ACS Publications. Most Trusted. Most Cited. Most Read
Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut
My Activity
  • Open Access
  • Editors Choice
Letter

Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut
Click to copy article linkArticle link copied!

View Author Information
Institute of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1, CH-8093 Zürich, Switzerland
Laboratory for Thin Films and Photovoltaics, Empa − Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
§ Centre for Sustainable Chemical Technologies and Department of Chemistry, University of Bath, Bath BA2 7AY, United Kingdom
Open PDFSupporting Information (2)

Nano Letters

Cite this: Nano Lett. 2015, 15, 6, 3692–3696
Click to copy citationCitation copied!
https://doi.org/10.1021/nl5048779
Published January 29, 2015

Copyright © 2015 American Chemical Society. This publication is licensed under these Terms of Use.

Abstract

Click to copy section linkSection link copied!

Metal halides perovskites, such as hybrid organic–inorganic CH3NH3PbI3, are newcomer optoelectronic materials that have attracted enormous attention as solution-deposited absorbing layers in solar cells with power conversion efficiencies reaching 20%. Herein we demonstrate a new avenue for halide perovskites by designing highly luminescent perovskite-based colloidal quantum dot materials. We have synthesized monodisperse colloidal nanocubes (4–15 nm edge lengths) of fully inorganic cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I or mixed halide systems Cl/Br and Br/I) using inexpensive commercial precursors. Through compositional modulations and quantum size-effects, the bandgap energies and emission spectra are readily tunable over the entire visible spectral region of 410–700 nm. The photoluminescence of CsPbX3 nanocrystals is characterized by narrow emission line-widths of 12–42 nm, wide color gamut covering up to 140% of the NTSC color standard, high quantum yields of up to 90%, and radiative lifetimes in the range of 1–29 ns. The compelling combination of enhanced optical properties and chemical robustness makes CsPbX3 nanocrystals appealing for optoelectronic applications, particularly for blue and green spectral regions (410–530 nm), where typical metal chalcogenide-based quantum dots suffer from photodegradation.

Copyright © 2015 American Chemical Society

Note Added after ASAP Publication

This paper was published on the Web on February 2, 2015. The discussion of the preparation of Cs-oleate and synthesis of CsPbX3 NCs in the Supporting Information has been corrected, and the paper was reposted on April 14, 2015.

Colloidal semiconductor nanocrystals (NCs, typically 2–20 nm large), also known as nanocrystal quantum dots (QDs), are being studied intensively as future optoelectronic materials. (1-4) These QD materials feature a very favorable combination of quantum-size effects, enhancing their optical properties with respect to their bulk counterparts, versatile surface chemistry, and a “free” colloidal state, allowing their dispersion into a variety of solvents and matrices and eventual incorporation into various devices. To date, the best developed optoelectronic NCs in terms of size, shape, and composition are binary and multinary (ternary, quaternary) metal chalcogenide NCs. (1, 5-9) In contrast, the potential of semiconducting metal halides in the form of colloidal NCs remains rather unexplored. In this regard, recent reports on highly efficient photovoltaic devices with certified power conversion efficiencies approaching 20% using hybrid organic–inorganic lead halides MAPbX3 (MA = CH3NH3, X = Cl, Br, and I) as semiconducting absorber layers are highly encouraging. (10-14)
In this study, we turn readers’ attention to a closely related family of materials: all-inorganic cesium lead halide perovskites (CsPbX3, X = Cl, Br, I, and mixed Cl/Br and Br/I systems; isostructural to perovskite CaTiO3 and related oxides). These ternary compounds are far less soluble in common solvents (contrary to MAPbX3), which is a shortcoming for direct solution processing but a necessary attribute for obtaining these compounds in the form of colloidal NCs. Although the synthesis, crystallography, and photoconductivity of direct bandgap CsPbX3 have been reported more than 50 years ago, (15) they have never been explored in the form of colloidal nanomaterials.
Here we report a facile colloidal synthesis of monodisperse, 4–15 nm CsPbX3 NCs with cubic shape and cubic perovskite crystal structure. CsPbX3 NCs exhibit not only compositional bandgap engineering, but owing to the exciton Bohr diameter of up to 12 nm, also exhibit size-tunability of their bandgap energies through the entire visible spectral region of 410–700 nm. Photoluminescence (PL) of CsPbX3 NCs is characterized by narrow emission line widths of 12–42 nm, high quantum yields of 50–90%, and short radiative lifetimes of 1–29 ns.

Figure 1

Figure 1. Monodisperse CsPbX3 NCs and their structural characterization. (a) Schematic of the cubic perovskite lattice; (b,c) typical transmission electron microscopy (TEM) images of CsPbBr3 NCs; (d) X-ray diffraction patterns for typical ternary and mixed-halide NCs.

Synthesis of Monodisperse CsPbX3 NCs

Our solution-phase synthesis of monodisperse CsPbX3 NCs (Figure 1) takes advantage of the ionic nature of the chemical bonding in these compounds. Controlled arrested precipitation of Cs+, Pb2+, and X ions into CsPbX3 NCs is obtained by reacting Cs-oleate with a Pb(II)-halide in a high boiling solvent (octadecene) at 140–200 °C (for details, see the Supporting Information). A 1:1 mixture of oleylamine and oleic acid are added into octadecene to solubilize PbX2 and to colloidally stabilize the NCs. As one would expect for an ionic metathesis reaction, the nucleation and growth kinetics are very fast. In situ PL measurements with a CCD-array detector (Supporting Information Figure S1) indicate that the majority of growth occurs within the first 1–3 s (faster for heavier halides). Consequently, the size of CsPbX3 NCs can be most conveniently tuned in the range of 4–15 nm by the reaction temperature (140–200 °C) rather than by the growth time. Mixed-halide perovskites, that is, CsPb(Cl/Br)3 and CsPb(Br/I)3, can be readily produced by combining appropriate ratios of PbX2 salts. Note that Cl/I perovskites cannot be obtained due to the large difference in ionic radii, which is in good agreement with the phase diagram for bulk materials. (16) Elemental analyses by energy dispersive X-ray (EDX) spectroscopy and by Ratherford backscattering spectrometry (RBS) confirmed the 1:1:3 atomic ratio for all samples of CsPbX3 NCs, including mixed-halide systems.
CsPbX3 are known to crystallize in orthorhombic, tetragonal, and cubic polymorphs of the perovskite lattice with the cubic phase being the high-temperature state for all compounds. (16-18) Interestingly, we find that all CsPbX3 NCs crystallize in the cubic phase (Figure 1d), which can be attributed to the combined effect of the high synthesis temperature and contributions from the surface energy. For CsPbI3 NCs, this is very much a metastable state, because bulk material converts into cubic polymorph only above 315 °C. At room temperature, an exclusively PL-inactive orthorhombic phase has been reported for bulk CsPbI3 (a yellow phase). (16-19) Our first-principles total energy calculations (density functional theory, Figure S2, Table S1 in Supporting Information) confirm the bulk cubic CsPbI3 phase to have 17 kJ/mol higher internal energy than the orthorhombic polymorph (7 kJ/mol difference for CsPbBr3). Weak emission centered at ∼710 nm has been observed from melt-spun bulk CsPbI3, shortly before recrystallization into the yellow phase. (18) Similarly, our solution synthesis of CsPbI3 at 305 °C yields cubic-phase 100–200 nm NCs with weak, short-lived emission at 714 nm (1.74 eV), highlighting the importance of size reduction for stabilizing the cubic phase and indicating that all CsPbI3 NCs in Figure 2b (5–15 nm in size) exhibit quantum-size effects (i.e., higher band gap energies due to quantum confinement, as discussed below). Cubic 4–15 nm CsPbI3 NCs recrystallize into the yellow phase only upon extended storage (months), whereas all other compositions of CsPbX3 NCs appear fully stable in a cubic phase.

Figure 2

Figure 2. Colloidal perovskite CsPbX3 NCs (X = Cl, Br, I) exhibit size- and composition-tunable bandgap energies covering the entire visible spectral region with narrow and bright emission: (a) colloidal solutions in toluene under UV lamp (λ = 365 nm); (b) representative PL spectra (λexc = 400 nm for all but 350 nm for CsPbCl3 samples); (c) typical optical absorption and PL spectra; (d) time-resolved PL decays for all samples shown in (c) except CsPbCl3.

Optical Properties of Colloidal CsPbX3 NCs

Optical absorption and emission spectra of colloidal CsPbX3 NCs (Figure 2b,c) can be tuned over the entire visible spectral region by adjusting their composition (ratio of halides in mixed halide NCs) and particle size (quantum-size effects). Remarkably bright PL of all NCs is characterized by high QY of 50–90% and narrow emission line widths of 12–42 nm. The combination of these two characteristics had been previously achieved only for core–shell chalcogenide-based QDs such as CdSe/CdS due to the narrow size distributions of the luminescent CdSe cores, combined with an epitaxially grown, electronically passivating CdS shell. (5, 20) Time-resolved photoluminescence decays of CsPbX3 NCs (Figure 2d) indicate radiative lifetimes in the range of 1–29 ns with faster emission for wider-gap NCs. For comparison, decay times of several 100 ns are typically observed in MAPbI3 (PL peak at 765 nm, fwhm = 50 nm) (21) and 40–400 ns for MAPbBr3–xClx (x = 0.6–2). (22)
Very bright emission of CsPbX3 NCs indicates that contrary to uncoated chalcogenide NCs surface dangling bonds do not impart severe midgap trap states. This observation is also in good agreement with the high photophysical quality of hybrid organic–inorganic perovskites (MAPbX3), despite their low-temperature solution-processing, which is generally considered to cause a high density of structural defects and trap states. In particular, thin-films of MAPbX3 exhibit relatively high PL QYs of 20–40% at room temperature (23, 24) and afford inexpensive photovoltaic devices approaching 20% in power conversion efficiency (10-12) and also electrically driven light-emitting devices. (25)
Ternary CsPbX3 NCs compare favorably to common multinary chalcogenide NCs: both ternary (CuInS2, CuInSe2, AgInS2, and AgInSe2) and quaternary (CuZnSnS2 and similar) compounds. CsPbX3 materials are highly ionic and thus are rather stoichiometric and ordered due to the distinct size and charge of the Cs and Pb ions. This is different from multinary chalcogenide materials that exhibit significant disorder and inhomogeneity in the distribution of cations and anions owing to little difference between the different cationic and anionic sites (all are essentially tetrahedral). In addition, considerable stoichiometric deviations lead to a large density of donor–acceptor states due to various point defects (vacancies, interstitials, etc.) within the band gap, both shallow and deep. These effects eventually lead to absent or weak and broad emission spectra and long multiexponent lifetimes. (7, 26-29)

Figure 3

Figure 3. (a) Quantum-size effects in the absorption and emission spectra of 5–12 nm CsPbBr3 NCs. (b) Experimental versus theoretical (effective mass approximation, EMA) size dependence of the band gap energy.

For a colloidal semiconductor NC to exhibit quantum-dot-like properties (shown in Figures 2b and 3), the NC diameter must be comparable or smaller than that of the natural delocalization lengths of an exciton in a bulk semiconductor (i.e., the exciton Bohr diameter, a0). The electronic structure of CsPbX3 (X = Cl, Br, and I), including scalar relativistic and spin–orbit interactions, was calculated using VASP code (30) and confirms that the upper valence band is formed predominately by the halide p-orbitals and the lower conduction band is formed by the overlap of the Pb p-orbitals (Figures S3 and S4 and Tables S2 and S3 in Supporting Information). Effective masses of the electrons and holes were estimated from the band dispersion, while the high-frequency dielectric constants were calculated by using density functional perturbation theory. (31) Within the effective mass approximation (EMA), (32) we have estimated the effective Bohr diameters of Wannier–Mott excitons and the binding energies for CsPbCl3 (5 nm, 75 meV), CsPbBr3 (7 nm, 40 meV), and CsPbI3 (12 nm, 20 meV). Similarly, in closely related hybrid perovskite MAPbI3 small exciton binding energies of ≤25 meV have been suggested computationally (33-35) and found experimentally. (36) For comparison, the typical exciton binding energies in organic semiconductors are above 100 meV. The confinement energy (ΔE = ℏ2π2/2m*r2, where r is the particle radius and m* is the reduced mass of the exciton) provides an estimate for the blue shift of the emission peak and absorption edge and is in good agreement with the experimental observations (Figure 3b).

Figure 4

Figure 4. (a) Emission from CsPbX3 NCs (black data points) plotted on CEI chromaticity coordinates and compared to most common color standards (LCD TV, dashed white triangle, and NTSC TV, solid white triangle). Radiant Imaging Color Calculator software from Radiant Zemax (http://www.radiantzemax.com) was used to map the colors. (b) Photograph (λexc = 365 nm) of highly luminescent CsPbX3 NCs-PMMA polymer monoliths obtained with Irgacure 819 as photoinitiator for polymerization.

Recently, highly luminescent semiconductor NCs based on Cd-chalcogenides have inspired innovative optoelectronic applications such as color-conversion LEDs, color-enhancers in backlight applications (e.g., Sony’s 2013 Triluminos LCD displays), and solid-state lighting. (4, 37, 38) Compared to conventional rare-earth phosphors or organic polymers and dyes, NCs often show superior quantum efficiency and narrower PL spectra with fine-size tuning of the emission peaks and hence can produce saturated colors. A CIE chromaticity diagram (introduced by the Commision Internationale de l’Eclairage) (39) allows the comparison of the quality of colors by mapping colors visible to the human eye in terms of hue and saturation. For instance, well-optimized core–shell CdSe-based NCs cover ≥100% of the NTSC TV color standard (introduced in 1951 by the National Television System Committee). (39) Figure 4a shows that CsPbX3 NCs allow a wide gamut of pure colors as well. Namely, a selected triangle of red, green, and blue emitting CsPbX3 NCs encompasses 140% of the NTSC standard, extending mainly into red and green regions.
Light-emission applications, discussed above, and also luminescent solar concentrators (40, 41) require solution-processability and miscibility of NC-emitters with organic and inorganic matrix materials. To demonstrate such robustness for CsPbX3 NCs, we embedded them into poly(methylmetacrylate) (PMMA), yielding composites of excellent optical clarity and with bright emission (Figure 4b). To accomplish this, CsPbX3 NCs were first dispersed in a liquid monomer (methylmetacrylate, MMA) as a solvent. Besides using known heat-induced polymerization with radical initiators, (41) we also performed polymerization already at room-temperature by adding a photoinitiator Irgacure 819 (bis(2,4,6-trimethylbenzoyl)-phenylphosphineoxide), (42) followed by 1h of UV-curing. We find that the presence of CsPbX3 NCs increases the rate of photopolymerization, compared to a control experiment with pure MMA. This can be explained by the fact that the luminescence from CsPbX3 NCs may be reabsorbed by the photoinitiator that has a strong absorption band in the visible spectral region, increasing the rate of polymerization.

Conclusions

In summary, we have presented highly luminescent colloidal CsPbX3 NCs (X = Cl, Br, I, and mixed Cl/Br and Br/I systems) with bright (QY = 50–90%), stable, spectrally narrow, and broadly tunable photoluminescence. Particularly appealing are highly stable blue and green emitting CsPbX3 NCs (410–530 nm), because the corresponding metal-chalcogenide QDs show reduced chemical and photostability at these wavelengths. In our ongoing experiments, we find that this simple synthesis methodology is also applicable to other metal halides with related crystal structures (e.g., CsGeI3, Cs3Bi2I9, and Cs2SnI6, to be published elsewhere). Future studies with these novel QD-materials will concentrate on optoelectronic applications such as lasing, light-emitting diodes, photovoltaics, and photon detection.

Supporting Information

Click to copy section linkSection link copied!

Synthesis details, calculations, and additional figures. This material is available free of charge via the Internet at http://pubs.acs.org.

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Author Information

Click to copy section linkSection link copied!

  • Corresponding Author
    • Maksym V. Kovalenko - Institute of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1, CH-8093 Zürich, SwitzerlandLaboratory for Thin Films and Photovoltaics, Empa − Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland Email: [email protected]
  • Authors
    • Loredana Protesescu - Institute of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1, CH-8093 Zürich, SwitzerlandLaboratory for Thin Films and Photovoltaics, Empa − Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
    • Sergii Yakunin - Institute of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1, CH-8093 Zürich, SwitzerlandLaboratory for Thin Films and Photovoltaics, Empa − Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
    • Maryna I. Bodnarchuk - Institute of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1, CH-8093 Zürich, SwitzerlandLaboratory for Thin Films and Photovoltaics, Empa − Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
    • Franziska Krieg - Institute of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1, CH-8093 Zürich, SwitzerlandLaboratory for Thin Films and Photovoltaics, Empa − Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
    • Riccarda Caputo - Institute of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1, CH-8093 Zürich, Switzerland
    • Christopher H. Hendon - Centre for Sustainable Chemical Technologies and Department of Chemistry, University of Bath, Bath BA2 7AY, United Kingdom
    • Ruo Xi Yang - Centre for Sustainable Chemical Technologies and Department of Chemistry, University of Bath, Bath BA2 7AY, United Kingdom
    • Aron Walsh - Centre for Sustainable Chemical Technologies and Department of Chemistry, University of Bath, Bath BA2 7AY, United Kingdom
  • Author Contributions

    The manuscript was prepared through the contribution of all coauthors. All authors have given approval to the final version of the manuscript.

  • Notes
    The authors declare no competing financial interest.

Acknowledgment

Click to copy section linkSection link copied!

This work was financially supported by the European Research Council (ERC) via Starting Grant (306733). The work at Bath was supported by the ERC Starting Grant (277757) and by the EPSRC (Grants EP/M009580/1 and EP/K016288/1). Calculations at Bath were performed on ARCHER via the U.K.’s HPC Materials Chemistry Consortium (Grant EP/L000202). Calculations at ETH Zürich were performed on the central HPC cluster BRUTUS. We thank Nadia Schwitz for a help with photography, Professor Dr. H. Grützmacher and Dr. G. Müller for a sample of Irgacure 819 photoinitiator, Dr. F. Krumeich for EDX measurements, Dr. M. Döbeli for RBS measurements (ETH Laboratory of Ion Beam Physics), and Dr. N. Stadie for reading the manuscript. We gratefully acknowledge the support of the Electron Microscopy Center at Empa and the Scientific Center for Optical and Electron Microscopy (ScopeM) at ETH Zürich.

References

Click to copy section linkSection link copied!

This article references 42 other publications.

  1. 1
    Talapin, D. V.; Lee, J.-S.; Kovalenko, M. V.; Shevchenko, E. V. Chem. Rev. 2009, 110, 389 458
  2. 2
    Lan, X.; Masala, S.; Sargent, E. H. Nat. Mater. 2014, 13, 233 240
  3. 3
    Hetsch, F.; Zhao, N.; Kershaw, S. V.; Rogach, A. L. Mater. Today 2013, 16, 312 325
  4. 4
    Shirasaki, Y.; Supran, G. J.; Bawendi, M. G.; Bulovic, V. Nat. Photonics 2013, 7, 13 23
  5. 5
    Chen, O.; Zhao, J.; Chauhan, V. P.; Cui, J.; Wong, C.; Harris, D. K.; Wei, H.; Han, H.-S.; Fukumura, D.; Jain, R. K.; Bawendi, M. G. Nat. Mater. 2013, 12, 445 451
  6. 6
    Murray, C. B.; Norris, D. J.; Bawendi, M. G. J. Am. Chem. Soc. 1993, 115, 8706 8715
  7. 7
    Aldakov, D.; Lefrancois, A.; Reiss, P. J. Mater. Chem. C 2013, 1, 3756 3776
  8. 8
    Fan, F.-J.; Wu, L.; Yu, S.-H. Energy Environ. Sci. 2014, 7, 190 208
  9. 9
    Yu, X.; Shavel, A.; An, X.; Luo, Z.; Ibáñez, M.; Cabot, A. J. Am. Chem. Soc. 2014, 136, 9236 9239
  10. 10
    Gratzel, M. Nat. Mater. 2014, 13, 838 842
  11. 11
    Green, M. A.; Ho-Baillie, A.; Snaith, H. J. Nat. Photonics 2014, 8, 506 514
  12. 12
    Park, N.-G. J. Phys. Chem. Lett. 2013, 4, 2423 2429
  13. 13
    Zhou, H.; Chen, Q.; Li, G.; Luo, S.; Song, T.-b.; Duan, H.-S.; Hong, Z.; You, J.; Liu, Y.; Yang, Y. Science 2014, 345, 542 546
  14. 14
    Chung, I.; Lee, B.; He, J.; Chang, R. P. H.; Kanatzidis, M. G. Nature 2012, 485, 486 489
  15. 15
    Moller, C. K. Nature 1958, 182, 1436 1436
  16. 16
    Sharma, S.; Weiden, N.; Weiss, A. Z. Phys. Chem. 1992, 175, 63 80
  17. 17
    Trots, D. M.; Myagkota, S. V. J. Phys. Chem. Solids 2008, 69, 2520 2526
  18. 18
    Stoumpos, C. C.; Malliakas, C. D.; Kanatzidis, M. G. Inorg. Chem. 2013, 52, 9019 9038
  19. 19
    Babin, V.; Fabeni, P.; Nikl, M.; Nitsch, K.; Pazzi, G. P.; Zazubovich, S. Phys. Status Solidi B 2001, 226, 419 428
  20. 20
    Christodoulou, S.; Vaccaro, G.; Pinchetti, V.; De Donato, F.; Grim, J. Q.; Casu, A.; Genovese, A.; Vicidomini, G.; Diaspro, A.; Brovelli, S.; Manna, L.; Moreels, I. J. Mater. Chem. C 2014, 2, 3439 3447
  21. 21
    Wehrenfennig, C.; Liu, M.; Snaith, H. J.; Johnston, M. B.; Herz, L. M. J. Phys. Chem. Lett. 2014, 5, 1300 1306
  22. 22
    Zhang, M.; Yu, H.; Lyu, M.; Wang, Q.; Yun, J.-H.; Wang, L. Chem. Commun. 2014, 50, 11727 11730
  23. 23
    Xing, G.; Mathews, N.; Lim, S. S.; Yantara, N.; Liu, X.; Sabba, D.; Grätzel, M.; Mhaisalkar, S.; Sum, T. C. Nat. Mater. 2014, 13, 476 480
  24. 24
    Deschler, F.; Price, M.; Pathak, S.; Klintberg, L. E.; Jarausch, D.-D.; Higler, R.; Hüttner, S.; Leijtens, T.; Stranks, S. D.; Snaith, H. J.; Atatüre, M.; Phillips, R. T.; Friend, R. H. J. Phys. Chem. Lett. 2014, 5, 1421 1426
  25. 25
    Tan, Z.-K.; Moghaddam, R. S.; Lai, M. L.; Docampo, P.; Higler, R.; Deschler, F.; Price, M.; Sadhanala, A.; Pazos, L. M.; Credgington, D.; Hanusch, F.; Bein, T.; Snaith, H. J.; Friend, R. H. Nat. Nanotechnol. 2014, 9, 687 692
  26. 26
    Ueng, H. Y.; Hwang, H. L. J. Phys. Chem. Solids 1989, 50, 1297 1305
  27. 27
    Huang, L.; Zhu, X.; Publicover, N. G.; Hunter, K. W.; Ahmadiantehrani, M.; de Bettencourt-Dias, A.; Bell, T. W. J. Nanopart. Res. 2013, 15, 2056
  28. 28
    De Trizio, L.; Prato, M.; Genovese, A.; Casu, A.; Povia, M.; Simonutti, R.; Alcocer, M. J. P.; D’Andrea, C.; Tassone, F.; Manna, L. Chem. Mater. 2012, 24, 2400 2406
  29. 29
    Zhang, W.; Zhong, X. Inorg. Chem. 2011, 50, 4065 4072
  30. 30
    Kresse, G.; Joubert, D. Phys. Rev. B 1999, 59, 1758
  31. 31
    Baroni, S.; de Gironcoli, S.; Dal Corso, A.; Giannozzi, P. Rev. Mod. Phys. 2001, 73, 515
  32. 32
    Yu, P. Y.; Cardona, M. Fundamentals of Semiconductors; Springer: New York, 1996.
  33. 33
    Even, J.; Pedesseau, L.; Katan, C. J. Phys. Chem. C 2014, 118, 11566 11572
  34. 34
    Frost, J. M.; Butler, K. T.; Brivio, F.; Hendon, C. H.; van Schilfgaarde, M.; Walsh, A. Nano Lett. 2014, 14, 2584 2590
  35. 35
    Menéndez-Proupin, E.; Palacios, P.; Wahnón, P.; Conesa, J. Phys. Rev. B 2014, 90, 045207
  36. 36
    Saba, M.; Cadelano, M.; Marongiu, D.; Chen, F.; Sarritzu, V.; Sestu, N.; Figus, C.; Aresti, M.; Piras, R.; Geddo Lehmann, A.; Cannas, C.; Musinu, A.; Quochi, F.; Mura, A.; Bongiovanni, G. Nat. Commun. 2014, 5, 5049
  37. 37
    Kim, T.-H.; Jun, S.; Cho, K.-S.; Choi, B. L.; Jang, E. MRS Bull. 2013, 38, 712 720
  38. 38
    Supran, G. J.; Shirasaki, Y.; Song, K. W.; Caruge, J.-M.; Kazlas, P. T.; Coe-Sullivan, S.; Andrew, T. L.; Bawendi, M. G.; Bulović, V. MRS Bull. 2013, 38, 703 711
  39. 39
    Ye, S.; Xiao, F.; Pan, Y. X.; Ma, Y. Y.; Zhang, Q. Y. Mater. Sci. Eng. R 2010, 71, 1 34
  40. 40
    Bomm, J.; Buechtemann, A.; Chatten, A. J.; Bose, R.; Farrell, D. J.; Chan, N. L. A.; Xiao, Y.; Slooff, L. H.; Meyer, T.; Meyer, A.; van Sark, W. G. J. H. M.; Koole, R. Sol. Energy Mater. Sol. Cells 2011, 95, 2087 2094
  41. 41
    Meinardi, F.; Colombo, A.; Velizhanin, K. A.; Simonutti, R.; Lorenzon, M.; Beverina, L.; Viswanatha, R.; Klimov, V. I.; Brovelli, S. Nat. Photonics 2014, 8, 392 399
  42. 42
    Gruetzmacher, H.; Geier, J.; Stein, D.; Ott, T.; Schoenberg, H.; Sommerlade, R. H.; Boulmaaz, S.; Wolf, J.-P.; Murer, P.; Ulrich, T. Chimia 2008, 62, 18 22

Cited By

Click to copy section linkSection link copied!

This article is cited by 7341 publications.

  1. Christos Dimitriou, Loukas Belles, Nikos Boukos, Yiannis Deligiannakis. {TiO2/TiO2(B)} Quantum Dot Hybrids: A Comprehensible Route toward High-Performance [>0.1 mol gr–1 h–1] Photocatalytic H2 Production from H2O. ACS Catalysis 2024, 14 (23) , 17919-17934. https://doi.org/10.1021/acscatal.4c05001
  2. Kenichi Cho, Hirokazu Tahara, Takumi Yamada, Mitsuki Muto, Masaki Saruyama, Ryota Sato, Toshiharu Teranishi, Yoshihiko Kanemitsu. Internal Electric Field Manipulates Exciton–Phonon Couplings in Single Lead Halide Perovskite Nanocrystals. The Journal of Physical Chemistry Letters 2024, 15 (48) , 11969-11974. https://doi.org/10.1021/acs.jpclett.4c03016
  3. Kyle D. Crans, Hagai Cohen, Ariel A. Nehoray, Dan Oron, Miri Kazes, Richard L. Brutchey. A Redox-Active Ionic Liquid Surface Treatment for Healing CsPbBr3 Nanocrystals. Nano Letters 2024, Article ASAP.
  4. Loan Thi Ngo, Wen-Tse Huang, Hemant Verma, Yen-Huei Lin, Ling-Wei Liang, Chia-Te Fang, Jia-Cheng Chang, Wen-Chung Chu, Chaochin Su, Chao-Cheng Kaun, Ru-Shi Liu. Hybrid-Protected Perovskite Quantum Dot Films with Ultra-High Efficiency and Stability for LED Backlighting. ACS Applied Materials & Interfaces 2024, 16 (48) , 66262-66272. https://doi.org/10.1021/acsami.4c15012
  5. Xiaogang Wang, Renjie Chen, Junliang Zhang, Chenxi Han, Yanling Guo, Ximeng Chen, Lin Chen. The Environmental Stability of CsPbBr3 PQD Thin-Film Scintillators with Encapsulants. The Journal of Physical Chemistry C 2024, 128 (47) , 20017-20024. https://doi.org/10.1021/acs.jpcc.4c06368
  6. Zexun Cui, Pingping Zhang, Weixin Li, Pengyu Zhou, Yu Zhang, Bao Liu, Yuqiang Li. Pressure Effect on Luminescence Characteristics and Energy Transfer in CsPbBr3/ZnS Nanocrystal Heterostructures. The Journal of Physical Chemistry C 2024, 128 (47) , 20489-20496. https://doi.org/10.1021/acs.jpcc.4c06610
  7. David Hadid Sidiq, Somnath Mahato, Tobias Haposan, Michal Makowski, Dominik Kowal, Marcin Eugeniusz Witkowski, Winicjusz Drozdowski, Arramel, Muhammad Danang Birowosuto. Cation Engineering of Cu-Doped CsPbI3: Lead Substitution and Dimensional Reduction for Improved Scintillation Performance. The Journal of Physical Chemistry C 2024, 128 (47) , 20324-20332. https://doi.org/10.1021/acs.jpcc.4c07165
  8. Anja Barfüßer, Jochen Feldmann, Quinten A. Akkerman. Biexcitonic Optical Gain in CsPbBr3 Quantum Dots. ACS Photonics 2024, Article ASAP.
  9. Akshaya Chemmangat, Jishnudas Chakkamalayath, Prashant V. Kamat. Structural Evolution of Perovskite Nanoplatelets in Polar Solvents. ACS Materials Letters 2024, Article ASAP.
  10. Xueying Ma, Yuhui Ye, Yang Xiao, Shengnan Feng, Chunfeng Zhang, Keyu Xia, Fengrui Hu, Min Xiao, Xiaoyong Wang. Prolonged Phase Segregation of Mixed-Halide Perovskite Nanocrystals in the Dark. ACS Applied Materials & Interfaces 2024, 16 (47) , 65142-65148. https://doi.org/10.1021/acsami.4c12418
  11. David C. Zeitz, Vivien L. Cherrette, Sarah A. Creech, Yan Li, Yuan Ping, Jin Z. Zhang. Ultrafast Spin Relaxation of Charge Carriers in Strongly Quantum Confined Methylammonium Lead Bromide Perovskite Magic-Sized Clusters. ACS Physical Chemistry Au 2024, 4 (6) , 610-614. https://doi.org/10.1021/acsphyschemau.4c00051
  12. Parina Nuket, Tetsuya Kida, Paravee Vas-Umnuay. Ambient Air-Synthesized CsPbBr3 Nanocrystals Coupled with TiO2 Film as an Efficient Hybrid Photoanode for Photoelectrochemical Methanol-to-Formaldehyde Conversion. ACS Applied Materials & Interfaces 2024, 16 (47) , 65414-65424. https://doi.org/10.1021/acsami.4c10039
  13. Xiang Zhang, Jinghui Li, Peipei Du, Zixi Shen, Hao Chen, Haozhi Wang, Nian Liu, Junhu Cai, Jiajun Luo, Enguo Chen. Structural Engineering for Efficient Transparent Vacuum-Deposited Perovskite Light-Emitting Diodes toward Intelligent Display. ACS Applied Materials & Interfaces 2024, Article ASAP.
  14. Siddharth Singh, Debarjya Ganguly, Shivani Gupta, Vishal Govind Rao. Enhancing the Photocatalytic Performance of CsPbBr3 Nanocrystals through Ferrocene-Assisted Exciton Dissociation and Halide Vacancies. ACS Applied Materials & Interfaces 2024, Article ASAP.
  15. Shramana Guha, Suman Bera, Arghyadeep Garai, D. D. Sarma, Narayan Pradhan, Somobrata Acharya. Deriving Chiroptical Properties from Intrinsically Achiral Building Blocks of One-Dimensional CsPbBr3 Perovskite Nanowires. Journal of the American Chemical Society 2024, Article ASAP.
  16. Qinxuan Cao, Jianning Feng, Jinzhong Zhang, Jie Xue, Kang Wang, Ye Yang, Haipeng Lu. Two-in-One Ni2+-Doped CsPbBr3 Nanocrystals Enabling Acceptorless Photocatalytic Dehydrogenation of Diaryl Hydrazines. Inorganic Chemistry 2024, Article ASAP.
  17. Hao Lin, Jia-Yi Dong, Qi Wei, Gang Wang, Jie-Lei Li, Zhen-Dong Lian, Pei-Li Gao, Shi Chen, Gui-Chuan Xing, Kar Wei Ng, Shi-Chen Su, Shuang-Peng Wang. Chelating Ligand Surface Functionalization for Ultrastable Efficient Blue Emissive Nanoplatelets. ACS Materials Letters 2024, Article ASAP.
  18. Himanshu Bhatt, Ramchandra Saha, Tanmay Goswami, Sangeetha C. K., Kaliyamoorthy Justice Babu, Gurpreet Kaur, Ayushi Shukla, Mahammed Suleman Patel, Sachin R. Rondiya, Nelson Y. Dzade, Hirendra N. Ghosh. Charge Transfer Modulation in the α-CsPbI3/WS2 Heterojunction via Band-Tailoring with Elemental Ni Doping. ACS Photonics 2024, Article ASAP.
  19. Jung Jae Do, Dong Han Kim, Jae Woong Jung. Simultaneous Improvement in Blue-Light Emission and Operational Stability of Nanometer-Thick Perovskite Light-Emitting Diodes by Incorporating Multiple Organic/Inorganic Chloride Salts. ACS Applied Nano Materials 2024, 7 (22) , 25729-25740. https://doi.org/10.1021/acsanm.4c04882
  20. Pengji Li, Leon Biesterfeld, Lars F. Klepzig, Jingzhong Yang, Huu Thoai Ngo, Ahmed Addad, Tom N. Rakow, Ruolin Guan, Eddy P. Rugeramigabo, Ivan Zaluzhnyy, Frank Schreiber, Louis Biadala, Jannika Lauth, Michael Zopf. Sub-millielectronvolt Line Widths in Polarized Low-Temperature Photoluminescence of 2D PbS Nanoplatelets. Nano Letters 2024, Article ASAP.
  21. Priyanka, Avinash Rundla, Bheem Kumar, Pushpendra Kumar, Kedar Singh. Thermal Degradation Mechanism and Reaction Kinetics of CsPbBr3 Nanocrystals Using the Coats–Redfern Method. The Journal of Physical Chemistry C 2024, 128 (46) , 19873-19882. https://doi.org/10.1021/acs.jpcc.4c05757
  22. Brener R. C. Vale, Diego Scolfaro, Claudevan A. Sousa, Andre F. V. Fonseca, Luiz G. Bonato, Ana F. Nogueira, Jefferson Bettini, Lazaro A. Padilha. Charge Trapping and Detrapping in CsPbBr3 Perovskite Nanocrystals: Implications for Photovoltaic and Photocatalysis Applications. ACS Applied Nano Materials 2024, Article ASAP.
  23. Jiaqian Zhou, Jiawei Lin, Zhu Guo, Peiran Xie, Congcong Chen, Lingling Mao. Tunable Blue-Light-Emitting Organic–Inorganic Zinc Halides with Thermally Activated Delayed Fluorescence and Room-Temperature Phosphorescence. ACS Applied Materials & Interfaces 2024, 16 (46) , 63744-63751. https://doi.org/10.1021/acsami.4c13645
  24. Jihoon Kim, Rahmatia Fitri Binti Nasrun, Woo Hyeon Jeong, Xinyu Shen, Indah Salma Sausan, Danbi Kim, Gyeong Eun Seok, Eui Dae Jung, Joo Hyun Kim, Bo Ram Lee. Conjugated Polyelectrolytes as a Defect-Passivating Hole Injection Layer for Efficient and Stable Perovskite Light-Emitting Diodes. ACS Applied Electronic Materials 2024, Article ASAP.
  25. Zhengtong Wang, Cong Chen, Kai Lian, Zhihui Deng, Yiwei Zhao, Jiachen Han, Yelin Ding, Chun Sun. Double-Matrix Encapsulation of Cyan Perovskite Nanomaterials for High-Efficiency Full-Spectrum White Light-Emitting Diodes. ACS Applied Nano Materials 2024, Article ASAP.
  26. Kaimin Gao, Yuxuan Li, Yupeng Yang, Boyu Zhang, Meng Liu, Jingyi Zhu, Kaifeng Wu. Revealing and Manipulating Hidden Fine-Structure Coherence of Bright Excitons in CsPbI3 Perovskite Quantum Dots. Nano Letters 2024, 24 (45) , 14507-14514. https://doi.org/10.1021/acs.nanolett.4c04772
  27. Rakesh Kumar Behera, Souvik Banerjee, Nitika Kharbanda, Manvi Sachdeva, Diptam Nasipuri, Hirendra N. Ghosh, Narayan Pradhan. CsPbBr3–PbSe Perovskite-Chalcogenide Epitaxial Nanocrystal Heterostructures and Their Charge Carrier Dynamics. Journal of the American Chemical Society 2024, 146 (45) , 31177-31185. https://doi.org/10.1021/jacs.4c11172
  28. Dong Hyeon Lee, Woo Hyeon Jeong, Seokhyun Choung, Ji Won Jang, Gyudong Lee, Hochan Song, Sanghun Han, Gyeong Eun Seok, Jihoon Kim, Myeonggeun Han, Jeong Woo Han, Hyosung Choi, Jongmin Choi, Bo Ram Lee, Yong-Young Noh. Surface Defect Recovery in Perovskite Nanocrystals with Excess Halide for Core–Shell Structure. ACS Energy Letters 2024, 9 (11) , 5413-5420. https://doi.org/10.1021/acsenergylett.4c01870
  29. Chenjie Gong, Shalong Wang, Wenxuan Fan, Jianfeng Wang, Wanjie Wang, Yanxia Cao, Jizhong Song. Solvent-Free in Situ Synthesis of a CsPbBr3 Nanocrystal/ZrO2 Hybrid Phosphor with Excellent Thermal Stability for White Light-Emitting Diodes. ACS Applied Materials & Interfaces 2024, 16 (44) , 60556-60563. https://doi.org/10.1021/acsami.4c13618
  30. Fuchun Ning, Xicheng Wang, Yuhua Wang. Unraveling the Ultrasonic-Assisted Synthesis of Green-Emitting CsPbBr3@Cs4PbBr6: Reaction Process, Luminescence Property, and Display Application. Inorganic Chemistry 2024, 63 (44) , 20993-20999. https://doi.org/10.1021/acs.inorgchem.4c02474
  31. Yifan Zhu, Hongchen Shen, Qing Ai, Yuren Feng, Bongki Shin, Mateo Gonzales, Yunrui Yan, Ze He, Xiaochuan Huang, Xiang Zhang, Yimo Han, Pulickel M. Ajayan, Qilin Li, Jun Lou. Double Layer SiO2-Coated Water-Stable Halide Perovskite as a Promising Antimicrobial Photocatalyst under Visible Light. Nano Letters 2024, 24 (43) , 13718-13726. https://doi.org/10.1021/acs.nanolett.4c03793
  32. Miri Kazes, Dekel Nakar, Ihor Cherniukh, Maryna I. Bodnarchuk, Leon G. Feld, Chenglian Zhu, Daniel Amgar, Gabriele Rainò, Maksym V. Kovalenko, Dan Oron. Observation of Three-Photon Cascaded Emission from Triexcitons in Giant CsPbBr3 Quantum Dots at Room Temperature. Nano Letters 2024, 24 (42) , 13185-13191. https://doi.org/10.1021/acs.nanolett.4c03096
  33. Min-Gi Jeon, Gwang Hwi An, Artavazd Kirakosyan, Subin Yun, Joonseok Kim, Chang-Yeon Kim, Hyun Seok Lee, Jihoon Choi. Suppressed Thermal Quenching via Tetrafluoroborate-Induced Surface Reconstruction of CsPbBr3 Nanocrystals for Efficient Perovskite Light-Emitting Diodes. ACS Nano 2024, 18 (42) , 29078-29088. https://doi.org/10.1021/acsnano.4c10320
  34. Bong Woo Kim, Sang Hyuk Im. Supersaturated Antisolvent-Assisted Crystallization for Highly Efficient Inorganic Perovskite Light-Emitting Diodes. ACS Nano 2024, 18 (42) , 28691-28699. https://doi.org/10.1021/acsnano.4c06465
  35. Aradhana Panigrahi, Ajay Kumar, Leepsa Mishra, Prakash Parida, Manas Kumar Sarangi. Hole-Induced Charge Transfer Dynamics at the CsPbBr3 Perovskite Quantum Dot Interface. The Journal of Physical Chemistry C 2024, 128 (41) , 17503-17512. https://doi.org/10.1021/acs.jpcc.4c03984
  36. Eduard Aleksanyan, Vachagan Harutyunyan, Anush Badalyan, Norayr Grigoryan, Narek Margaryan, Andranik Manukyan, Lenrik Matevosyan, Halyna Okrepka, Vadim Trepalin, Yang Ding, Maksym Zhukovskyi, Masaru Kuno, Ani Aprahamian, Khachatur Manukyan. Superior Stability of CsPbBr3 Films under High-Energy Proton Irradiation. The Journal of Physical Chemistry C 2024, 128 (40) , 16854-16860. https://doi.org/10.1021/acs.jpcc.4c03554
  37. Shovon Chatterjee, Subarna Biswas, Smruti Sourav, Jyotisman Rath, Syed Akhil, Nimai Mishra. Strategies To Achieve Long-Term Stability in Lead Halide Perovskite Nanocrystals and Its Optoelectronic Applications. The Journal of Physical Chemistry Letters 2024, 15 (40) , 10118-10137. https://doi.org/10.1021/acs.jpclett.4c02240
  38. Nikolaos Livakas, Juliette Zito, Yurii P. Ivanov, Clara Otero-Martínez, Giorgio Divitini, Ivan Infante, Liberato Manna. Nanocrystal Heterostructures Based on Halide Perovskites and Metal Sulfides. Journal of the American Chemical Society 2024, 146 (40) , 27571-27582. https://doi.org/10.1021/jacs.4c08565
  39. Peng Chen, Yun Xiao, Shunde Li, Xiaohan Jia, Deying Luo, Wei Zhang, Henry J. Snaith, Qihuang Gong, Rui Zhu. The Promise and Challenges of Inverted Perovskite Solar Cells. Chemical Reviews 2024, 124 (19) , 10623-10700. https://doi.org/10.1021/acs.chemrev.4c00073
  40. Retno Miranti, Ryutaro Komatsu, Kazushi Enomoto, Daishi Inoue, Yong-Jin Pu. Symmetry-Broken Electronic State of CsPbBr3 Cubic Perovskite Nanocrystals. The Journal of Physical Chemistry Letters 2024, 15 (39) , 10009-10017. https://doi.org/10.1021/acs.jpclett.4c02160
  41. K. R. Pradeep, Priyanka Jain, K. T. Suhas, Vadim Murzin, Chandrabhas Narayana, Ranjani Viswanatha. Structure of Mixed Halide Perovskite Nanocrystals at Various Length Scales. The Journal of Physical Chemistry C 2024, 128 (39) , 16781-16790. https://doi.org/10.1021/acs.jpcc.4c05095
  42. Jibin Zhang, Dandan Zhang, Xin Zhou, Linyuan Lian, Chao Shen, Chenhui Su, Shuyan Fang, Xiangfei Liang, Fanglong Yuan, Lintao Hou, Ying-Xue Yuan. In-Situ Surface Repair of FAPbBr3 Quantum Dots toward High-Performance Pure-Green Perovskite Light-Emitting Diodes. Nano Letters 2024, 24 (39) , 12196-12203. https://doi.org/10.1021/acs.nanolett.4c03229
  43. Huili Wei, Xiangyu Ji, Jinguo Cao, Wuguang He, Hong Liu, Zexun Pan, Xin Song, Qiang Sun, Jinhua Li, Congcong Wu. High-Performance CsPbI3 Quantum Dot Photodetector with a Vertical Structure Based on the Frenkel–Poole Emission Effect. ACS Nano 2024, 18 (39) , 26643-26654. https://doi.org/10.1021/acsnano.4c05111
  44. Rufeng Wang, Jian Ni, Jiayi Guan, Shuai Zhang, Miao Yan, Sen Li, Yaofang Zhang, Juan Li, Hongkun Cai, Jianjun Zhang. Tailoring Surface Chemistry of CsPbI3 Perovskite Quantum Dots Using Multifunctional Ligand Enables Efficient and Stable Solar Cells. ACS Sustainable Chemistry & Engineering 2024, 12 (39) , 14514-14523. https://doi.org/10.1021/acssuschemeng.4c05956
  45. Kaliyamoorthy Justice Babu, Anil Chazhoor Asokan, Ayushi Shukla, Arshdeep Kaur, Manvi Sachdeva, Hirendra N. Ghosh. Ultrafast Interfacial Charge Transfer in Anisotropic One-Dimensional CsPbBr3/Pt Epitaxial Heterostructure. The Journal of Physical Chemistry Letters 2024, 15 (38) , 9677-9685. https://doi.org/10.1021/acs.jpclett.4c01853
  46. Fengjun Chun, Feng Wang. Recent Advances in Perovskite-Based Flexible Electroluminescent Devices. ACS Nano 2024, 18 (38) , 25939-25965. https://doi.org/10.1021/acsnano.4c06587
  47. Huan Tian, Yi Liu, Feng-Lei Jiang. Chemical Instability of CsPbBr3 Nanocrystals and the Reversible Transformation between CsPbBr3 and Cs4PbBr6 Nanocrystals as Driven by Synthetic Precursors. Chemistry of Materials 2024, 36 (18) , 8949-8964. https://doi.org/10.1021/acs.chemmater.4c02018
  48. Beñat Martinez de Aguirre Jokisch, Benjamin Falkenberg Gøtzsche, Philip Trøst Kristensen, Martijn Wubs, Ole Sigmund, Rasmus Ellebæk Christiansen. Omnidirectional Gradient Force Optical Trapping in Dielectric Nanocavities by Inverse Design. ACS Photonics 2024, Article ASAP.
  49. Tarun Kumar Dinda, Anupam Manna, Pravat Nayek, Bikash Mandal, Prasenjit Mal. Ultrasmall CsPbBr3 Nanocrystals as a Recyclable Heterogeneous Photocatalyst in 100% E- and Anti-Markovnikov Sulfinylsulfonation of Terminal Alkynes. ACS Applied Materials & Interfaces 2024, 16 (37) , 49411-49427. https://doi.org/10.1021/acsami.4c10579
  50. Arghya Sen, Priyam Karmakar, Patralekha Sarkar, Pratik Sen. Suppression of Thermally Assisted Photoluminescence Quenching in CsPbBr3 Nanocrystals via Surface Engineering: Implications for Optoelectronic Devices. ACS Applied Nano Materials 2024, 7 (17) , 21036-21047. https://doi.org/10.1021/acsanm.4c04098
  51. Justice Agbeshie Teku, Namji Lee, Derrick Allan Taylor, Joicy Selvaraj, Jong-Soo Lee. Highly Stable CsPbBr3 Perovskite Quantum Dots with ZnS Shells from Single-Molecule Precursors for Optoelectronic Devices. ACS Applied Nano Materials 2024, 7 (17) , 20034-20045. https://doi.org/10.1021/acsanm.4c02560
  52. Rongwen Wang, Jianqiao Zhao, Jinming Ma, Chengxu Lu, Zhaoshi Yu, Guoli Tu, Jibin Zhang. Yttrium Cation Doping and Phenylphosphonic Acid Passivation for Pure-Red Perovskite Light-Emitting Diodes. ACS Energy Letters 2024, 9 (9) , 4699-4707. https://doi.org/10.1021/acsenergylett.4c01805
  53. Guangruixing Zou, Zhaohua Zhu, Zixin Zeng, Zhiqiang Guan, Nan Zhang, Wenlin Jiang, Ziming Chen, Ye Wu, Desui Chen, Francis R. Lin, Sai-Wing Tsang, Chun-Sing Lee, Andrey L. Rogach, Alex K.-Y. Jen, Hin-Lap Yip. Self-Organized Carbazole Phosphonic Acid Additives at Buried Interface Enhance Efficiency of Blue Perovskite LEDs. ACS Energy Letters 2024, 9 (9) , 4715-4723. https://doi.org/10.1021/acsenergylett.4c01674
  54. Qianxi Yin, Rongrong Xu, Xiaoting Wang, Mulin Li, Xianliang Huang, Ziyi Chen, Teng Ma, An Xie, Jun Chen, Haibo Zeng. Precise Laser-Modulated Anion Exchange on Ultraflexible Perovskite Films for Multicolor Patterns. ACS Applied Materials & Interfaces 2024, 16 (36) , 48094-48102. https://doi.org/10.1021/acsami.4c09606
  55. Anu Bala, Vijay Kumar. Atomic Structure, Stoichiometry, and Electronic Properties of CsPbI3 Quantum Dots Using Ab Initio Calculations. The Journal of Physical Chemistry C 2024, 128 (35) , 14569-14577. https://doi.org/10.1021/acs.jpcc.4c02142
  56. Yujie Jiao, Zhenqin Li, Nuerbiya Aihemaiti, Jiayu Ding, Bing Gu, Siying Peng. Dynamically Tunable Circularly Polarized Selectivity in Plasmon-Enhanced Halide Perovskite Nanocrystal Glasses. The Journal of Physical Chemistry Letters 2024, 15 (35) , 9092-9099. https://doi.org/10.1021/acs.jpclett.4c01878
  57. Raisa-Ioana Biega, Huygen J. Jöbsis, Zamorano Gijsberg, Maxim Hüskens, Eline M. Hutter, Linn Leppert. Halide Mixing in Cs2AgBi(IxBr1–x)6 Double Perovskites: A Pathway to Tunable Excitonic Properties. The Journal of Physical Chemistry C 2024, 128 (35) , 14767-14775. https://doi.org/10.1021/acs.jpcc.4c04453
  58. Jence T. Mulder, Julius O. V. Monchen, Yan B. Vogel, Cheng Tai Lin, Filippo Drago, Valentina M. Caselli, Niranjan Saikumar, Tom J. Savenije, Arjan J. Houtepen. Orthogonal Electrochemical Stability of Bulk and Surface in Lead Halide Perovskite Thin Films and Nanocrystals. Journal of the American Chemical Society 2024, 146 (35) , 24415-24425. https://doi.org/10.1021/jacs.4c06340
  59. Yongfeng Liu, Yupeng Ying, Qingyu Xie, Zhaoju Gao, Xiuwen Shao, Min Zhou, Wei Pei, Xiaosheng Tang, Yusong Tu. Bifunctional Ligand Passivation Enables Stable Blue Mixed-Halide CsPb(Br/Cl)3 Perovskite Quantum Dots toward Light-Emitting Diodes. Inorganic Chemistry 2024, 63 (35) , 16167-16176. https://doi.org/10.1021/acs.inorgchem.4c01671
  60. Ke Ren, Jingcong Hu, Chenghao Bi, Shibo Wei, Xingyu Wang, Nora H. de Leeuw, Yue Lu, Manling Sui, Wenxin Wang. Strongly-Confined CsPbI3 Quantum Dots by Surface Cleaning-Induced Ligand Exchange for Spectrally Stable Pure-Red Light-Emitting Diodes with Efficiency Exceeding 26%. ACS Materials Letters 2024, 6 (9) , 4115-4123. https://doi.org/10.1021/acsmaterialslett.4c00912
  61. Timi Titus, E. Krishnan Vishnu, Arghyadeep Garai, Sumit Kumar Dutta, Kuttysankaran Sandeep, Ankita Shelke, Thalasseril G. Ajithkumar, Anil Shaji, Narayan Pradhan, K. George Thomas. Biexciton Emission in CsPbBr3 Nanocrystals: Polar Facet Matters. Nano Letters 2024, 24 (34) , 10434-10442. https://doi.org/10.1021/acs.nanolett.4c01186
  62. I-Hsuan Yeh, Mahdieh Ghobadifard, Lin Feng, Victor Galievsky, Pavle V. Radovanovic. Origin of Dopant-Carrier Exchange Coupling and Excitonic Zeeman Splitting in Mn2+-Doped Lead Halide Perovskite Nanocrystals. Nano Letters 2024, 24 (34) , 10554-10561. https://doi.org/10.1021/acs.nanolett.4c02640
  63. Anashmita Ghosh, Susmita Paul, Mrinmay Das, Piyush Kanti Sarkar, Pooja Bhardwaj, Goutam Sheet, Surajit Das, Sk Kalimuddin, Anuja Datta, Somobrata Acharya. Switchable Bulk Photovoltaic Effect in Intrinsically Ferroelectric 3D All-Inorganic CsPbBr3 Perovskite Nanocrystals. ACS Nano 2024, 18 (34) , 23310-23319. https://doi.org/10.1021/acsnano.4c06297
  64. Max J. H. Tan, Francisco Freire-Fernández, Teri W. Odom. Symmetry-Guided Engineering of Polarization by 2D Moiré Metasurfaces. ACS Nano 2024, 18 (34) , 23181-23188. https://doi.org/10.1021/acsnano.4c05714
  65. Subitan Laskar, Chandran Sudakar. Photostable Cs0.5Rb0.5PbBr3 Quantum Dots for Whispering Gallery Mode Lasing. ACS Applied Optical Materials 2024, 2 (8) , 1591-1599. https://doi.org/10.1021/acsaom.4c00214
  66. Jyotisman Rath, Samhita Sukanya, Subarna Biswas, Nimai Mishra. Exploring the Effects of Structural and Surface Modifications of Lead Halide Perovskite Nanocrystals on Photocatalytic CO2 Reduction: A Holistic Perspective. Crystal Growth & Design 2024, 24 (16) , 6549-6565. https://doi.org/10.1021/acs.cgd.4c00409
  67. Xin Li, Longxun Teng, Yening Ren, Rui Liu, Xiaoyuan Zhan, Haiqing Sun, Weiwei Zhang, Jianxu Ding, Huiling Zhu. Ultrafast Rejuvenation of Aged CsPbI3 Quantum Dots and Efficiency Improvement by Sequential 1-Dodecanethiol Post-Treatment Strategy. ACS Applied Materials & Interfaces 2024, 16 (33) , 43869-43879. https://doi.org/10.1021/acsami.4c10194
  68. Diganta Sarkar, Andriy Stelmakh, Abhoy Karmakar, Marcel Aebli, Franziska Krieg, Amit Bhattacharya, Shane Pawsey, Maksym V. Kovalenko, Vladimir K. Michaelis. Surface Structure of Lecithin-Capped Cesium Lead Halide Perovskite Nanocrystals Using Solid-State and Dynamic Nuclear Polarization NMR Spectroscopy. ACS Nano 2024, 18 (33) , 21894-21910. https://doi.org/10.1021/acsnano.4c02057
  69. Jakob C. Dahl, Ethan B. Curling, Matthias Loipersberger, Jason J. Calvin, Martin Head-Gordon, Emory M. Chan, A. Paul Alivisatos. Precursor Chemistry of Lead Bromide Perovskite Nanocrystals. ACS Nano 2024, 18 (33) , 22208-22219. https://doi.org/10.1021/acsnano.4c05761
  70. Yuan Wang, Mu-Sen Song, Jiaqi Zhao, Zhen Li, Tinglei Wang, Hai Wang, Hai-Yu Wang, Yu Wang. Chiral Perovskite Heterostructure Films of CsPbBr3 Quantum Dots and 2D Chiral Perovskite with Circularly Polarized Luminescence Performance and Energy Transfer. ACS Nano 2024, 18 (33) , 22334-22343. https://doi.org/10.1021/acsnano.4c06631
  71. Shoki Mizoguchi, Shunsuke Sumikoshi, Haruka Abe, Yuta Ito, Ryohei Yamakado, Takayuki Chiba. Aromatic 2,2-Diphenylethylamine Ligand Exchange of FA0.9Cs0.1PbBr3 Perovskite Nanocrystals for High-Efficiency Pure Green Light-Emitting Diodes. ACS Omega 2024, 9 (32) , 34692-34699. https://doi.org/10.1021/acsomega.4c03488
  72. Rajdeep Das, Avijit Patra, Sumit Kumar Dutta, Narayan Pradhan. Halide Perovskite Nanocrystals for Shaping Pt Nanostructures. Chemistry of Materials 2024, 36 (15) , 7406-7417. https://doi.org/10.1021/acs.chemmater.4c01372
  73. Mingyuan Xie, Jie Guo, Chenghao Bi, Yong Zhang, Hangren Li, Lin Zhang, Linxing Zhang, Xiaoyu Zhang, Weitao Zheng, Jianjun Tian. Efficient and Stable Pure-Red Perovskite LED Based on Uniform Arrangement Strongly Confined Quantum-Dot Film. ACS Energy Letters 2024, 9 (8) , 4003-4008. https://doi.org/10.1021/acsenergylett.4c01479
  74. Long Hu, Xinwei Guan, Hehe Huang, Tingting Ye, Junfeng Ding, Aarti Aarti, Koushik Venkatesan, Weizhen Wang, Fandi Chen, Chun-Ho Lin, Tao Wan, Mengyao Li, Jiabao Yi, Rongkun Zheng, Dewei Chu, Songhua Cai, Jiayi Chen, Claudio Cazorla, Jianyu Yuan, Yang Bai, Tom Wu, Shujuan Huang. Assessing the Optoelectronic Performance of Halide Perovskite Quantum Dots with Identical Bandgaps: Composition Tuning Versus Quantum Confinement. ACS Energy Letters 2024, 9 (8) , 3970-3981. https://doi.org/10.1021/acsenergylett.4c01180
  75. Supriya Ghosh, Bapi Pradhan, Arkamita Bandyopadhyay, Irina Skvortsova, Yiyue Zhang, Christian Sternemann, Michael Paulus, Sara Bals, Johan Hofkens, Khadga J. Karki, Arnulf Materny. Rashba-Type Band Splitting Effect in 2D (PEA)2PbI4 Perovskites and Its Impact on Exciton–Phonon Coupling. The Journal of Physical Chemistry Letters 2024, 15 (31) , 7970-7978. https://doi.org/10.1021/acs.jpclett.4c01957
  76. Dong-Ming Zhang, Ke-Lei Zu, Mu-Bing Yu, Nan Chen, Jun-Tao Hu, Qi-Long Dong, Chang-Sheng Shi, Deng-Ke Wang, Huai-Yi Ding, Mei Leng, Yong-Biao Zhao, Zheng-Hong Lu. Deep Blue CsPbBr3 Quantum Wires with Tailored Shapes. The Journal of Physical Chemistry Letters 2024, 15 (31) , 7892-7900. https://doi.org/10.1021/acs.jpclett.4c02009
  77. Smruti Sourav, Surajit Mondal, Shovon Chatterjee, Subarna Biswas, Nimai Mishra. Short Chain Dicarboxylic Acid Mediated Synthesis of CsPbX3 (X = Cl, Br, or I) Perovskite Nanocrystals for Light-Emitting Application. Crystal Growth & Design 2024, 24 (15) , 6230-6237. https://doi.org/10.1021/acs.cgd.4c00420
  78. Aaron Forde, Amanda C. Evans, Wanyi Nie, Sergei Tretiak, Amanda J. Neukirch. Influence of Material Properties on Surface Chemistry Induced Circular Dichroism in Halide Perovskite: Computational Insights. Nano Letters 2024, 24 (30) , 9276-9282. https://doi.org/10.1021/acs.nanolett.4c02077
  79. Zhanzhao Li, Luca Goldoni, Ye Wu, Muhammad Imran, Yurii P. Ivanov, Giorgio Divitini, Juliette Zito, Iyyappa Rajan Panneerselvam, Dmitry Baranov, Ivan Infante, Luca De Trizio, Liberato Manna. Exogenous Metal Cations in the Synthesis of CsPbBr3 Nanocrystals and Their Interplay with Tertiary Amines. Journal of the American Chemical Society 2024, 146 (30) , 20636-20648. https://doi.org/10.1021/jacs.4c03084
  80. Heng Qi, Yu Tong, Xiuhai Zhang, Hao Wang, Zhiyu Fang, Youqian Zhang, Huixin Li, Kun Wang, Hongqiang Wang. Synergistic Steric Effect of Precursor And Antisolvent Enables Strongly Confined Perovskite Films with Efficient and Spectral Stable Blue Emission. ACS Applied Materials & Interfaces 2024, 16 (30) , 39664-39672. https://doi.org/10.1021/acsami.4c08227
  81. Michael W. Swift, Peter C. Sercel, Alexander L. Efros, John L. Lyons, David J. Norris. Identification of Semiconductor Nanocrystals with Bright Ground-State Excitons. ACS Nano 2024, 18 (30) , 19561-19567. https://doi.org/10.1021/acsnano.4c02905
  82. Hyeon Seung Lim, Sang Gil Jeong, Gi Beom Park, Joon Young Kim, Nam Ho Heo, Woo Taik Lim. Luminescent Cs8PbBr64+ Quantum Dots Centered on the Octahedral PbBr64– Cluster within Zeolite LTA: Exploring the Edge of Three-Dimensional Crystal Structure and Its Stability. Inorganic Chemistry 2024, 63 (30) , 13991-14003. https://doi.org/10.1021/acs.inorgchem.4c01473
  83. Siddharth Singh, Sumit Sahu, Diksha Mittal, Soumyadeep De, Vishal Govind Rao. Metal Halide Perovskite Nanocrystals for C–X Activation: Role of Halide Vacancies. ACS Applied Nano Materials 2024, 7 (14) , 16913-16921. https://doi.org/10.1021/acsanm.4c03013
  84. Dinabandhu Patra, Ankush Saini, Monojit Bag, Surya Prakash Singh. Amine-Free CsPbBr3 Perovskite Nanocrystals with a Near-Unity Photoluminescence Quantum Yield for a Superfast Photodetector. ACS Applied Nano Materials 2024, 7 (14) , 16438-16449. https://doi.org/10.1021/acsanm.4c02311
  85. Xiuqi Zhao, Haigang Hou, Ling Bai, Xiangzhao Zhang, Quanjiang Lv, Jian Yang, Junlin Liu, Guiwu Liu, Guanjun Qiao. Linear Variable PbS-DMSO Filter with Potentiality for Hyperspectral Imaging Applications. ACS Applied Nano Materials 2024, 7 (14) , 17029-17040. https://doi.org/10.1021/acsanm.4c03173
  86. Apurba De, Soumyadip Bhunia, Yichao Cai, Tal Binyamin, Lioz Etgar, Sanford Ruhman. Spectator Exciton Effects in Nanocrystals III: Unveiling the Stimulated Emission Cross Section in Quantum Confined CsPbBr3 Nanocrystals. Journal of the American Chemical Society 2024, 146 (29) , 20241-20250. https://doi.org/10.1021/jacs.4c05412
  87. Suman Bera, Akash Tripathi, Timi Titus, Nilesh Monohar Sethi, Rajdeep Das, Afreen, K. V. Adarsh, K. George Thomas, Narayan Pradhan. CsPbBr3 Perovskite Crack Platelet Nanocrystals and Their Biexciton Generation. Journal of the American Chemical Society 2024, 146 (29) , 20300-20311. https://doi.org/10.1021/jacs.4c05803
  88. Seoyeon Park, Joonyun Kim, Gui-Min Kim, Jinu Park, Sooheyong Lee, Doh C. Lee, Nakyung Kim, Byeong-Gwan Cho, Byungha Shin. Controlling the Phase Distribution of Single Bromide Quasi-2-Dimensional Perovskite Crystals via Solvent Engineering for Pure-Blue Light-Emitting Diodes. ACS Applied Materials & Interfaces 2024, 16 (29) , 38395-38403. https://doi.org/10.1021/acsami.4c06778
  89. Shaun Gallagher, Jessica Kline, Farzaneh Jahanbakhshi, James C. Sadighian, Ian Lyons, Gillian Shen, Benjamin F. Hammel, Sadegh Yazdi, Gordana Dukovic, Andrew M. Rappe, David S. Ginger. Ligand Equilibrium Influences Photoluminescence Blinking in CsPbBr3: A Change Point Analysis of Widefield Imaging Data. ACS Nano 2024, 18 (29) , 19208-19219. https://doi.org/10.1021/acsnano.4c04968
  90. Qiaoyun Wu, Lin Cheng, Pan Liang, Rongrong Hu, Bobo Yang, Jinlei Li, Yuanyuan Wang, Xiaoyang Li, Jun Zou, Donghai Feng. Size Dependence of Ultrafast Electron Transfer from Didodecyl Dimethylammonium Bromide-Modified CsPbBr3 Nanocrystals to Electron Acceptors. The Journal of Physical Chemistry Letters 2024, 15 (28) , 7133-7140. https://doi.org/10.1021/acs.jpclett.4c01543
  91. Kylie M. Lytle, Emma L. Brass, Benjamin J. Roman, Matthew T. Sheldon. Thermal Activation of Anti-Stokes Photoluminescence in CsPbBr3 Perovskite Nanocrystals: The Role of Surface Polaron States. ACS Nano 2024, 18 (28) , 18457-18464. https://doi.org/10.1021/acsnano.4c03548
  92. Nikunj Agarwal, Deepshikha Agarwal, Tushar Debnath. Amino Acid-Driven Dimensional Reduction of CsPbBr3 Nanocrystals. ACS Omega 2024, 9 (28) , 31026-31034. https://doi.org/10.1021/acsomega.4c04364
  93. Li Xiong, Mingwei Xu, Jin Wang, Zhihao Chen, Luoning Li, Fa Yang, Qiaowen Zhang, Guocan Jiang, Zhengquan Li. Passivating Defects and Constructing Catalytic Sites on CsPbBr3 with ZnBr2 for Photocatalytic CO2 Reduction. Inorganic Chemistry 2024, 63 (28) , 12703-12707. https://doi.org/10.1021/acs.inorgchem.4c02313
  94. Minh N. Tran, Rafaella Saa Rodriguez, Joseph R. Geniesse, Kajini Sandrakumar, Iver J. Cleveland, Eray S. Aydil. Stability of Cs2NaBiBr6 and Cs2NaBiCl6. Inorganic Chemistry 2024, 63 (28) , 12818-12825. https://doi.org/10.1021/acs.inorgchem.4c01299
  95. Dongyu Li, Benzheng Lyu, Jiayun Sun, Qi Xiong, Hanwen Zhu, Zhengyan Jiang, Dezhong Zhang, Chunyu Liu, Wallace C. H. Choy. Ligands Optimization Governed by Solubility Principles for Pure Blue Emission in Mixed-Halide Perovskite LEDs. ACS Energy Letters 2024, 9 (7) , 3261-3268. https://doi.org/10.1021/acsenergylett.4c00881
  96. Priyanka Dubey, Leepsa Mishra, Aradhana Panigrahi, Soumi Dutta, Ranjan Kumar Behera, Sankalan Mondal, Manas Kumar Sarangi. Insight into the Importance of Charge Transfer Dynamics in CsPbBr3 Perovskite Nanocrystals for Photovoltaic Applications. The Journal of Physical Chemistry C 2024, 128 (27) , 11437-11446. https://doi.org/10.1021/acs.jpcc.4c03301
  97. Jie Meng, Zhenyun Lan, Weihua Lin, Ivano E. Castelli, Tönu Pullerits, Kaibo Zheng. Tailoring Auger Recombination Dynamics in CsPbI3 Perovskite Nanocrystals via Transition Metal Doping. Nano Letters 2024, 24 (27) , 8386-8393. https://doi.org/10.1021/acs.nanolett.4c02032
  98. Ashish Soni, Supriya Ghosal, Milon Kundar, Swapan K. Pati, Suman Kalyan Pal. Long-Lived Interlayer Excitons in WS2/Ruddlesden–Popper Perovskite van der Waals Heterostructures. ACS Applied Materials & Interfaces 2024, 16 (27) , 35841-35851. https://doi.org/10.1021/acsami.4c07346
  99. Qihang Lv, Xia Shen, Xuyang Li, You Meng, Kin Man Yu, Pengfei Guo, Liantuan Xiao, Johnny C. Ho, Xidong Duan, Xiangfeng Duan. On-Wire Design of Axial Periodic Halide Perovskite Superlattices for High-Performance Photodetection. ACS Nano 2024, 18 (27) , 18022-18035. https://doi.org/10.1021/acsnano.4c05205
  100. Pieter Geiregat, Onur Erdem, Margarita Samoli, Kai Chen, Justin M. Hodgkiss, Zeger Hens. The Impact of Partial Carrier Confinement on Stimulated Emission in Strongly Confined Perovskite Nanocrystals. ACS Nano 2024, 18 (27) , 17794-17805. https://doi.org/10.1021/acsnano.4c03441
Load more citations

Nano Letters

Cite this: Nano Lett. 2015, 15, 6, 3692–3696
Click to copy citationCitation copied!
https://doi.org/10.1021/nl5048779
Published January 29, 2015

Copyright © 2015 American Chemical Society. This publication is licensed under these Terms of Use.

Article Views

257k

Altmetric

-

Citations

Learn about these metrics

Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.

  • Abstract

    Figure 1

    Figure 1. Monodisperse CsPbX3 NCs and their structural characterization. (a) Schematic of the cubic perovskite lattice; (b,c) typical transmission electron microscopy (TEM) images of CsPbBr3 NCs; (d) X-ray diffraction patterns for typical ternary and mixed-halide NCs.

    Figure 2

    Figure 2. Colloidal perovskite CsPbX3 NCs (X = Cl, Br, I) exhibit size- and composition-tunable bandgap energies covering the entire visible spectral region with narrow and bright emission: (a) colloidal solutions in toluene under UV lamp (λ = 365 nm); (b) representative PL spectra (λexc = 400 nm for all but 350 nm for CsPbCl3 samples); (c) typical optical absorption and PL spectra; (d) time-resolved PL decays for all samples shown in (c) except CsPbCl3.

    Figure 3

    Figure 3. (a) Quantum-size effects in the absorption and emission spectra of 5–12 nm CsPbBr3 NCs. (b) Experimental versus theoretical (effective mass approximation, EMA) size dependence of the band gap energy.

    Figure 4

    Figure 4. (a) Emission from CsPbX3 NCs (black data points) plotted on CEI chromaticity coordinates and compared to most common color standards (LCD TV, dashed white triangle, and NTSC TV, solid white triangle). Radiant Imaging Color Calculator software from Radiant Zemax (http://www.radiantzemax.com) was used to map the colors. (b) Photograph (λexc = 365 nm) of highly luminescent CsPbX3 NCs-PMMA polymer monoliths obtained with Irgacure 819 as photoinitiator for polymerization.

  • References


    This article references 42 other publications.

    1. 1
      Talapin, D. V.; Lee, J.-S.; Kovalenko, M. V.; Shevchenko, E. V. Chem. Rev. 2009, 110, 389 458
    2. 2
      Lan, X.; Masala, S.; Sargent, E. H. Nat. Mater. 2014, 13, 233 240
    3. 3
      Hetsch, F.; Zhao, N.; Kershaw, S. V.; Rogach, A. L. Mater. Today 2013, 16, 312 325
    4. 4
      Shirasaki, Y.; Supran, G. J.; Bawendi, M. G.; Bulovic, V. Nat. Photonics 2013, 7, 13 23
    5. 5
      Chen, O.; Zhao, J.; Chauhan, V. P.; Cui, J.; Wong, C.; Harris, D. K.; Wei, H.; Han, H.-S.; Fukumura, D.; Jain, R. K.; Bawendi, M. G. Nat. Mater. 2013, 12, 445 451
    6. 6
      Murray, C. B.; Norris, D. J.; Bawendi, M. G. J. Am. Chem. Soc. 1993, 115, 8706 8715
    7. 7
      Aldakov, D.; Lefrancois, A.; Reiss, P. J. Mater. Chem. C 2013, 1, 3756 3776
    8. 8
      Fan, F.-J.; Wu, L.; Yu, S.-H. Energy Environ. Sci. 2014, 7, 190 208
    9. 9
      Yu, X.; Shavel, A.; An, X.; Luo, Z.; Ibáñez, M.; Cabot, A. J. Am. Chem. Soc. 2014, 136, 9236 9239
    10. 10
      Gratzel, M. Nat. Mater. 2014, 13, 838 842
    11. 11
      Green, M. A.; Ho-Baillie, A.; Snaith, H. J. Nat. Photonics 2014, 8, 506 514
    12. 12
      Park, N.-G. J. Phys. Chem. Lett. 2013, 4, 2423 2429
    13. 13
      Zhou, H.; Chen, Q.; Li, G.; Luo, S.; Song, T.-b.; Duan, H.-S.; Hong, Z.; You, J.; Liu, Y.; Yang, Y. Science 2014, 345, 542 546
    14. 14
      Chung, I.; Lee, B.; He, J.; Chang, R. P. H.; Kanatzidis, M. G. Nature 2012, 485, 486 489
    15. 15
      Moller, C. K. Nature 1958, 182, 1436 1436
    16. 16
      Sharma, S.; Weiden, N.; Weiss, A. Z. Phys. Chem. 1992, 175, 63 80
    17. 17
      Trots, D. M.; Myagkota, S. V. J. Phys. Chem. Solids 2008, 69, 2520 2526
    18. 18
      Stoumpos, C. C.; Malliakas, C. D.; Kanatzidis, M. G. Inorg. Chem. 2013, 52, 9019 9038
    19. 19
      Babin, V.; Fabeni, P.; Nikl, M.; Nitsch, K.; Pazzi, G. P.; Zazubovich, S. Phys. Status Solidi B 2001, 226, 419 428
    20. 20
      Christodoulou, S.; Vaccaro, G.; Pinchetti, V.; De Donato, F.; Grim, J. Q.; Casu, A.; Genovese, A.; Vicidomini, G.; Diaspro, A.; Brovelli, S.; Manna, L.; Moreels, I. J. Mater. Chem. C 2014, 2, 3439 3447
    21. 21
      Wehrenfennig, C.; Liu, M.; Snaith, H. J.; Johnston, M. B.; Herz, L. M. J. Phys. Chem. Lett. 2014, 5, 1300 1306
    22. 22
      Zhang, M.; Yu, H.; Lyu, M.; Wang, Q.; Yun, J.-H.; Wang, L. Chem. Commun. 2014, 50, 11727 11730
    23. 23
      Xing, G.; Mathews, N.; Lim, S. S.; Yantara, N.; Liu, X.; Sabba, D.; Grätzel, M.; Mhaisalkar, S.; Sum, T. C. Nat. Mater. 2014, 13, 476 480
    24. 24
      Deschler, F.; Price, M.; Pathak, S.; Klintberg, L. E.; Jarausch, D.-D.; Higler, R.; Hüttner, S.; Leijtens, T.; Stranks, S. D.; Snaith, H. J.; Atatüre, M.; Phillips, R. T.; Friend, R. H. J. Phys. Chem. Lett. 2014, 5, 1421 1426
    25. 25
      Tan, Z.-K.; Moghaddam, R. S.; Lai, M. L.; Docampo, P.; Higler, R.; Deschler, F.; Price, M.; Sadhanala, A.; Pazos, L. M.; Credgington, D.; Hanusch, F.; Bein, T.; Snaith, H. J.; Friend, R. H. Nat. Nanotechnol. 2014, 9, 687 692
    26. 26
      Ueng, H. Y.; Hwang, H. L. J. Phys. Chem. Solids 1989, 50, 1297 1305
    27. 27
      Huang, L.; Zhu, X.; Publicover, N. G.; Hunter, K. W.; Ahmadiantehrani, M.; de Bettencourt-Dias, A.; Bell, T. W. J. Nanopart. Res. 2013, 15, 2056
    28. 28
      De Trizio, L.; Prato, M.; Genovese, A.; Casu, A.; Povia, M.; Simonutti, R.; Alcocer, M. J. P.; D’Andrea, C.; Tassone, F.; Manna, L. Chem. Mater. 2012, 24, 2400 2406
    29. 29
      Zhang, W.; Zhong, X. Inorg. Chem. 2011, 50, 4065 4072
    30. 30
      Kresse, G.; Joubert, D. Phys. Rev. B 1999, 59, 1758
    31. 31
      Baroni, S.; de Gironcoli, S.; Dal Corso, A.; Giannozzi, P. Rev. Mod. Phys. 2001, 73, 515
    32. 32
      Yu, P. Y.; Cardona, M. Fundamentals of Semiconductors; Springer: New York, 1996.
    33. 33
      Even, J.; Pedesseau, L.; Katan, C. J. Phys. Chem. C 2014, 118, 11566 11572
    34. 34
      Frost, J. M.; Butler, K. T.; Brivio, F.; Hendon, C. H.; van Schilfgaarde, M.; Walsh, A. Nano Lett. 2014, 14, 2584 2590
    35. 35
      Menéndez-Proupin, E.; Palacios, P.; Wahnón, P.; Conesa, J. Phys. Rev. B 2014, 90, 045207
    36. 36
      Saba, M.; Cadelano, M.; Marongiu, D.; Chen, F.; Sarritzu, V.; Sestu, N.; Figus, C.; Aresti, M.; Piras, R.; Geddo Lehmann, A.; Cannas, C.; Musinu, A.; Quochi, F.; Mura, A.; Bongiovanni, G. Nat. Commun. 2014, 5, 5049
    37. 37
      Kim, T.-H.; Jun, S.; Cho, K.-S.; Choi, B. L.; Jang, E. MRS Bull. 2013, 38, 712 720
    38. 38
      Supran, G. J.; Shirasaki, Y.; Song, K. W.; Caruge, J.-M.; Kazlas, P. T.; Coe-Sullivan, S.; Andrew, T. L.; Bawendi, M. G.; Bulović, V. MRS Bull. 2013, 38, 703 711
    39. 39
      Ye, S.; Xiao, F.; Pan, Y. X.; Ma, Y. Y.; Zhang, Q. Y. Mater. Sci. Eng. R 2010, 71, 1 34
    40. 40
      Bomm, J.; Buechtemann, A.; Chatten, A. J.; Bose, R.; Farrell, D. J.; Chan, N. L. A.; Xiao, Y.; Slooff, L. H.; Meyer, T.; Meyer, A.; van Sark, W. G. J. H. M.; Koole, R. Sol. Energy Mater. Sol. Cells 2011, 95, 2087 2094
    41. 41
      Meinardi, F.; Colombo, A.; Velizhanin, K. A.; Simonutti, R.; Lorenzon, M.; Beverina, L.; Viswanatha, R.; Klimov, V. I.; Brovelli, S. Nat. Photonics 2014, 8, 392 399
    42. 42
      Gruetzmacher, H.; Geier, J.; Stein, D.; Ott, T.; Schoenberg, H.; Sommerlade, R. H.; Boulmaaz, S.; Wolf, J.-P.; Murer, P.; Ulrich, T. Chimia 2008, 62, 18 22
  • Supporting Information

    Supporting Information


    Synthesis details, calculations, and additional figures. This material is available free of charge via the Internet at http://pubs.acs.org.


    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.