ACS Publications. Most Trusted. Most Cited. Most Read
Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut
My Activity
  • Open Access
  • Editors Choice
Letter

Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut
Click to copy article linkArticle link copied!

View Author Information
Institute of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1, CH-8093 Zürich, Switzerland
Laboratory for Thin Films and Photovoltaics, Empa − Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
§ Centre for Sustainable Chemical Technologies and Department of Chemistry, University of Bath, Bath BA2 7AY, United Kingdom
Open PDFSupporting Information (2)

Nano Letters

Cite this: Nano Lett. 2015, 15, 6, 3692–3696
Click to copy citationCitation copied!
https://doi.org/10.1021/nl5048779
Published January 29, 2015

Copyright © 2015 American Chemical Society. This publication is licensed under these Terms of Use.

Abstract

Click to copy section linkSection link copied!

Metal halides perovskites, such as hybrid organic–inorganic CH3NH3PbI3, are newcomer optoelectronic materials that have attracted enormous attention as solution-deposited absorbing layers in solar cells with power conversion efficiencies reaching 20%. Herein we demonstrate a new avenue for halide perovskites by designing highly luminescent perovskite-based colloidal quantum dot materials. We have synthesized monodisperse colloidal nanocubes (4–15 nm edge lengths) of fully inorganic cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I or mixed halide systems Cl/Br and Br/I) using inexpensive commercial precursors. Through compositional modulations and quantum size-effects, the bandgap energies and emission spectra are readily tunable over the entire visible spectral region of 410–700 nm. The photoluminescence of CsPbX3 nanocrystals is characterized by narrow emission line-widths of 12–42 nm, wide color gamut covering up to 140% of the NTSC color standard, high quantum yields of up to 90%, and radiative lifetimes in the range of 1–29 ns. The compelling combination of enhanced optical properties and chemical robustness makes CsPbX3 nanocrystals appealing for optoelectronic applications, particularly for blue and green spectral regions (410–530 nm), where typical metal chalcogenide-based quantum dots suffer from photodegradation.

Copyright © 2015 American Chemical Society

Note Added after ASAP Publication

This paper was published on the Web on February 2, 2015. The discussion of the preparation of Cs-oleate and synthesis of CsPbX3 NCs in the Supporting Information has been corrected, and the paper was reposted on April 14, 2015.

Colloidal semiconductor nanocrystals (NCs, typically 2–20 nm large), also known as nanocrystal quantum dots (QDs), are being studied intensively as future optoelectronic materials. (1-4) These QD materials feature a very favorable combination of quantum-size effects, enhancing their optical properties with respect to their bulk counterparts, versatile surface chemistry, and a “free” colloidal state, allowing their dispersion into a variety of solvents and matrices and eventual incorporation into various devices. To date, the best developed optoelectronic NCs in terms of size, shape, and composition are binary and multinary (ternary, quaternary) metal chalcogenide NCs. (1, 5-9) In contrast, the potential of semiconducting metal halides in the form of colloidal NCs remains rather unexplored. In this regard, recent reports on highly efficient photovoltaic devices with certified power conversion efficiencies approaching 20% using hybrid organic–inorganic lead halides MAPbX3 (MA = CH3NH3, X = Cl, Br, and I) as semiconducting absorber layers are highly encouraging. (10-14)
In this study, we turn readers’ attention to a closely related family of materials: all-inorganic cesium lead halide perovskites (CsPbX3, X = Cl, Br, I, and mixed Cl/Br and Br/I systems; isostructural to perovskite CaTiO3 and related oxides). These ternary compounds are far less soluble in common solvents (contrary to MAPbX3), which is a shortcoming for direct solution processing but a necessary attribute for obtaining these compounds in the form of colloidal NCs. Although the synthesis, crystallography, and photoconductivity of direct bandgap CsPbX3 have been reported more than 50 years ago, (15) they have never been explored in the form of colloidal nanomaterials.
Here we report a facile colloidal synthesis of monodisperse, 4–15 nm CsPbX3 NCs with cubic shape and cubic perovskite crystal structure. CsPbX3 NCs exhibit not only compositional bandgap engineering, but owing to the exciton Bohr diameter of up to 12 nm, also exhibit size-tunability of their bandgap energies through the entire visible spectral region of 410–700 nm. Photoluminescence (PL) of CsPbX3 NCs is characterized by narrow emission line widths of 12–42 nm, high quantum yields of 50–90%, and short radiative lifetimes of 1–29 ns.

Figure 1

Figure 1. Monodisperse CsPbX3 NCs and their structural characterization. (a) Schematic of the cubic perovskite lattice; (b,c) typical transmission electron microscopy (TEM) images of CsPbBr3 NCs; (d) X-ray diffraction patterns for typical ternary and mixed-halide NCs.

Synthesis of Monodisperse CsPbX3 NCs

Our solution-phase synthesis of monodisperse CsPbX3 NCs (Figure 1) takes advantage of the ionic nature of the chemical bonding in these compounds. Controlled arrested precipitation of Cs+, Pb2+, and X ions into CsPbX3 NCs is obtained by reacting Cs-oleate with a Pb(II)-halide in a high boiling solvent (octadecene) at 140–200 °C (for details, see the Supporting Information). A 1:1 mixture of oleylamine and oleic acid are added into octadecene to solubilize PbX2 and to colloidally stabilize the NCs. As one would expect for an ionic metathesis reaction, the nucleation and growth kinetics are very fast. In situ PL measurements with a CCD-array detector (Supporting Information Figure S1) indicate that the majority of growth occurs within the first 1–3 s (faster for heavier halides). Consequently, the size of CsPbX3 NCs can be most conveniently tuned in the range of 4–15 nm by the reaction temperature (140–200 °C) rather than by the growth time. Mixed-halide perovskites, that is, CsPb(Cl/Br)3 and CsPb(Br/I)3, can be readily produced by combining appropriate ratios of PbX2 salts. Note that Cl/I perovskites cannot be obtained due to the large difference in ionic radii, which is in good agreement with the phase diagram for bulk materials. (16) Elemental analyses by energy dispersive X-ray (EDX) spectroscopy and by Ratherford backscattering spectrometry (RBS) confirmed the 1:1:3 atomic ratio for all samples of CsPbX3 NCs, including mixed-halide systems.
CsPbX3 are known to crystallize in orthorhombic, tetragonal, and cubic polymorphs of the perovskite lattice with the cubic phase being the high-temperature state for all compounds. (16-18) Interestingly, we find that all CsPbX3 NCs crystallize in the cubic phase (Figure 1d), which can be attributed to the combined effect of the high synthesis temperature and contributions from the surface energy. For CsPbI3 NCs, this is very much a metastable state, because bulk material converts into cubic polymorph only above 315 °C. At room temperature, an exclusively PL-inactive orthorhombic phase has been reported for bulk CsPbI3 (a yellow phase). (16-19) Our first-principles total energy calculations (density functional theory, Figure S2, Table S1 in Supporting Information) confirm the bulk cubic CsPbI3 phase to have 17 kJ/mol higher internal energy than the orthorhombic polymorph (7 kJ/mol difference for CsPbBr3). Weak emission centered at ∼710 nm has been observed from melt-spun bulk CsPbI3, shortly before recrystallization into the yellow phase. (18) Similarly, our solution synthesis of CsPbI3 at 305 °C yields cubic-phase 100–200 nm NCs with weak, short-lived emission at 714 nm (1.74 eV), highlighting the importance of size reduction for stabilizing the cubic phase and indicating that all CsPbI3 NCs in Figure 2b (5–15 nm in size) exhibit quantum-size effects (i.e., higher band gap energies due to quantum confinement, as discussed below). Cubic 4–15 nm CsPbI3 NCs recrystallize into the yellow phase only upon extended storage (months), whereas all other compositions of CsPbX3 NCs appear fully stable in a cubic phase.

Figure 2

Figure 2. Colloidal perovskite CsPbX3 NCs (X = Cl, Br, I) exhibit size- and composition-tunable bandgap energies covering the entire visible spectral region with narrow and bright emission: (a) colloidal solutions in toluene under UV lamp (λ = 365 nm); (b) representative PL spectra (λexc = 400 nm for all but 350 nm for CsPbCl3 samples); (c) typical optical absorption and PL spectra; (d) time-resolved PL decays for all samples shown in (c) except CsPbCl3.

Optical Properties of Colloidal CsPbX3 NCs

Optical absorption and emission spectra of colloidal CsPbX3 NCs (Figure 2b,c) can be tuned over the entire visible spectral region by adjusting their composition (ratio of halides in mixed halide NCs) and particle size (quantum-size effects). Remarkably bright PL of all NCs is characterized by high QY of 50–90% and narrow emission line widths of 12–42 nm. The combination of these two characteristics had been previously achieved only for core–shell chalcogenide-based QDs such as CdSe/CdS due to the narrow size distributions of the luminescent CdSe cores, combined with an epitaxially grown, electronically passivating CdS shell. (5, 20) Time-resolved photoluminescence decays of CsPbX3 NCs (Figure 2d) indicate radiative lifetimes in the range of 1–29 ns with faster emission for wider-gap NCs. For comparison, decay times of several 100 ns are typically observed in MAPbI3 (PL peak at 765 nm, fwhm = 50 nm) (21) and 40–400 ns for MAPbBr3–xClx (x = 0.6–2). (22)
Very bright emission of CsPbX3 NCs indicates that contrary to uncoated chalcogenide NCs surface dangling bonds do not impart severe midgap trap states. This observation is also in good agreement with the high photophysical quality of hybrid organic–inorganic perovskites (MAPbX3), despite their low-temperature solution-processing, which is generally considered to cause a high density of structural defects and trap states. In particular, thin-films of MAPbX3 exhibit relatively high PL QYs of 20–40% at room temperature (23, 24) and afford inexpensive photovoltaic devices approaching 20% in power conversion efficiency (10-12) and also electrically driven light-emitting devices. (25)
Ternary CsPbX3 NCs compare favorably to common multinary chalcogenide NCs: both ternary (CuInS2, CuInSe2, AgInS2, and AgInSe2) and quaternary (CuZnSnS2 and similar) compounds. CsPbX3 materials are highly ionic and thus are rather stoichiometric and ordered due to the distinct size and charge of the Cs and Pb ions. This is different from multinary chalcogenide materials that exhibit significant disorder and inhomogeneity in the distribution of cations and anions owing to little difference between the different cationic and anionic sites (all are essentially tetrahedral). In addition, considerable stoichiometric deviations lead to a large density of donor–acceptor states due to various point defects (vacancies, interstitials, etc.) within the band gap, both shallow and deep. These effects eventually lead to absent or weak and broad emission spectra and long multiexponent lifetimes. (7, 26-29)

Figure 3

Figure 3. (a) Quantum-size effects in the absorption and emission spectra of 5–12 nm CsPbBr3 NCs. (b) Experimental versus theoretical (effective mass approximation, EMA) size dependence of the band gap energy.

For a colloidal semiconductor NC to exhibit quantum-dot-like properties (shown in Figures 2b and 3), the NC diameter must be comparable or smaller than that of the natural delocalization lengths of an exciton in a bulk semiconductor (i.e., the exciton Bohr diameter, a0). The electronic structure of CsPbX3 (X = Cl, Br, and I), including scalar relativistic and spin–orbit interactions, was calculated using VASP code (30) and confirms that the upper valence band is formed predominately by the halide p-orbitals and the lower conduction band is formed by the overlap of the Pb p-orbitals (Figures S3 and S4 and Tables S2 and S3 in Supporting Information). Effective masses of the electrons and holes were estimated from the band dispersion, while the high-frequency dielectric constants were calculated by using density functional perturbation theory. (31) Within the effective mass approximation (EMA), (32) we have estimated the effective Bohr diameters of Wannier–Mott excitons and the binding energies for CsPbCl3 (5 nm, 75 meV), CsPbBr3 (7 nm, 40 meV), and CsPbI3 (12 nm, 20 meV). Similarly, in closely related hybrid perovskite MAPbI3 small exciton binding energies of ≤25 meV have been suggested computationally (33-35) and found experimentally. (36) For comparison, the typical exciton binding energies in organic semiconductors are above 100 meV. The confinement energy (ΔE = ℏ2π2/2m*r2, where r is the particle radius and m* is the reduced mass of the exciton) provides an estimate for the blue shift of the emission peak and absorption edge and is in good agreement with the experimental observations (Figure 3b).

Figure 4

Figure 4. (a) Emission from CsPbX3 NCs (black data points) plotted on CEI chromaticity coordinates and compared to most common color standards (LCD TV, dashed white triangle, and NTSC TV, solid white triangle). Radiant Imaging Color Calculator software from Radiant Zemax (http://www.radiantzemax.com) was used to map the colors. (b) Photograph (λexc = 365 nm) of highly luminescent CsPbX3 NCs-PMMA polymer monoliths obtained with Irgacure 819 as photoinitiator for polymerization.

Recently, highly luminescent semiconductor NCs based on Cd-chalcogenides have inspired innovative optoelectronic applications such as color-conversion LEDs, color-enhancers in backlight applications (e.g., Sony’s 2013 Triluminos LCD displays), and solid-state lighting. (4, 37, 38) Compared to conventional rare-earth phosphors or organic polymers and dyes, NCs often show superior quantum efficiency and narrower PL spectra with fine-size tuning of the emission peaks and hence can produce saturated colors. A CIE chromaticity diagram (introduced by the Commision Internationale de l’Eclairage) (39) allows the comparison of the quality of colors by mapping colors visible to the human eye in terms of hue and saturation. For instance, well-optimized core–shell CdSe-based NCs cover ≥100% of the NTSC TV color standard (introduced in 1951 by the National Television System Committee). (39) Figure 4a shows that CsPbX3 NCs allow a wide gamut of pure colors as well. Namely, a selected triangle of red, green, and blue emitting CsPbX3 NCs encompasses 140% of the NTSC standard, extending mainly into red and green regions.
Light-emission applications, discussed above, and also luminescent solar concentrators (40, 41) require solution-processability and miscibility of NC-emitters with organic and inorganic matrix materials. To demonstrate such robustness for CsPbX3 NCs, we embedded them into poly(methylmetacrylate) (PMMA), yielding composites of excellent optical clarity and with bright emission (Figure 4b). To accomplish this, CsPbX3 NCs were first dispersed in a liquid monomer (methylmetacrylate, MMA) as a solvent. Besides using known heat-induced polymerization with radical initiators, (41) we also performed polymerization already at room-temperature by adding a photoinitiator Irgacure 819 (bis(2,4,6-trimethylbenzoyl)-phenylphosphineoxide), (42) followed by 1h of UV-curing. We find that the presence of CsPbX3 NCs increases the rate of photopolymerization, compared to a control experiment with pure MMA. This can be explained by the fact that the luminescence from CsPbX3 NCs may be reabsorbed by the photoinitiator that has a strong absorption band in the visible spectral region, increasing the rate of polymerization.

Conclusions

In summary, we have presented highly luminescent colloidal CsPbX3 NCs (X = Cl, Br, I, and mixed Cl/Br and Br/I systems) with bright (QY = 50–90%), stable, spectrally narrow, and broadly tunable photoluminescence. Particularly appealing are highly stable blue and green emitting CsPbX3 NCs (410–530 nm), because the corresponding metal-chalcogenide QDs show reduced chemical and photostability at these wavelengths. In our ongoing experiments, we find that this simple synthesis methodology is also applicable to other metal halides with related crystal structures (e.g., CsGeI3, Cs3Bi2I9, and Cs2SnI6, to be published elsewhere). Future studies with these novel QD-materials will concentrate on optoelectronic applications such as lasing, light-emitting diodes, photovoltaics, and photon detection.

Supporting Information

Click to copy section linkSection link copied!

Synthesis details, calculations, and additional figures. This material is available free of charge via the Internet at http://pubs.acs.org.

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Author Information

Click to copy section linkSection link copied!

  • Corresponding Author
    • Maksym V. Kovalenko - Institute of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1, CH-8093 Zürich, SwitzerlandLaboratory for Thin Films and Photovoltaics, Empa − Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland Email: [email protected]
  • Authors
    • Loredana Protesescu - Institute of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1, CH-8093 Zürich, SwitzerlandLaboratory for Thin Films and Photovoltaics, Empa − Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
    • Sergii Yakunin - Institute of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1, CH-8093 Zürich, SwitzerlandLaboratory for Thin Films and Photovoltaics, Empa − Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
    • Maryna I. Bodnarchuk - Institute of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1, CH-8093 Zürich, SwitzerlandLaboratory for Thin Films and Photovoltaics, Empa − Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
    • Franziska Krieg - Institute of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1, CH-8093 Zürich, SwitzerlandLaboratory for Thin Films and Photovoltaics, Empa − Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
    • Riccarda Caputo - Institute of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1, CH-8093 Zürich, Switzerland
    • Christopher H. Hendon - Centre for Sustainable Chemical Technologies and Department of Chemistry, University of Bath, Bath BA2 7AY, United Kingdom
    • Ruo Xi Yang - Centre for Sustainable Chemical Technologies and Department of Chemistry, University of Bath, Bath BA2 7AY, United Kingdom
    • Aron Walsh - Centre for Sustainable Chemical Technologies and Department of Chemistry, University of Bath, Bath BA2 7AY, United Kingdom
  • Author Contributions

    The manuscript was prepared through the contribution of all coauthors. All authors have given approval to the final version of the manuscript.

  • Notes
    The authors declare no competing financial interest.

Acknowledgment

Click to copy section linkSection link copied!

This work was financially supported by the European Research Council (ERC) via Starting Grant (306733). The work at Bath was supported by the ERC Starting Grant (277757) and by the EPSRC (Grants EP/M009580/1 and EP/K016288/1). Calculations at Bath were performed on ARCHER via the U.K.’s HPC Materials Chemistry Consortium (Grant EP/L000202). Calculations at ETH Zürich were performed on the central HPC cluster BRUTUS. We thank Nadia Schwitz for a help with photography, Professor Dr. H. Grützmacher and Dr. G. Müller for a sample of Irgacure 819 photoinitiator, Dr. F. Krumeich for EDX measurements, Dr. M. Döbeli for RBS measurements (ETH Laboratory of Ion Beam Physics), and Dr. N. Stadie for reading the manuscript. We gratefully acknowledge the support of the Electron Microscopy Center at Empa and the Scientific Center for Optical and Electron Microscopy (ScopeM) at ETH Zürich.

References

Click to copy section linkSection link copied!

This article references 42 other publications.

  1. 1
    Talapin, D. V.; Lee, J.-S.; Kovalenko, M. V.; Shevchenko, E. V. Chem. Rev. 2009, 110, 389 458
  2. 2
    Lan, X.; Masala, S.; Sargent, E. H. Nat. Mater. 2014, 13, 233 240
  3. 3
    Hetsch, F.; Zhao, N.; Kershaw, S. V.; Rogach, A. L. Mater. Today 2013, 16, 312 325
  4. 4
    Shirasaki, Y.; Supran, G. J.; Bawendi, M. G.; Bulovic, V. Nat. Photonics 2013, 7, 13 23
  5. 5
    Chen, O.; Zhao, J.; Chauhan, V. P.; Cui, J.; Wong, C.; Harris, D. K.; Wei, H.; Han, H.-S.; Fukumura, D.; Jain, R. K.; Bawendi, M. G. Nat. Mater. 2013, 12, 445 451
  6. 6
    Murray, C. B.; Norris, D. J.; Bawendi, M. G. J. Am. Chem. Soc. 1993, 115, 8706 8715
  7. 7
    Aldakov, D.; Lefrancois, A.; Reiss, P. J. Mater. Chem. C 2013, 1, 3756 3776
  8. 8
    Fan, F.-J.; Wu, L.; Yu, S.-H. Energy Environ. Sci. 2014, 7, 190 208
  9. 9
    Yu, X.; Shavel, A.; An, X.; Luo, Z.; Ibáñez, M.; Cabot, A. J. Am. Chem. Soc. 2014, 136, 9236 9239
  10. 10
    Gratzel, M. Nat. Mater. 2014, 13, 838 842
  11. 11
    Green, M. A.; Ho-Baillie, A.; Snaith, H. J. Nat. Photonics 2014, 8, 506 514
  12. 12
    Park, N.-G. J. Phys. Chem. Lett. 2013, 4, 2423 2429
  13. 13
    Zhou, H.; Chen, Q.; Li, G.; Luo, S.; Song, T.-b.; Duan, H.-S.; Hong, Z.; You, J.; Liu, Y.; Yang, Y. Science 2014, 345, 542 546
  14. 14
    Chung, I.; Lee, B.; He, J.; Chang, R. P. H.; Kanatzidis, M. G. Nature 2012, 485, 486 489
  15. 15
    Moller, C. K. Nature 1958, 182, 1436 1436
  16. 16
    Sharma, S.; Weiden, N.; Weiss, A. Z. Phys. Chem. 1992, 175, 63 80
  17. 17
    Trots, D. M.; Myagkota, S. V. J. Phys. Chem. Solids 2008, 69, 2520 2526
  18. 18
    Stoumpos, C. C.; Malliakas, C. D.; Kanatzidis, M. G. Inorg. Chem. 2013, 52, 9019 9038
  19. 19
    Babin, V.; Fabeni, P.; Nikl, M.; Nitsch, K.; Pazzi, G. P.; Zazubovich, S. Phys. Status Solidi B 2001, 226, 419 428
  20. 20
    Christodoulou, S.; Vaccaro, G.; Pinchetti, V.; De Donato, F.; Grim, J. Q.; Casu, A.; Genovese, A.; Vicidomini, G.; Diaspro, A.; Brovelli, S.; Manna, L.; Moreels, I. J. Mater. Chem. C 2014, 2, 3439 3447
  21. 21
    Wehrenfennig, C.; Liu, M.; Snaith, H. J.; Johnston, M. B.; Herz, L. M. J. Phys. Chem. Lett. 2014, 5, 1300 1306
  22. 22
    Zhang, M.; Yu, H.; Lyu, M.; Wang, Q.; Yun, J.-H.; Wang, L. Chem. Commun. 2014, 50, 11727 11730
  23. 23
    Xing, G.; Mathews, N.; Lim, S. S.; Yantara, N.; Liu, X.; Sabba, D.; Grätzel, M.; Mhaisalkar, S.; Sum, T. C. Nat. Mater. 2014, 13, 476 480
  24. 24
    Deschler, F.; Price, M.; Pathak, S.; Klintberg, L. E.; Jarausch, D.-D.; Higler, R.; Hüttner, S.; Leijtens, T.; Stranks, S. D.; Snaith, H. J.; Atatüre, M.; Phillips, R. T.; Friend, R. H. J. Phys. Chem. Lett. 2014, 5, 1421 1426
  25. 25
    Tan, Z.-K.; Moghaddam, R. S.; Lai, M. L.; Docampo, P.; Higler, R.; Deschler, F.; Price, M.; Sadhanala, A.; Pazos, L. M.; Credgington, D.; Hanusch, F.; Bein, T.; Snaith, H. J.; Friend, R. H. Nat. Nanotechnol. 2014, 9, 687 692
  26. 26
    Ueng, H. Y.; Hwang, H. L. J. Phys. Chem. Solids 1989, 50, 1297 1305
  27. 27
    Huang, L.; Zhu, X.; Publicover, N. G.; Hunter, K. W.; Ahmadiantehrani, M.; de Bettencourt-Dias, A.; Bell, T. W. J. Nanopart. Res. 2013, 15, 2056
  28. 28
    De Trizio, L.; Prato, M.; Genovese, A.; Casu, A.; Povia, M.; Simonutti, R.; Alcocer, M. J. P.; D’Andrea, C.; Tassone, F.; Manna, L. Chem. Mater. 2012, 24, 2400 2406
  29. 29
    Zhang, W.; Zhong, X. Inorg. Chem. 2011, 50, 4065 4072
  30. 30
    Kresse, G.; Joubert, D. Phys. Rev. B 1999, 59, 1758
  31. 31
    Baroni, S.; de Gironcoli, S.; Dal Corso, A.; Giannozzi, P. Rev. Mod. Phys. 2001, 73, 515
  32. 32
    Yu, P. Y.; Cardona, M. Fundamentals of Semiconductors; Springer: New York, 1996.
  33. 33
    Even, J.; Pedesseau, L.; Katan, C. J. Phys. Chem. C 2014, 118, 11566 11572
  34. 34
    Frost, J. M.; Butler, K. T.; Brivio, F.; Hendon, C. H.; van Schilfgaarde, M.; Walsh, A. Nano Lett. 2014, 14, 2584 2590
  35. 35
    Menéndez-Proupin, E.; Palacios, P.; Wahnón, P.; Conesa, J. Phys. Rev. B 2014, 90, 045207
  36. 36
    Saba, M.; Cadelano, M.; Marongiu, D.; Chen, F.; Sarritzu, V.; Sestu, N.; Figus, C.; Aresti, M.; Piras, R.; Geddo Lehmann, A.; Cannas, C.; Musinu, A.; Quochi, F.; Mura, A.; Bongiovanni, G. Nat. Commun. 2014, 5, 5049
  37. 37
    Kim, T.-H.; Jun, S.; Cho, K.-S.; Choi, B. L.; Jang, E. MRS Bull. 2013, 38, 712 720
  38. 38
    Supran, G. J.; Shirasaki, Y.; Song, K. W.; Caruge, J.-M.; Kazlas, P. T.; Coe-Sullivan, S.; Andrew, T. L.; Bawendi, M. G.; Bulović, V. MRS Bull. 2013, 38, 703 711
  39. 39
    Ye, S.; Xiao, F.; Pan, Y. X.; Ma, Y. Y.; Zhang, Q. Y. Mater. Sci. Eng. R 2010, 71, 1 34
  40. 40
    Bomm, J.; Buechtemann, A.; Chatten, A. J.; Bose, R.; Farrell, D. J.; Chan, N. L. A.; Xiao, Y.; Slooff, L. H.; Meyer, T.; Meyer, A.; van Sark, W. G. J. H. M.; Koole, R. Sol. Energy Mater. Sol. Cells 2011, 95, 2087 2094
  41. 41
    Meinardi, F.; Colombo, A.; Velizhanin, K. A.; Simonutti, R.; Lorenzon, M.; Beverina, L.; Viswanatha, R.; Klimov, V. I.; Brovelli, S. Nat. Photonics 2014, 8, 392 399
  42. 42
    Gruetzmacher, H.; Geier, J.; Stein, D.; Ott, T.; Schoenberg, H.; Sommerlade, R. H.; Boulmaaz, S.; Wolf, J.-P.; Murer, P.; Ulrich, T. Chimia 2008, 62, 18 22

Cited By

Click to copy section linkSection link copied!
Citation Statements
Explore this article's citation statements on scite.ai

This article is cited by 7692 publications.

  1. Yang Shen, Min Liu, Tanyu Zhou, Haigang Hou, Jian Yang, Quanjiang Lv, Junlin Liu, Guiwu Liu, Guanjun Qiao. InP@ZnSe/ZnS-TMPD Core–Shell Quantum Dot Films with Filter Properties for Micro-Hyperspectral Imaging Applications. ACS Applied Nano Materials 2025, 8 (15) , 7707-7718. https://doi.org/10.1021/acsanm.5c00551
  2. Srimanta Gogoi, Saikat Das, Ruchir Gupta, Sachin Dev Verma. Tuning Hot-Carrier Temperature in CsPbBr3 Perovskite Nanoplatelets through Metal Halide Passivation. The Journal of Physical Chemistry Letters 2025, 16 (15) , 3832-3839. https://doi.org/10.1021/acs.jpclett.5c00273
  3. Lanyin Luo, Xueting Tang, Junhee Park, Chih-Wei Wang, Mansoo Park, Mohit Khurana, Ashutosh Singh, Jinwoo Cheon, Alexey Belyanin, Alexei V. Sokolov, Dong Hee Son. Polarized Superradiance from CsPbBr3 Quantum Dot Superlattice with Controlled Interdot Electronic Coupling. Nano Letters 2025, 25 (15) , 6176-6183. https://doi.org/10.1021/acs.nanolett.5c00478
  4. Kaho Matsunaga, Issei Inoue, Seiju Koyama, Tetsuo Yamaguchi, Mitsuaki Yamauchi, Sadahiro Masuo. Energy Transfer from a Perovskite Nanocrystal to Cyanine Dyes Depending on Spectral Overlap Revealed by a Single-Particle Spectroscopy. Nano Letters 2025, 25 (15) , 6145-6151. https://doi.org/10.1021/acs.nanolett.5c00337
  5. Yuanzhuang Cheng, Jiawei Chen, Shan Wu, Danlei Zhu, Xiangyu Liu, Xinghua Yan, Shuyue Dong, Yaonan Xiong, Shulin Chen, Kong Liu, Lian Duan, Dongxin Ma. Air-Processed Perovskites Enabled by an Interface-Reconstruction Strategy for High-Performance Light-Emitting Diodes. Nano Letters 2025, 25 (15) , 6192-6199. https://doi.org/10.1021/acs.nanolett.5c00453
  6. Meng-Xin Li, Jin-Zhao Huang, Kai-Zheng Song, Wan-Ying Yao, Feng-Lei Jiang. Stable Blue CsPbBr3 Perovskite Nanocrystals with Near-Unity Photoluminescence Quantum Yield by Surface Ligand Engineering. ACS Applied Materials & Interfaces 2025, Article ASAP.
  7. Arnab Ghosh, Carlos Mora Perez, Patrick Brosseau, Dmitry N. Dirin, Oleg V. Prezhdo, Maksym V. Kovalenko, Patanjali Kambhampati. Coherent Multidimensional Spectroscopy Reveals Hot Exciton Cooling Landscapes in CsPbBr3 Quantum Dots. ACS Nano 2025, 19 (14) , 14499-14508. https://doi.org/10.1021/acsnano.5c03944
  8. Jishnudas Chakkamalayath, Akshaya Chemmangat, Jeffrey T. DuBose, Prashant V. Kamat. Photon Management Through Energy Transfer in Halide Perovskite Nanocrystal–Dye Hybrids: Singlet vs Triplet Tuning. Accounts of Chemical Research 2025, Article ASAP.
  9. Yuhan Deng, Yujie Yuan, Jian Ni, Lei Zheng, Jinlian Bi, Jia Guo, Rufeng Wang, Haoxuan Li, Shuai Zhang, Hongkun Cai, Jianjun Zhang. Microfluidic Synthesis of CsPbBr3 Quantum Dots with Tunable Size and Enhanced Optoelectronic Properties via Temperature-Assisted Base-Acid Ligand Modulation. ACS Applied Energy Materials 2025, 8 (7) , 4701-4710. https://doi.org/10.1021/acsaem.5c00356
  10. Longjie Lei, Kaiyu Yang, Yang Liu, Qingkai Zhang, Kuibao Yu, Fushan Li. Anion Exchange-Induced Invisible Perovskite Encryption System with Time-Dependence for Confidential Information Security. ACS Photonics 2025, Article ASAP.
  11. Yi-Peng Zhou, Liang-Xu Wang, Sheng-Chao Hui, Lin Song, Chenxin Ran, Zhongbin Wu, Wei Huang. Controlled Nucleation and Targeted Interface Modification in Wide-Bandgap Perovskite Solar Cells Based on Evaporation/Solution Two-Step Deposition. ACS Nano 2025, Article ASAP.
  12. Meenakshi Pegu, Hossein Roshan, Clara Otero-Martínez, Luca Goldoni, Juliette Zito, Nikolaos Livakas, Pascal Rusch, Francesco De Boni, Francesco Di Stasio, Ivan Infante, Luca De Trizio, Liberato Manna. Improving the Stability of Colloidal CsPbBr3 Nanocrystals with an Alkylphosphonium Bromide as Surface Ligand Pair. ACS Energy Letters 2025, Article ASAP.
  13. Hanjie Lin, Sara Talebi, Walker MacSwain, Vanshika Vanshika, Arindam Chakraborty, Weiwei Zheng. Tailoring Substitutional Sites for Efficient Lanthanide Doping in Lead-Free Perovskite Nanocrystals with Enhanced Near-Infrared Photoluminescence. ACS Nano 2025, Article ASAP.
  14. Abdulazeez M. Ogunleye, Mohammad Awwal Adeshina, GunWoo Kim, Hyunmin Kim, Jonghoo Park. Bright Prospects, Lingering Challenges: CsPbBr3 Quantum Dots for Environmental Sensing. Crystal Growth & Design 2025, Article ASAP.
  15. Pang Chung, Ya-Sen Sun, Bo-Cheng Zhao, Chia-Liang Liu. Template-Mediated Synthesis of Methylammonium Lead Bromide Quantum Nanodots with Tailored Optical Properties. ACS Applied Optical Materials 2025, Article ASAP.
  16. Deejan Debnath, Barnali Saha, Madhusudan Das, Himadri Acharya, Sujit Kumar Ghosh. Measuring the Efficiency of Photoinduced Electron Transfer at the Perovskite@Metal–Organic Framework Buried Interfaces. ACS Applied Optical Materials 2025, Article ASAP.
  17. Jiamiao Yin, Qianwen Zhou, Yanzhong Li, Donghao Hu, Ming Xu, Mei Shi, Weigang Yan, Qingbing Wang, Xiufeng Hou, Fuyou Li. “All-in-One” Photochemical Afterglow Nanoplatform Based on Perovskite Quantum Dots. ACS Applied Materials & Interfaces 2025, 17 (14) , 20768-20777. https://doi.org/10.1021/acsami.4c22254
  18. Yao Xu, Jian Li, Wenheng Xu, Xinlian Fan, Shuai Yang, Yao Yin, Jijie Zhu, Dawei Zhou, Linbo Feng, Chenyang Zha, Xiaoyong Wang, Yan Lv, Lin Wang. Elucidating Interfacial Carrier Transfer Dynamics for Circularly Polarized Emission in Self-Assembled Perovskite Heterostructures. ACS Nano 2025, Article ASAP.
  19. Jing Li, Jiao Hu, An-An Liu, Cui Liu, Dai-Wen Pang. Quantum Dots for Chemical Metrology. Analytical Chemistry 2025, 97 (13) , 6891-6910. https://doi.org/10.1021/acs.analchem.4c06794
  20. Ina Flaucher, Marco van der Laan, Jef Huisman, Peter Schall. Spectral Shaping by Radiative Energy Transfer in CsPbBr3 Nanocrystal–Dye Mixtures. ACS Applied Optical Materials 2025, Article ASAP.
  21. Naoaki Oshita, Mao Goto, Kohei Narazaki, Ryota Kobayashi, Mizuki Ohke, Yusaku Morikawa, Sarah Phillips, Yuta Ito, Motofumi Kashiwagi, Satoshi Asakura, Takayuki Chiba, Akito Masuhara. Pure-Blue Emitting Face-Down-Oriented Perovskite Nanoplatelets for Light-Emitting Diodes. ACS Applied Nano Materials 2025, Article ASAP.
  22. Vivien L. Cherrette, David Zeitz, Mariam Khvichia, Jason K. Cooper, Yuan Ping, Jin Z. Zhang. Enhancing the Photoexcited Carrier Spin Relaxation Lifetime in CsPbBr3 Perovskite Quantum Dots by 208Pb Isotope Enrichment. The Journal of Physical Chemistry Letters 2025, 16 (13) , 3336-3342. https://doi.org/10.1021/acs.jpclett.5c00123
  23. José María Viaña, Carlos Romero-Pérez, Mauricio E. Calvo, Gabriel Lozano, Hernán Míguez. Tunable White Light Emission from Transparent Nanophosphor Films Embedding Perovskite Lead Halide Nanostructures. ACS Applied Materials & Interfaces 2025, 17 (13) , 19900-19905. https://doi.org/10.1021/acsami.4c22044
  24. Kaixiang Cui, Yong Chen, Keyu Xie, Haonan Peng, Liping Ding, Yu Fang. Nanoconfined Synthesis of CsPbBr3 Quantum Dots: Enhanced Stability, Tunable Luminescence, and Sensitive Sensing Application. ACS Applied Materials & Interfaces 2025, 17 (13) , 20075-20086. https://doi.org/10.1021/acsami.4c22763
  25. Haixia Du, Zongping Shao. A Review on Modulating Oxygen Vacancy Defect of Catalysts to Promote CO2 Reduction Reaction to CO. Energy & Fuels 2025, 39 (12) , 5672-5690. https://doi.org/10.1021/acs.energyfuels.4c06009
  26. Xue Han, Zhigao Huang, Guofeng Zhang, Changgang Yang, Jialu Li, Mi Zhang, Zhihao Chen, Jinhui Wang, Ruiyun Chen, Chengbing Qin, Jianyong Hu, Zhichun Yang, Xinghui Liu, Yue Wang, Jie Ma, Liantuan Xiao, Suotang Jia. Ultrafast Exciton Formation in Perovskite Quantum Rods. Nano Letters 2025, 25 (12) , 4913-4920. https://doi.org/10.1021/acs.nanolett.5c00213
  27. Alexander M. Oddo, Daniel Chabeda, Jaydeep Basu, Marcel Arnold, Chengyu Song, Eran Rabani, Peidong Yang. Exploring the Structural Origins of Optically Efficient One-Dimensional Lead Halide Perovskite Nanostructures. Journal of the American Chemical Society 2025, 147 (12) , 10466-10474. https://doi.org/10.1021/jacs.4c18320
  28. Runchi Wang, Wei Ma, Qian Feng, Yaqian Yuan, Chong Geng, Shu Xu. Toward Ultra-stable Barrier-free Quantum Dots-Color Conversion Film via Zinc Phenylbutyrate Modification. ACS Applied Materials & Interfaces 2025, 17 (12) , 18790-18799. https://doi.org/10.1021/acsami.5c01384
  29. Paramvir Ahlawat, Cecilia Clementi, Felix Musil, Maria-Andreea Filip, M. Ibrahim Dar. Lattice-Matched Heterogeneous Nucleation Eliminates Defective Buried Interfaces in Halide Perovskites. Chemistry of Materials 2025, 37 (6) , 2177-2191. https://doi.org/10.1021/acs.chemmater.4c03034
  30. Keisuke Watanabe, Kosuke Imai, Hiroyuki Nishinaka. Film Deposition and Optical Properties of Cu-Based Metal Halide Cs3Cu2(I1–xBrx)5 Alloy via Mist Deposition. ACS Omega 2025, 10 (11) , 10972-10978. https://doi.org/10.1021/acsomega.4c09184
  31. C. Meric Guvenc, Nahit Polat, Tugce A. Arica, Sinan Balci. Selective Growth of FAPbBr3 Nanocrystals with Precisely Tailored Optical Properties for Advanced Optoelectronic Applications. ACS Applied Nano Materials 2025, 8 (11) , 5713-5720. https://doi.org/10.1021/acsanm.5c00246
  32. Sengui Liang, Jianwu Wei, Ke Xu, Dongfeng Xue, Peican Chen, Liya Zhou, Qi Pang, Jin Zhong Zhang. Synthesis and Chiroptical Properties of Chiral Lead Halide Molecular Clusters. The Journal of Physical Chemistry Letters 2025, 16 (11) , 2771-2777. https://doi.org/10.1021/acs.jpclett.4c03164
  33. Christopher Cueto, Dhimitraq Nikolla, Alexander Ribbe, James Chambers, Todd Emrick. Exploiting Photohalide Generation in Shape and Multichromatic Color Patterning of Polymer–Perovskite Nanocomposites. Journal of the American Chemical Society 2025, 147 (11) , 9774-9785. https://doi.org/10.1021/jacs.4c18454
  34. Zirui Zhou, Justin C. Ondry, Yi-Chun Liu, Haoqi Wu, Ahhyun Jeong, Aritrajit Gupta, Yi-Chen Chen, Jun Hyuk Chang, Richard D. Schaller, Dmitri V. Talapin. Colloidal Chemistry in Molten Inorganic Salts: Direct Synthesis of III–V Quantum Dots via Dehalosilylation of (Me3Si)3Pn (Pn = P, As) with Group III Halides. Journal of the American Chemical Society 2025, 147 (11) , 9198-9209. https://doi.org/10.1021/jacs.4c13568
  35. Abid Alam, Yawen Li, Fuchun Ning, Tianrong Li, Yuhua Wang. Enhancing the Optical Properties and Stability of CsPbBr3 Quantum Dots through Ligand Modification, Encapsulation, and Interaction with a Superhydrophobic Polymer. ACS Applied Materials & Interfaces 2025, 17 (11) , 17026-17035. https://doi.org/10.1021/acsami.4c21351
  36. Beiye C. Li, Hugh Cairney, Yu Jin, Jinsoo Park, Siddhartha Sohoni, Lawson T. Lloyd, Yuzi Liu, Justin E. Jureller, Young Jay Ryu, Stella Chariton, Vitali B. Prakapenka, Richard D. Schaller, Giulia Galli, Gregory S. Engel. Connectivity-Dependent Exciton–Phonon Coupling in Cesium Bismuth Halide Quantum Dots. ACS Nano 2025, 19 (10) , 10359-10368. https://doi.org/10.1021/acsnano.4c18414
  37. Ye Wu, Desui Chen, Guangruixing Zou, Haochen Liu, Zhaohua Zhu, Andrey L. Rogach, Hin-Lap Yip. Strategies for Stabilizing Metal Halide Perovskite Light-Emitting Diodes: Bulk and Surface Reconstruction of Perovskite Nanocrystals. ACS Nano 2025, 19 (10) , 9740-9759. https://doi.org/10.1021/acsnano.5c00593
  38. Manish Mukherjee, Akshaya Chemmangat, Prashant V. Kamat. Hole Trapping in Lead Halide Perovskite Nanocrystal–Viologen Hybrids and Its Impact on Back Electron Transfer. ACS Nano 2025, 19 (10) , 10549-10557. https://doi.org/10.1021/acsnano.5c01423
  39. Anupam Manna, Pravat Nayek, Prasenjit Mal. Tuning Dimensions of CsPbBr3 Nanocrystals through Pb(II) Counter Anions: A Dance of Dimensions and Product Selectivity in Visible-Light Photocatalysis. ACS Energy Letters 2025, 10 (3) , 1499-1507. https://doi.org/10.1021/acsenergylett.5c00033
  40. Willi M. Amberg, Henry Lindner, Yesim Sahin, Erich Staudinger, Viktoriia Morad, Sebastian Sabisch, Leon G. Feld, Yuxuan Li, Dmitry N. Dirin, Maksym V. Kovalenko, Erick M. Carreira. Ligand Influence on the Performance of Cesium Lead Bromide Perovskite Quantum Dots in Photocatalytic C(sp3)–H Bromination Reactions. Journal of the American Chemical Society 2025, 147 (10) , 8548-8558. https://doi.org/10.1021/jacs.4c17013
  41. Wenbin Shi, Ping Yang, Xiao Zhang. Blue-Emitting CsPbBr3 Nanocrystals: Synthesis Progress and Bright Photoluminescence. Langmuir 2025, 41 (9) , 5762-5781. https://doi.org/10.1021/acs.langmuir.4c05108
  42. Brener R. C. Vale, Diego Scolfaro, Claudevan A. Sousa, Andre F. V. Fonseca, Luiz G. Bonato, Ana F. Nogueira, Jefferson Bettini, Lazaro A. Padilha. Charge Trapping and Detrapping in CsPbBr3 Perovskite Nanocrystals: Implications for Photovoltaic and Photocatalysis Applications. ACS Applied Nano Materials 2025, 8 (9) , 4373-4383. https://doi.org/10.1021/acsanm.4c04839
  43. Yan Chen, Yiqun Duan, Xiayuan Xu, Yijie Luo, Yuxin Zhang, Hong Yang, Shufeng Wang. Ultrafast Carrier Dynamics in CH3NH3PbBr3 Perovskite Single-Crystal Thin Films. The Journal of Physical Chemistry C 2025, 129 (9) , 4481-4489. https://doi.org/10.1021/acs.jpcc.4c07613
  44. Minghao Zhou, Yanlai Wang. Highly Efficient Degradation of Tetracycline Hydrochloride Using Monodisperse CuGaS2 Quantum Dots Under UV-LED. The Journal of Physical Chemistry C 2025, 129 (9) , 4407-4414. https://doi.org/10.1021/acs.jpcc.4c07930
  45. Siyu Li, Feng Liu, Dayang Wang, Keke Huang, Wensheng Yang, Renguo Xie. Precise Control of Halogen Distribution in Monolayer Hybrid Perovskites through Mechanochemistry. The Journal of Physical Chemistry C 2025, 129 (9) , 4747-4756. https://doi.org/10.1021/acs.jpcc.4c08389
  46. Kuruppath Y. Gopika, Vijayan Santhi, Kulangara Sandeep. Influence of Exciton Diffusivity and Nanocrystal Size on Carrier Dynamics in CsPbBr3 Perovskites. The Journal of Physical Chemistry C 2025, 129 (9) , 4538-4544. https://doi.org/10.1021/acs.jpcc.4c08668
  47. Siow Mean Loh, Yao Jing, Tze Chien Sum, Annalisa Bruno, Subodh G Mhaisalkar, Steven A. Blundell. Mechanism of Quantum Cutting in Yb-Doped CsPbCl3. The Journal of Physical Chemistry Letters 2025, 16 (9) , 2295-2300. https://doi.org/10.1021/acs.jpclett.5c00150
  48. Thiago Rodrigues da Cunha, Diego Lourençoni Ferreira, Letícia Ferreira Magalhães, Thaís Adriany de Souza Carvalho, Gabriel Fabrício de Souza, Jefferson Bettini, Angelo Danilo Faceto, Cleber Renato Mendonça, Leonardo de Boni, Marco Antônio Schiavon, Marcelo Gonçalves Vivas. Transition from Light-Induced Phase Reconstruction to Halide Segregation in CsPbBr3–xIx Nanocrystal Thin Films. ACS Applied Materials & Interfaces 2025, 17 (9) , 14389-14403. https://doi.org/10.1021/acsami.4c19234
  49. Zhi Wen, Yubin Kang, Yichen Zhu, QiangQiang Zhu, Yue Zhai, Mingchun Li, Jing Su, Yanghui Li, Le Wang. Perovskite CsPbBr3 Quantum Dots on Aminated Silica with Enhanced Stability for Blue Light-Emitting Diode and Anti-Counterfeiting Applications. ACS Applied Nano Materials 2025, 8 (8) , 3726-3736. https://doi.org/10.1021/acsanm.4c05600
  50. Stefania Milanese, Maria Luisa De Giorgi, Giovanni Morello, Maryna I. Bodnarchuk, Marco Anni. Role of the Capping Ligand in CsPbBr3 Nanocrystals Amplified Spontaneous Emission Properties. ACS Applied Nano Materials 2025, 8 (8) , 3964-3973. https://doi.org/10.1021/acsanm.4c06792
  51. Selin E. Donmez, Sisi Wang, Unaisah Vorajee, Geoffrey F. Strouse, Hedi Mattoussi. Investigating Energy-Transfer Interactions in Perovskite Quantum Dot–Dye Assemblies. The Journal of Physical Chemistry C 2025, 129 (8) , 4134-4145. https://doi.org/10.1021/acs.jpcc.5c00337
  52. Shivani Gupta, Siddharth Singh, Soumyadeep De, Nidhi Gautam, Harsh Patel, Vishal Govind Rao. Perovskite–Molecular Photocatalyst Synergy and Surface Engineering for Superior Photocatalytic Performance. ACS Applied Materials & Interfaces 2025, 17 (8) , 12054-12063. https://doi.org/10.1021/acsami.4c19572
  53. Taifei Zhou, Shuguang Zhang, Jincheng Lou, Yiying Tan, Jiangshan Chen, Junbiao Peng. Enhancing Efficiency and Stability of Blue Perovskite Light-Emitting Diodes through Hybrid A-Site Optimization and Defect Mitigation in Pure Bromide-Based Materials. ACS Applied Electronic Materials 2025, 7 (4) , 1661-1669. https://doi.org/10.1021/acsaelm.4c02294
  54. Shuoshuo Zang, Jianli Chen, Yan Yu, Xuegao Qin, Hewen Liu. Ligand-Assisted Reprecipitation of Highly Luminescent Perovskite Nanocrystals. ACS Applied Nano Materials 2025, 8 (7) , 3680-3687. https://doi.org/10.1021/acsanm.5c00412
  55. Modasser Hossain, Rupam Ghosh, Ranjan Das, Pralay K. Santra. Kinetics of the Cation Migration between 2D BA2PbBr4 and 3D MAPbBr3 Perovskite Nanoparticles in Solution. Energy & Fuels 2025, 39 (7) , 3649-3657. https://doi.org/10.1021/acs.energyfuels.4c06183
  56. Viktor Bajo, Pavel Klok, Petr Liška, Jolana Kološová, Rastislav Motúz, Jan Juračka, Stevan Gavranović, Oldřich Zmeškal, Jan Král, Pavel Stejskal, Jaroslav Jiruše, Tomáš Šikola, Michal Horák. 4D-STEM in an FIB-SEM: A Proper Tool to Characterize Perovskite Single-Photon Emitters and Solar Cells. The Journal of Physical Chemistry C 2025, 129 (7) , 3905-3912. https://doi.org/10.1021/acs.jpcc.4c08042
  57. Joonseok Kim, Min-Gi Jeon, Subin Yun, Artavazd Kirakosyan, Jihoon Choi. Suppressing Metal Cation Diffusion in Perovskite Light-Emitting Diodes via Blending Amino Acids with PEDOT:PSS. ACS Photonics 2025, 12 (2) , 971-980. https://doi.org/10.1021/acsphotonics.4c02027
  58. Pritish Mishra, Mengyuan Zhang, Manaswita Kar, Maria Hellgren, Michele Casula, Benjamin Lenz, Andy Paul Chen, Jose Recatala-Gomez, Shakti Prasad Padhy, Marina Cagnon Trouche, Mohamed-Raouf Amara, Ivan Cheong, Zengshan Xing, Carole Diederichs, Tze Chien Sum, Martial Duchamp, Yeng Ming Lam, Kedar Hippalgaonkar. Synthesis of Machine Learning-Predicted Cs2PbSnI6 Double Perovskite Nanocrystals. ACS Nano 2025, 19 (6) , 6107-6119. https://doi.org/10.1021/acsnano.4c13500
  59. Jingyi He, Shimin Liu, Jianmin Gu, Shiqing Xu. Enhanced Luminescence of CsPbBr3 Quantum Dot Glass through Eu3+–Rb+ Codoping. ACS Applied Nano Materials 2025, 8 (6) , 2721-2729. https://doi.org/10.1021/acsanm.4c06144
  60. Yun Tang, Miao Wang, Yalou Xin, Xiaohu Ren, Hudie Yuan, Nan Yan. In Situ Synthesis of Perovskite Quantum Dots/K2SiF6:Mn4+ Composites Enabled Efficient WLED Backlight for Wide Color Gamut Displays. ACS Applied Nano Materials 2025, 8 (6) , 2806-2814. https://doi.org/10.1021/acsanm.4c06414
  61. Narayan Pradhan. CsPbBr3 Perovskite Nanocrystals: Linking Orthorhombic Structure to Cubic Geometry through Atomic Models and HRTEM Analysis. ACS Energy Letters 2025, 10 (2) , 1057-1061. https://doi.org/10.1021/acsenergylett.5c00128
  62. Lijia Zhao, Sihang Ji, Ke Zhao, Hui Wang, Chen Chen, Jin Wang, Jinju Zheng, Jialong Zhao, Xi Yuan. Emission-Tunable Quasi-2D (PEA)2FAn–1PbnBr3n+1 Perovskite Films via an A-Site Cation-Assisted Strategy for Light-Emitting Diodes. The Journal of Physical Chemistry C 2025, 129 (6) , 3118-3126. https://doi.org/10.1021/acs.jpcc.4c08224
  63. Yue Zhou, Chao Jiang, Zhengxing Wang, Zao Yi, Xifang Chen. Photon Reabsorption and Surface Plasmon Modulating Exciton-to-Dopant Energy Transfer Dynamics in Mn:CsPb(BrCl)3 Quantum Dots. The Journal of Physical Chemistry Letters 2025, 16 (6) , 1620-1628. https://doi.org/10.1021/acs.jpclett.4c03526
  64. Qing-Peng Peng, Jun-Hua Wei, Zi-Lin He, Jian-Bin Luo, Jing-Hua Chen, Zhi-Zhong Zhang, Xiu-Xian Guo, Dai-Bin Kuang. In Situ Crystallization of CsPbBr3 Nanocrystals within a Melt-Quenched Glassy Coordination Polymer. ACS Nano 2025, 19 (5) , 5295-5304. https://doi.org/10.1021/acsnano.4c12049
  65. Chinmay Barman, Sireesha Lavadiya, Sudhanshu Kumar Nayak, Venugopal Rao Soma, Sai Santosh Kumar Raavi. Shallow Trap States Mediated Ultrafast Interfacial Charge Transfer in Ag/Bi-Codoped CsPbBr3 Nanocrystals for High-Responsivity Photodetector Applications. ACS Applied Nano Materials 2025, 8 (5) , 2238-2248. https://doi.org/10.1021/acsanm.4c06208
  66. Akshaya Chemmangat, Sara Murray, Prashant V. Kamat. Steering Energy Transfer Pathways through Mn-Doping in Perovskite Nanocrystals. Journal of the American Chemical Society 2025, 147 (5) , 4541-4551. https://doi.org/10.1021/jacs.4c16567
  67. Qingyuan Zhou, Xiaohu Zhao, Yuanchen Jiang, Junwei Zhou, Zhen Liu, Kai Pan. Aspect Ratio-Tunable CsPbBr3 Nanorods from Cs4PbBr6 at the Oil–Water Interface with Enhanced Stability via Ligand Treatment. ACS Applied Nano Materials 2025, 8 (4) , 2046-2053. https://doi.org/10.1021/acsanm.4c07246
  68. Shima Fasahat, Nadesh Fiuza-Maneiro, Benedikt Schäfer, Kai Xu, Sergio Gómez-Graña, M. Isabel Alonso, Lakshminarayana Polavarapu, Alejandro R. Goñi. Sign of the Gap Temperature Dependence in CsPb(Br,Cl)3 Nanocrystals Determined by Cs-Rattler-Mediated Electron–Phonon Coupling. The Journal of Physical Chemistry Letters 2025, 16 (4) , 1134-1141. https://doi.org/10.1021/acs.jpclett.4c03491
  69. Wenji Zhan, Jingjing Cao, Haifei Wang, Meng Ren, Menglei Feng, Yingping Fan, Jiahao Guo, Yao Wang, Yuetian Chen, Yanfeng Miao, Yixin Zhao. Acidic Engineering on Buried Interface toward Efficient Inorganic CsPbI3 Perovskite Light-Emitting Diodes. Nano Letters 2025, 25 (4) , 1593-1600. https://doi.org/10.1021/acs.nanolett.4c05694
  70. Chia-Chien Kuo, Duc-Binh Nguyen, Yi-Hsin Chien. A Study of Halide Ion Exchange-Induced Phase Transition in CsPbBr3 Perovskite Quantum Dots for Detecting Chlorinated Volatile Compounds. ACS Applied Materials & Interfaces 2025, 17 (4) , 7043-7055. https://doi.org/10.1021/acsami.4c14868
  71. Yujia Li, Yining Zhao, Alfonso Ruocco, Mingqing Wang, Bing Li, Shahab Akhavan. Printed Lithography of Graphene-Perovskite Quantum Dot Hybrid Photodetectors on Paper Substrates. ACS Applied Materials & Interfaces 2025, 17 (4) , 6716-6727. https://doi.org/10.1021/acsami.4c18102
  72. Bo Xu, Shichen Yuan, Linqin Wang, Xiansheng Li, Zhuang Hu, Haibo Zeng. Highly Efficient Blue Light-Emitting Diodes Enabled by Gradient Core/Shell-Structured Perovskite Quantum Dots. ACS Nano 2025, 19 (3) , 3694-3704. https://doi.org/10.1021/acsnano.4c14276
  73. Sreya Das, Pulak Pal, Abhirup Chatterjee, Soumen Maiti, Tufan Paul, Kalyan Kumar Chattopadhyay. Charge Storage Mechanism via Vacancy-Mediated Anion Intercalation in a Two-Dimensional Cs2PbI2Cl2 Ruddlesden–Popper Perovskite. ACS Applied Energy Materials 2025, 8 (2) , 1349-1361. https://doi.org/10.1021/acsaem.4c02752
  74. Patralekha Sarkar, Arghya Sen, Abhijit Dutta, Rakesh Kumar, Pratik Sen. Pivotal Role of Binding in Ultrafast Hole Transfer from CsPbBr3 Nanocrystals to Isomeric Diaminobenzenes. The Journal of Physical Chemistry C 2025, 129 (2) , 1252-1259. https://doi.org/10.1021/acs.jpcc.4c05682
  75. Abdul Mannan Majeed, Kazimieras Nomeika, Mantas Auruškevičius, Sandra Stanionyte, Edvinas Radiunas, Patrik Ščajev. Impact of Zn Alloying to CsZnxPb1–xI3 Charge Carrier Diffusion Coefficient, Diffusion Length, and Recombination Parameters. The Journal of Physical Chemistry C 2025, 129 (2) , 1444-1456. https://doi.org/10.1021/acs.jpcc.4c06499
  76. Jiao Wang, Haoran Lu, Xuesong Tian, Run Long, Oleg V. Prezhdo. Optimizing Sublattice Correlation to Enhance Stability and Charge Carrier Lifetime in Mixed Halide Perovskites. Nano Letters 2025, 25 (2) , 882-889. https://doi.org/10.1021/acs.nanolett.4c05701
  77. Qinglin Zeng, Jibin Zhang, Xinzhen Ji, Meng Wang, Shuailing Lin, Meng Su, Qianli Liu, Linyuan Lian, Mochen Jia, Xu Chen, Zhuangzhuang Ma, Ying Liu, Yanbing Han, Yongtao Tian, Xin-Jian Li, Zhifeng Shi. Unveiling the Effect of Synthetic Atmospheric Humidity on the Performance of FAPbBr3 Nanocrystals and Their PeLEDs. ACS Photonics 2025, 12 (1) , 429-438. https://doi.org/10.1021/acsphotonics.4c01811
  78. Harsh Mohata, Diptam Nasipuri, Sumit Kumar Dutta, Narayan Pradhan. Limiting Halide Exchange and Doping Mn(II) in Vertex-Oriented Cube-Connected Patterned Lead Halide Perovskite Nanorods. Chemistry of Materials 2025, 37 (1) , 497-506. https://doi.org/10.1021/acs.chemmater.4c02908
  79. Gillian Shen, Yadong Zhang, Julisa Juarez, Hannah Contreras, Collin Sindt, Yiman Xu, Jessica Kline, Stephen Barlow, Elsa Reichmanis, Seth R. Marder, David S. Ginger. Increased Brightness and Reduced Efficiency Droop in Perovskite Quantum Dot Light-Emitting Diodes Using Carbazole-Based Phosphonic Acid Interface Modifiers. ACS Nano 2025, 19 (1) , 1116-1127. https://doi.org/10.1021/acsnano.4c13036
  80. Jun-Hyung Im, Myeonggeun Han, Jisu Hong, Hyein Kim, Kwang-Suk Oh, Taesu Choi, Abd Rashid bin Mohd Yusoff, Maria Vasilopoulou, Eunsook Lee, Chan-Cuk Hwang, Yong-Young Noh, Young-Ki Kim. Controlled Synthesis of Perovskite Nanocrystals at Room Temperature by Liquid Crystalline Templates. ACS Nano 2025, 19 (1) , 1177-1189. https://doi.org/10.1021/acsnano.4c13217
  81. Debapriya Pal, Toni López, A. Femius Koenderink. Metasurface-Based Phosphor-Converted Micro-LED Architecture for Displays─Creating Guided Modes for Enhanced Directionality. ACS Nano 2025, 19 (1) , 1238-1250. https://doi.org/10.1021/acsnano.4c13472
  82. C. Meric Guvenc, Stefano Toso, Yurii P. Ivanov, Gabriele Saleh, Sinan Balci, Giorgio Divitini, Liberato Manna. Breaking the Boundaries of the Goldschmidt Tolerance Factor with Ethylammonium Lead Iodide Perovskite Nanocrystals. ACS Nano 2025, 19 (1) , 1557-1565. https://doi.org/10.1021/acsnano.4c14536
  83. Shai Levy, Orr Be’er, Saar Shaek, Alexey Gorlach, Einav Scharf, Yonatan Ossia, Rotem Liran, Kobi Cohen, Rotem Strassberg, Ido Kaminer, Uri Banin, Yehonadav Bekenstein. Collective Interactions of Quantum-Confined Excitons in Halide Perovskite Nanocrystal Superlattices. ACS Nano 2025, 19 (1) , 963-971. https://doi.org/10.1021/acsnano.4c12509
  84. Yangning Zhang, Cherrelle J. Thomas, Hyun Gyung Kim, Jungchul Noh, Thana Shuga Aldeen, Allison J. Segapeli, Detlef-M. Smilgies, Brian A. Korgel. Solvent Vapor Annealing of CsPbI3 Nanocrystal Superlattices Followed by In Situ X-ray Scattering. The Journal of Physical Chemistry C 2025, 129 (1) , 849-857. https://doi.org/10.1021/acs.jpcc.4c06965
  85. Jaesang Yu, Jinwoong Jo, Hyeyoung Joung, Chanwoo Kim, Yunmo Sung, Juwon Oh, Jaesung Yang. Effects of Polymer Matrix and Atmospheric Conditions on Photophysical Properties of a Cesium Lead Bromide (CsPbBr3) Perovskite Quantum Dot. The Journal of Physical Chemistry Letters 2025, 16 (1) , 384-395. https://doi.org/10.1021/acs.jpclett.4c02780
  86. Lin Feng, I-Hsuan Yeh, Pavle V. Radovanovic. Compositionally Tunable Magneto-optical Properties of Lead-Free Halide Perovskite Nanocrystals. The Journal of Physical Chemistry Letters 2025, 16 (1) , 168-174. https://doi.org/10.1021/acs.jpclett.4c02966
  87. Shima Fasahat, Benedikt Schäfer, Kai Xu, Nadesh Fiuza-Maneiro, Sergio Gómez-Graña, M. Isabel Alonso, Lakshminarayana Polavarapu, Alejandro R. Goñi. Absence of Anomalous Electron–Phonon Coupling in the Near-Ambient Gap Temperature Renormalization of CsPbBr3 Nanocrystals. The Journal of Physical Chemistry C 2025, 129 (1) , 453-463. https://doi.org/10.1021/acs.jpcc.4c06265
  88. Fensha Cai, Bing Bai, Qianqian Wu, Rui Xu, Chaoyu Xiang, Xuyong Yang, Guohua Jia, Zuliang Du. Blue Quantum Dot Light-Emitting Diodes toward Full-Color Displays: Materials, Devices, and Large-Scale Fabrication. Nano Letters 2025, 25 (1) , 1-15. https://doi.org/10.1021/acs.nanolett.4c02968
  89. Heng Qi, Yu Tong, Yibo Wang, Yue Liu, Zhixin Sheng, Aitkazy Kaisha, Olzat Toktarbaiuly, Peiyuan Pang, Guichuan Xing, Kun Wang, Hongqiang Wang. Strongly Anchored Dion–Jacobson Perovskite for Efficient Blue Light-Emitting Diodes. Nano Letters 2025, 25 (1) , 353-360. https://doi.org/10.1021/acs.nanolett.4c05124
  90. Yongfei Li, Yujiao Wang, Qing Sun, Jiaoyi Ning, Liang Li, Jiakai Liu, Daliang Zhang, Ke Xin Yao. Enabling Multicolor Information Encryption: Oleylammonium-Halide-Assisted Reversible Phase Conversion between Cs4PbX6 and CsPbX3 Nanocrystals. ACS Applied Materials & Interfaces 2025, 17 (1) , 1596-1604. https://doi.org/10.1021/acsami.4c17833
  91. Md. Samim Hassan, Pooja Basera, Bilawal Khan, Arsenii S. Portniagin, Kunnathodi Vighnesh, Ye Wu, Daniil A. Rusanov, Maria Babak, Jr-Hau He, Michal Bajdich, Andrey L. Rogach. Bidentate Lewis Base Ligand-Mediated Surface Stabilization and Modulation of the Electronic Structure of CsPbBr3 Perovskite Nanocrystals. Journal of the American Chemical Society 2025, 147 (1) , 862-873. https://doi.org/10.1021/jacs.4c13724
  92. Akshaya Chemmangat, Jishnudas Chakkamalayath, Prashant V. Kamat. Structural Evolution of Perovskite Nanoplatelets in Polar Solvents. ACS Materials Letters 2025, 7 (1) , 85-92. https://doi.org/10.1021/acsmaterialslett.4c01779
  93. Hao Lin, Jia-Yi Dong, Qi Wei, Gang Wang, Jie-Lei Li, Zhen-Dong Lian, Pei-Li Gao, Shi Chen, Gui-Chuan Xing, Kar Wei Ng, Shi-Chen Su, Shuang-Peng Wang. Chelating Ligand Surface Functionalization for Ultrastable Efficient Blue Emissive Nanoplatelets. ACS Materials Letters 2025, 7 (1) , 59-67. https://doi.org/10.1021/acsmaterialslett.4c02269
  94. Ju-Hyun Yoo, Kyung Yeon Jang, Jihye Jang, Cheolmin Park, Tae-Woo Lee, Jin-Woo Park. Room-Temperature Large-Scale Synthesis of Black-Phase CsPbI3 Nanocrystals for Red Light-Emitting Diodes. ACS Applied Nano Materials 2024, 7 (24) , 28119-28130. https://doi.org/10.1021/acsanm.4c04001
  95. Pengji Li, Leon Biesterfeld, Lars F. Klepzig, Jingzhong Yang, Huu Thoai Ngo, Ahmed Addad, Tom N. Rakow, Ruolin Guan, Eddy P. Rugeramigabo, Ivan Zaluzhnyy, Frank Schreiber, Louis Biadala, Jannika Lauth, Michael Zopf. Sub-millielectronvolt Line Widths in Polarized Low-Temperature Photoluminescence of 2D PbS Nanoplatelets. Nano Letters 2024, 24 (51) , 16293-16300. https://doi.org/10.1021/acs.nanolett.4c04402
  96. Jihoon Kim, Rahmatia Fitri Binti Nasrun, Woo Hyeon Jeong, Xinyu Shen, Indah Salma Sausan, Danbi Kim, Gyeong Eun Seok, Eui Dae Jung, Joo Hyun Kim, Bo Ram Lee. Conjugated Polyelectrolytes as a Defect-Passivating Hole Injection Layer for Efficient and Stable Perovskite Light-Emitting Diodes. ACS Applied Electronic Materials 2024, 6 (12) , 8929-8937. https://doi.org/10.1021/acsaelm.4c01635
  97. Kyle D. Crans, Hagai Cohen, Ariel A. Nehoray, Dan Oron, Miri Kazes, Richard L. Brutchey. A Redox-Active Ionic Liquid Surface Treatment for Healing CsPbBr3 Nanocrystals. Nano Letters 2024, 24 (50) , 16015-16021. https://doi.org/10.1021/acs.nanolett.4c04348
  98. Beñat Martinez de Aguirre Jokisch, Benjamin Falkenberg Gøtzsche, Philip Trøst Kristensen, Martijn Wubs, Ole Sigmund, Rasmus Ellebæk Christiansen. Omnidirectional Gradient Force Optical Trapping in Dielectric Nanocavities by Inverse Design. ACS Photonics 2024, 11 (12) , 5118-5127. https://doi.org/10.1021/acsphotonics.4c01060
  99. Anja Barfüßer, Jochen Feldmann, Quinten A. Akkerman. Biexcitonic Optical Gain in CsPbBr3 Quantum Dots. ACS Photonics 2024, 11 (12) , 5350-5357. https://doi.org/10.1021/acsphotonics.4c01659
  100. Himanshu Bhatt, Ramchandra Saha, Tanmay Goswami, Sangeetha C. K., Kaliyamoorthy Justice Babu, Gurpreet Kaur, Ayushi Shukla, Mahammed Suleman Patel, Sachin R. Rondiya, Nelson Y. Dzade, Hirendra N. Ghosh. Charge Transfer Modulation in the α-CsPbI3/WS2 Heterojunction via Band-Tailoring with Elemental Ni Doping. ACS Photonics 2024, 11 (12) , 5367-5379. https://doi.org/10.1021/acsphotonics.4c01774
Load more citations

Nano Letters

Cite this: Nano Lett. 2015, 15, 6, 3692–3696
Click to copy citationCitation copied!
https://doi.org/10.1021/nl5048779
Published January 29, 2015

Copyright © 2015 American Chemical Society. This publication is licensed under these Terms of Use.

Article Views

265k

Altmetric

-

Citations

Learn about these metrics

Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.

  • Abstract

    Figure 1

    Figure 1. Monodisperse CsPbX3 NCs and their structural characterization. (a) Schematic of the cubic perovskite lattice; (b,c) typical transmission electron microscopy (TEM) images of CsPbBr3 NCs; (d) X-ray diffraction patterns for typical ternary and mixed-halide NCs.

    Figure 2

    Figure 2. Colloidal perovskite CsPbX3 NCs (X = Cl, Br, I) exhibit size- and composition-tunable bandgap energies covering the entire visible spectral region with narrow and bright emission: (a) colloidal solutions in toluene under UV lamp (λ = 365 nm); (b) representative PL spectra (λexc = 400 nm for all but 350 nm for CsPbCl3 samples); (c) typical optical absorption and PL spectra; (d) time-resolved PL decays for all samples shown in (c) except CsPbCl3.

    Figure 3

    Figure 3. (a) Quantum-size effects in the absorption and emission spectra of 5–12 nm CsPbBr3 NCs. (b) Experimental versus theoretical (effective mass approximation, EMA) size dependence of the band gap energy.

    Figure 4

    Figure 4. (a) Emission from CsPbX3 NCs (black data points) plotted on CEI chromaticity coordinates and compared to most common color standards (LCD TV, dashed white triangle, and NTSC TV, solid white triangle). Radiant Imaging Color Calculator software from Radiant Zemax (http://www.radiantzemax.com) was used to map the colors. (b) Photograph (λexc = 365 nm) of highly luminescent CsPbX3 NCs-PMMA polymer monoliths obtained with Irgacure 819 as photoinitiator for polymerization.

  • References


    This article references 42 other publications.

    1. 1
      Talapin, D. V.; Lee, J.-S.; Kovalenko, M. V.; Shevchenko, E. V. Chem. Rev. 2009, 110, 389 458
    2. 2
      Lan, X.; Masala, S.; Sargent, E. H. Nat. Mater. 2014, 13, 233 240
    3. 3
      Hetsch, F.; Zhao, N.; Kershaw, S. V.; Rogach, A. L. Mater. Today 2013, 16, 312 325
    4. 4
      Shirasaki, Y.; Supran, G. J.; Bawendi, M. G.; Bulovic, V. Nat. Photonics 2013, 7, 13 23
    5. 5
      Chen, O.; Zhao, J.; Chauhan, V. P.; Cui, J.; Wong, C.; Harris, D. K.; Wei, H.; Han, H.-S.; Fukumura, D.; Jain, R. K.; Bawendi, M. G. Nat. Mater. 2013, 12, 445 451
    6. 6
      Murray, C. B.; Norris, D. J.; Bawendi, M. G. J. Am. Chem. Soc. 1993, 115, 8706 8715
    7. 7
      Aldakov, D.; Lefrancois, A.; Reiss, P. J. Mater. Chem. C 2013, 1, 3756 3776
    8. 8
      Fan, F.-J.; Wu, L.; Yu, S.-H. Energy Environ. Sci. 2014, 7, 190 208
    9. 9
      Yu, X.; Shavel, A.; An, X.; Luo, Z.; Ibáñez, M.; Cabot, A. J. Am. Chem. Soc. 2014, 136, 9236 9239
    10. 10
      Gratzel, M. Nat. Mater. 2014, 13, 838 842
    11. 11
      Green, M. A.; Ho-Baillie, A.; Snaith, H. J. Nat. Photonics 2014, 8, 506 514
    12. 12
      Park, N.-G. J. Phys. Chem. Lett. 2013, 4, 2423 2429
    13. 13
      Zhou, H.; Chen, Q.; Li, G.; Luo, S.; Song, T.-b.; Duan, H.-S.; Hong, Z.; You, J.; Liu, Y.; Yang, Y. Science 2014, 345, 542 546
    14. 14
      Chung, I.; Lee, B.; He, J.; Chang, R. P. H.; Kanatzidis, M. G. Nature 2012, 485, 486 489
    15. 15
      Moller, C. K. Nature 1958, 182, 1436 1436
    16. 16
      Sharma, S.; Weiden, N.; Weiss, A. Z. Phys. Chem. 1992, 175, 63 80
    17. 17
      Trots, D. M.; Myagkota, S. V. J. Phys. Chem. Solids 2008, 69, 2520 2526
    18. 18
      Stoumpos, C. C.; Malliakas, C. D.; Kanatzidis, M. G. Inorg. Chem. 2013, 52, 9019 9038
    19. 19
      Babin, V.; Fabeni, P.; Nikl, M.; Nitsch, K.; Pazzi, G. P.; Zazubovich, S. Phys. Status Solidi B 2001, 226, 419 428
    20. 20
      Christodoulou, S.; Vaccaro, G.; Pinchetti, V.; De Donato, F.; Grim, J. Q.; Casu, A.; Genovese, A.; Vicidomini, G.; Diaspro, A.; Brovelli, S.; Manna, L.; Moreels, I. J. Mater. Chem. C 2014, 2, 3439 3447
    21. 21
      Wehrenfennig, C.; Liu, M.; Snaith, H. J.; Johnston, M. B.; Herz, L. M. J. Phys. Chem. Lett. 2014, 5, 1300 1306
    22. 22
      Zhang, M.; Yu, H.; Lyu, M.; Wang, Q.; Yun, J.-H.; Wang, L. Chem. Commun. 2014, 50, 11727 11730
    23. 23
      Xing, G.; Mathews, N.; Lim, S. S.; Yantara, N.; Liu, X.; Sabba, D.; Grätzel, M.; Mhaisalkar, S.; Sum, T. C. Nat. Mater. 2014, 13, 476 480
    24. 24
      Deschler, F.; Price, M.; Pathak, S.; Klintberg, L. E.; Jarausch, D.-D.; Higler, R.; Hüttner, S.; Leijtens, T.; Stranks, S. D.; Snaith, H. J.; Atatüre, M.; Phillips, R. T.; Friend, R. H. J. Phys. Chem. Lett. 2014, 5, 1421 1426
    25. 25
      Tan, Z.-K.; Moghaddam, R. S.; Lai, M. L.; Docampo, P.; Higler, R.; Deschler, F.; Price, M.; Sadhanala, A.; Pazos, L. M.; Credgington, D.; Hanusch, F.; Bein, T.; Snaith, H. J.; Friend, R. H. Nat. Nanotechnol. 2014, 9, 687 692
    26. 26
      Ueng, H. Y.; Hwang, H. L. J. Phys. Chem. Solids 1989, 50, 1297 1305
    27. 27
      Huang, L.; Zhu, X.; Publicover, N. G.; Hunter, K. W.; Ahmadiantehrani, M.; de Bettencourt-Dias, A.; Bell, T. W. J. Nanopart. Res. 2013, 15, 2056
    28. 28
      De Trizio, L.; Prato, M.; Genovese, A.; Casu, A.; Povia, M.; Simonutti, R.; Alcocer, M. J. P.; D’Andrea, C.; Tassone, F.; Manna, L. Chem. Mater. 2012, 24, 2400 2406
    29. 29
      Zhang, W.; Zhong, X. Inorg. Chem. 2011, 50, 4065 4072
    30. 30
      Kresse, G.; Joubert, D. Phys. Rev. B 1999, 59, 1758
    31. 31
      Baroni, S.; de Gironcoli, S.; Dal Corso, A.; Giannozzi, P. Rev. Mod. Phys. 2001, 73, 515
    32. 32
      Yu, P. Y.; Cardona, M. Fundamentals of Semiconductors; Springer: New York, 1996.
    33. 33
      Even, J.; Pedesseau, L.; Katan, C. J. Phys. Chem. C 2014, 118, 11566 11572
    34. 34
      Frost, J. M.; Butler, K. T.; Brivio, F.; Hendon, C. H.; van Schilfgaarde, M.; Walsh, A. Nano Lett. 2014, 14, 2584 2590
    35. 35
      Menéndez-Proupin, E.; Palacios, P.; Wahnón, P.; Conesa, J. Phys. Rev. B 2014, 90, 045207
    36. 36
      Saba, M.; Cadelano, M.; Marongiu, D.; Chen, F.; Sarritzu, V.; Sestu, N.; Figus, C.; Aresti, M.; Piras, R.; Geddo Lehmann, A.; Cannas, C.; Musinu, A.; Quochi, F.; Mura, A.; Bongiovanni, G. Nat. Commun. 2014, 5, 5049
    37. 37
      Kim, T.-H.; Jun, S.; Cho, K.-S.; Choi, B. L.; Jang, E. MRS Bull. 2013, 38, 712 720
    38. 38
      Supran, G. J.; Shirasaki, Y.; Song, K. W.; Caruge, J.-M.; Kazlas, P. T.; Coe-Sullivan, S.; Andrew, T. L.; Bawendi, M. G.; Bulović, V. MRS Bull. 2013, 38, 703 711
    39. 39
      Ye, S.; Xiao, F.; Pan, Y. X.; Ma, Y. Y.; Zhang, Q. Y. Mater. Sci. Eng. R 2010, 71, 1 34
    40. 40
      Bomm, J.; Buechtemann, A.; Chatten, A. J.; Bose, R.; Farrell, D. J.; Chan, N. L. A.; Xiao, Y.; Slooff, L. H.; Meyer, T.; Meyer, A.; van Sark, W. G. J. H. M.; Koole, R. Sol. Energy Mater. Sol. Cells 2011, 95, 2087 2094
    41. 41
      Meinardi, F.; Colombo, A.; Velizhanin, K. A.; Simonutti, R.; Lorenzon, M.; Beverina, L.; Viswanatha, R.; Klimov, V. I.; Brovelli, S. Nat. Photonics 2014, 8, 392 399
    42. 42
      Gruetzmacher, H.; Geier, J.; Stein, D.; Ott, T.; Schoenberg, H.; Sommerlade, R. H.; Boulmaaz, S.; Wolf, J.-P.; Murer, P.; Ulrich, T. Chimia 2008, 62, 18 22
  • Supporting Information

    Supporting Information


    Synthesis details, calculations, and additional figures. This material is available free of charge via the Internet at http://pubs.acs.org.


    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.