) 2024, 221 (1) https://doi.org/10.1002/pssa.202300089
    93. Kameron R. Hansen, John S. Colton, Luisa Whittaker‐Brooks. Measuring the Exciton Binding Energy: Learning from a Decade of Measurements on Halide Perovskites and Transition Metal Dichalcogenides. Advanced Optical Materials 2024, 12 (3) https://doi.org/10.1002/adom.202301659
    94. Lovro Anto Barišić, Vito Despoja. G 0 Δ W theory: Quasiparticle properties of two-dimensional semiconductors physisorbed on graphene. Physical Review B 2024, 109 (3) https://doi.org/10.1103/PhysRevB.109.035301
    95. Xuan Song, Xinyu Huang, Han Yang, Liangguang Jia, Quanzhen Zhang, Yuan Huang, Xu Wu, Liwei Liu, Hong‐Jun Gao, Yeliang Wang. Robust Behavior of Charge Density Wave Quantum Motif Star‐of‐David in 2D NbSe 2 Nanocrystals. Small 2023, 19 (52) https://doi.org/10.1002/smll.202305159
    96. Wei Ruan, Yuanbo Zhang. Strong correlations in two-dimensional transition metal dichalcogenides. Science China Physics, Mechanics & Astronomy 2023, 66 (11) https://doi.org/10.1007/s11433-023-2141-9
    97. Farhad Sattari, Soghra Mirershadi. Enhanced light absorption in a MoS2-based photonic crystal. Physica B: Condensed Matter 2023, 666 , 415093. https://doi.org/10.1016/j.physb.2023.415093
    98. F Bussolotti, T D Maddumapatabandi, K E J Goh. Band structure and spin texture of 2D materials for valleytronics: insights from spin and angle-resolved photoemission spectroscopy. Materials for Quantum Technology 2023, 3 (3) , 032001. https://doi.org/10.1088/2633-4356/acd907
    99. Ziyuan Wang, Jun Chen, Chenwei Ni, Wei Nie, Dongfeng Li, Na Ta, Deyun Zhang, Yimeng Sun, Fusai Sun, Qian Li, Yuran Li, Ruotian Chen, Tiankai Bu, Fengtao Fan, Can Li. Visualizing the role of applied voltage in non-metal electrocatalysts. National Science Review 2023, 10 (9) https://doi.org/10.1093/nsr/nwad166
    100. Ding-Rui Chen, Jeyavelan Muthu, Xing-You Guo, Hao-Ting Chin, You-Chen Lin, Golam Haider, Chu-Chi Ting, Martin Kalbáč, Mario Hofmann, Ya-Ping Hsieh. Edge-dominated hydrogen evolution reactions in ultra-narrow MoS 2 nanoribbon arrays. Journal of Materials Chemistry A 2023, 11 (29) , 15802-15810. https://doi.org/10.1039/D3TA01573D
    Load more citations

    Nano Letters

    Cite this: Nano Lett. 2014, 14, 5, 2443–2447
    Click to copy citationCitation copied!
    https://doi.org/10.1021/nl501133c
    Published May 1, 2014
    Copyright © 2014 American Chemical Society

    Article Views

    10k

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.