ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut

View Author Information
Institute of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1, CH-8093 Zürich, Switzerland
Laboratory for Thin Films and Photovoltaics, Empa − Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
§ Centre for Sustainable Chemical Technologies and Department of Chemistry, University of Bath, Bath BA2 7AY, United Kingdom
Cite this: Nano Lett. 2015, 15, 6, 3692–3696
Publication Date (Web):January 29, 2015
https://doi.org/10.1021/nl5048779

Copyright © 2015 American Chemical Society. This publication is licensed under these Terms of Use.

  • Open Access
  • Editors Choice

Article Views

226464

Altmetric

-

Citations

LEARN ABOUT THESE METRICS
PDF (5 MB)
Supporting Info (2)»

Abstract

Metal halides perovskites, such as hybrid organic–inorganic CH3NH3PbI3, are newcomer optoelectronic materials that have attracted enormous attention as solution-deposited absorbing layers in solar cells with power conversion efficiencies reaching 20%. Herein we demonstrate a new avenue for halide perovskites by designing highly luminescent perovskite-based colloidal quantum dot materials. We have synthesized monodisperse colloidal nanocubes (4–15 nm edge lengths) of fully inorganic cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I or mixed halide systems Cl/Br and Br/I) using inexpensive commercial precursors. Through compositional modulations and quantum size-effects, the bandgap energies and emission spectra are readily tunable over the entire visible spectral region of 410–700 nm. The photoluminescence of CsPbX3 nanocrystals is characterized by narrow emission line-widths of 12–42 nm, wide color gamut covering up to 140% of the NTSC color standard, high quantum yields of up to 90%, and radiative lifetimes in the range of 1–29 ns. The compelling combination of enhanced optical properties and chemical robustness makes CsPbX3 nanocrystals appealing for optoelectronic applications, particularly for blue and green spectral regions (410–530 nm), where typical metal chalcogenide-based quantum dots suffer from photodegradation.

Note Added After ASAP Publication

ARTICLE SECTIONS
Jump To

This paper was published on the Web on February 2, 2015. The discussion of the preparation of Cs-oleate and synthesis of CsPbX3 NCs in the Supporting Information has been corrected, and the paper was reposted on April 14, 2015.

Colloidal semiconductor nanocrystals (NCs, typically 2–20 nm large), also known as nanocrystal quantum dots (QDs), are being studied intensively as future optoelectronic materials. (1-4) These QD materials feature a very favorable combination of quantum-size effects, enhancing their optical properties with respect to their bulk counterparts, versatile surface chemistry, and a “free” colloidal state, allowing their dispersion into a variety of solvents and matrices and eventual incorporation into various devices. To date, the best developed optoelectronic NCs in terms of size, shape, and composition are binary and multinary (ternary, quaternary) metal chalcogenide NCs. (1, 5-9) In contrast, the potential of semiconducting metal halides in the form of colloidal NCs remains rather unexplored. In this regard, recent reports on highly efficient photovoltaic devices with certified power conversion efficiencies approaching 20% using hybrid organic–inorganic lead halides MAPbX3 (MA = CH3NH3, X = Cl, Br, and I) as semiconducting absorber layers are highly encouraging. (10-14)
In this study, we turn readers’ attention to a closely related family of materials: all-inorganic cesium lead halide perovskites (CsPbX3, X = Cl, Br, I, and mixed Cl/Br and Br/I systems; isostructural to perovskite CaTiO3 and related oxides). These ternary compounds are far less soluble in common solvents (contrary to MAPbX3), which is a shortcoming for direct solution processing but a necessary attribute for obtaining these compounds in the form of colloidal NCs. Although the synthesis, crystallography, and photoconductivity of direct bandgap CsPbX3 have been reported more than 50 years ago, (15) they have never been explored in the form of colloidal nanomaterials.
Here we report a facile colloidal synthesis of monodisperse, 4–15 nm CsPbX3 NCs with cubic shape and cubic perovskite crystal structure. CsPbX3 NCs exhibit not only compositional bandgap engineering, but owing to the exciton Bohr diameter of up to 12 nm, also exhibit size-tunability of their bandgap energies through the entire visible spectral region of 410–700 nm. Photoluminescence (PL) of CsPbX3 NCs is characterized by narrow emission line widths of 12–42 nm, high quantum yields of 50–90%, and short radiative lifetimes of 1–29 ns.

Figure 1

Figure 1. Monodisperse CsPbX3 NCs and their structural characterization. (a) Schematic of the cubic perovskite lattice; (b,c) typical transmission electron microscopy (TEM) images of CsPbBr3 NCs; (d) X-ray diffraction patterns for typical ternary and mixed-halide NCs.

Synthesis of Monodisperse CsPbX3 NCs

Our solution-phase synthesis of monodisperse CsPbX3 NCs (Figure 1) takes advantage of the ionic nature of the chemical bonding in these compounds. Controlled arrested precipitation of Cs+, Pb2+, and X ions into CsPbX3 NCs is obtained by reacting Cs-oleate with a Pb(II)-halide in a high boiling solvent (octadecene) at 140–200 °C (for details, see the Supporting Information). A 1:1 mixture of oleylamine and oleic acid are added into octadecene to solubilize PbX2 and to colloidally stabilize the NCs. As one would expect for an ionic metathesis reaction, the nucleation and growth kinetics are very fast. In situ PL measurements with a CCD-array detector (Supporting Information Figure S1) indicate that the majority of growth occurs within the first 1–3 s (faster for heavier halides). Consequently, the size of CsPbX3 NCs can be most conveniently tuned in the range of 4–15 nm by the reaction temperature (140–200 °C) rather than by the growth time. Mixed-halide perovskites, that is, CsPb(Cl/Br)3 and CsPb(Br/I)3, can be readily produced by combining appropriate ratios of PbX2 salts. Note that Cl/I perovskites cannot be obtained due to the large difference in ionic radii, which is in good agreement with the phase diagram for bulk materials. (16) Elemental analyses by energy dispersive X-ray (EDX) spectroscopy and by Ratherford backscattering spectrometry (RBS) confirmed the 1:1:3 atomic ratio for all samples of CsPbX3 NCs, including mixed-halide systems.
CsPbX3 are known to crystallize in orthorhombic, tetragonal, and cubic polymorphs of the perovskite lattice with the cubic phase being the high-temperature state for all compounds. (16-18) Interestingly, we find that all CsPbX3 NCs crystallize in the cubic phase (Figure 1d), which can be attributed to the combined effect of the high synthesis temperature and contributions from the surface energy. For CsPbI3 NCs, this is very much a metastable state, because bulk material converts into cubic polymorph only above 315 °C. At room temperature, an exclusively PL-inactive orthorhombic phase has been reported for bulk CsPbI3 (a yellow phase). (16-19) Our first-principles total energy calculations (density functional theory, Figure S2, Table S1 in Supporting Information) confirm the bulk cubic CsPbI3 phase to have 17 kJ/mol higher internal energy than the orthorhombic polymorph (7 kJ/mol difference for CsPbBr3). Weak emission centered at ∼710 nm has been observed from melt-spun bulk CsPbI3, shortly before recrystallization into the yellow phase. (18) Similarly, our solution synthesis of CsPbI3 at 305 °C yields cubic-phase 100–200 nm NCs with weak, short-lived emission at 714 nm (1.74 eV), highlighting the importance of size reduction for stabilizing the cubic phase and indicating that all CsPbI3 NCs in Figure 2b (5–15 nm in size) exhibit quantum-size effects (i.e., higher band gap energies due to quantum confinement, as discussed below). Cubic 4–15 nm CsPbI3 NCs recrystallize into the yellow phase only upon extended storage (months), whereas all other compositions of CsPbX3 NCs appear fully stable in a cubic phase.

Figure 2

Figure 2. Colloidal perovskite CsPbX3 NCs (X = Cl, Br, I) exhibit size- and composition-tunable bandgap energies covering the entire visible spectral region with narrow and bright emission: (a) colloidal solutions in toluene under UV lamp (λ = 365 nm); (b) representative PL spectra (λexc = 400 nm for all but 350 nm for CsPbCl3 samples); (c) typical optical absorption and PL spectra; (d) time-resolved PL decays for all samples shown in (c) except CsPbCl3.

Optical Properties of Colloidal CsPbX3 NCs

Optical absorption and emission spectra of colloidal CsPbX3 NCs (Figure 2b,c) can be tuned over the entire visible spectral region by adjusting their composition (ratio of halides in mixed halide NCs) and particle size (quantum-size effects). Remarkably bright PL of all NCs is characterized by high QY of 50–90% and narrow emission line widths of 12–42 nm. The combination of these two characteristics had been previously achieved only for core–shell chalcogenide-based QDs such as CdSe/CdS due to the narrow size distributions of the luminescent CdSe cores, combined with an epitaxially grown, electronically passivating CdS shell. (5, 20) Time-resolved photoluminescence decays of CsPbX3 NCs (Figure 2d) indicate radiative lifetimes in the range of 1–29 ns with faster emission for wider-gap NCs. For comparison, decay times of several 100 ns are typically observed in MAPbI3 (PL peak at 765 nm, fwhm = 50 nm) (21) and 40–400 ns for MAPbBr3–xClx (x = 0.6–2). (22)
Very bright emission of CsPbX3 NCs indicates that contrary to uncoated chalcogenide NCs surface dangling bonds do not impart severe midgap trap states. This observation is also in good agreement with the high photophysical quality of hybrid organic–inorganic perovskites (MAPbX3), despite their low-temperature solution-processing, which is generally considered to cause a high density of structural defects and trap states. In particular, thin-films of MAPbX3 exhibit relatively high PL QYs of 20–40% at room temperature (23, 24) and afford inexpensive photovoltaic devices approaching 20% in power conversion efficiency (10-12) and also electrically driven light-emitting devices. (25)
Ternary CsPbX3 NCs compare favorably to common multinary chalcogenide NCs: both ternary (CuInS2, CuInSe2, AgInS2, and AgInSe2) and quaternary (CuZnSnS2 and similar) compounds. CsPbX3 materials are highly ionic and thus are rather stoichiometric and ordered due to the distinct size and charge of the Cs and Pb ions. This is different from multinary chalcogenide materials that exhibit significant disorder and inhomogeneity in the distribution of cations and anions owing to little difference between the different cationic and anionic sites (all are essentially tetrahedral). In addition, considerable stoichiometric deviations lead to a large density of donor–acceptor states due to various point defects (vacancies, interstitials, etc.) within the band gap, both shallow and deep. These effects eventually lead to absent or weak and broad emission spectra and long multiexponent lifetimes. (7, 26-29)

Figure 3

Figure 3. (a) Quantum-size effects in the absorption and emission spectra of 5–12 nm CsPbBr3 NCs. (b) Experimental versus theoretical (effective mass approximation, EMA) size dependence of the band gap energy.

For a colloidal semiconductor NC to exhibit quantum-dot-like properties (shown in Figures 2b and 3), the NC diameter must be comparable or smaller than that of the natural delocalization lengths of an exciton in a bulk semiconductor (i.e., the exciton Bohr diameter, a0). The electronic structure of CsPbX3 (X = Cl, Br, and I), including scalar relativistic and spin–orbit interactions, was calculated using VASP code (30) and confirms that the upper valence band is formed predominately by the halide p-orbitals and the lower conduction band is formed by the overlap of the Pb p-orbitals (Figures S3 and S4 and Tables S2 and S3 in Supporting Information). Effective masses of the electrons and holes were estimated from the band dispersion, while the high-frequency dielectric constants were calculated by using density functional perturbation theory. (31) Within the effective mass approximation (EMA), (32) we have estimated the effective Bohr diameters of Wannier–Mott excitons and the binding energies for CsPbCl3 (5 nm, 75 meV), CsPbBr3 (7 nm, 40 meV), and CsPbI3 (12 nm, 20 meV). Similarly, in closely related hybrid perovskite MAPbI3 small exciton binding energies of ≤25 meV have been suggested computationally (33-35) and found experimentally. (36) For comparison, the typical exciton binding energies in organic semiconductors are above 100 meV. The confinement energy (ΔE = ℏ2π2/2m*r2, where r is the particle radius and m* is the reduced mass of the exciton) provides an estimate for the blue shift of the emission peak and absorption edge and is in good agreement with the experimental observations (Figure 3b).

Figure 4

Figure 4. (a) Emission from CsPbX3 NCs (black data points) plotted on CEI chromaticity coordinates and compared to most common color standards (LCD TV, dashed white triangle, and NTSC TV, solid white triangle). Radiant Imaging Color Calculator software from Radiant Zemax (http://www.radiantzemax.com) was used to map the colors. (b) Photograph (λexc = 365 nm) of highly luminescent CsPbX3 NCs-PMMA polymer monoliths obtained with Irgacure 819 as photoinitiator for polymerization.

Recently, highly luminescent semiconductor NCs based on Cd-chalcogenides have inspired innovative optoelectronic applications such as color-conversion LEDs, color-enhancers in backlight applications (e.g., Sony’s 2013 Triluminos LCD displays), and solid-state lighting. (4, 37, 38) Compared to conventional rare-earth phosphors or organic polymers and dyes, NCs often show superior quantum efficiency and narrower PL spectra with fine-size tuning of the emission peaks and hence can produce saturated colors. A CIE chromaticity diagram (introduced by the Commision Internationale de l’Eclairage) (39) allows the comparison of the quality of colors by mapping colors visible to the human eye in terms of hue and saturation. For instance, well-optimized core–shell CdSe-based NCs cover ≥100% of the NTSC TV color standard (introduced in 1951 by the National Television System Committee). (39) Figure 4a shows that CsPbX3 NCs allow a wide gamut of pure colors as well. Namely, a selected triangle of red, green, and blue emitting CsPbX3 NCs encompasses 140% of the NTSC standard, extending mainly into red and green regions.
Light-emission applications, discussed above, and also luminescent solar concentrators (40, 41) require solution-processability and miscibility of NC-emitters with organic and inorganic matrix materials. To demonstrate such robustness for CsPbX3 NCs, we embedded them into poly(methylmetacrylate) (PMMA), yielding composites of excellent optical clarity and with bright emission (Figure 4b). To accomplish this, CsPbX3 NCs were first dispersed in a liquid monomer (methylmetacrylate, MMA) as a solvent. Besides using known heat-induced polymerization with radical initiators, (41) we also performed polymerization already at room-temperature by adding a photoinitiator Irgacure 819 (bis(2,4,6-trimethylbenzoyl)-phenylphosphineoxide), (42) followed by 1h of UV-curing. We find that the presence of CsPbX3 NCs increases the rate of photopolymerization, compared to a control experiment with pure MMA. This can be explained by the fact that the luminescence from CsPbX3 NCs may be reabsorbed by the photoinitiator that has a strong absorption band in the visible spectral region, increasing the rate of polymerization.

Conclusions

In summary, we have presented highly luminescent colloidal CsPbX3 NCs (X = Cl, Br, I, and mixed Cl/Br and Br/I systems) with bright (QY = 50–90%), stable, spectrally narrow, and broadly tunable photoluminescence. Particularly appealing are highly stable blue and green emitting CsPbX3 NCs (410–530 nm), because the corresponding metal-chalcogenide QDs show reduced chemical and photostability at these wavelengths. In our ongoing experiments, we find that this simple synthesis methodology is also applicable to other metal halides with related crystal structures (e.g., CsGeI3, Cs3Bi2I9, and Cs2SnI6, to be published elsewhere). Future studies with these novel QD-materials will concentrate on optoelectronic applications such as lasing, light-emitting diodes, photovoltaics, and photon detection.

Supporting Information

ARTICLE SECTIONS
Jump To

Synthesis details, calculations, and additional figures. This material is available free of charge via the Internet at http://pubs.acs.org.

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Author Information

ARTICLE SECTIONS
Jump To

  • Corresponding Author
    • Maksym V. Kovalenko - Institute of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1, CH-8093 Zürich, SwitzerlandLaboratory for Thin Films and Photovoltaics, Empa − Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland Email: [email protected]
  • Authors
    • Loredana Protesescu - Institute of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1, CH-8093 Zürich, SwitzerlandLaboratory for Thin Films and Photovoltaics, Empa − Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
    • Sergii Yakunin - Institute of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1, CH-8093 Zürich, SwitzerlandLaboratory for Thin Films and Photovoltaics, Empa − Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
    • Maryna I. Bodnarchuk - Institute of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1, CH-8093 Zürich, SwitzerlandLaboratory for Thin Films and Photovoltaics, Empa − Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
    • Franziska Krieg - Institute of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1, CH-8093 Zürich, SwitzerlandLaboratory for Thin Films and Photovoltaics, Empa − Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
    • Riccarda Caputo - Institute of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1, CH-8093 Zürich, Switzerland
    • Christopher H. Hendon - Centre for Sustainable Chemical Technologies and Department of Chemistry, University of Bath, Bath BA2 7AY, United Kingdom
    • Ruo Xi Yang - Centre for Sustainable Chemical Technologies and Department of Chemistry, University of Bath, Bath BA2 7AY, United Kingdom
    • Aron Walsh - Centre for Sustainable Chemical Technologies and Department of Chemistry, University of Bath, Bath BA2 7AY, United Kingdom
  • Notes
    The authors declare no competing financial interest.

Acknowledgment

ARTICLE SECTIONS
Jump To

This work was financially supported by the European Research Council (ERC) via Starting Grant (306733). The work at Bath was supported by the ERC Starting Grant (277757) and by the EPSRC (Grants EP/M009580/1 and EP/K016288/1). Calculations at Bath were performed on ARCHER via the U.K.’s HPC Materials Chemistry Consortium (Grant EP/L000202). Calculations at ETH Zürich were performed on the central HPC cluster BRUTUS. We thank Nadia Schwitz for a help with photography, Professor Dr. H. Grützmacher and Dr. G. Müller for a sample of Irgacure 819 photoinitiator, Dr. F. Krumeich for EDX measurements, Dr. M. Döbeli for RBS measurements (ETH Laboratory of Ion Beam Physics), and Dr. N. Stadie for reading the manuscript. We gratefully acknowledge the support of the Electron Microscopy Center at Empa and the Scientific Center for Optical and Electron Microscopy (ScopeM) at ETH Zürich.

References

ARTICLE SECTIONS
Jump To

This article references 42 other publications.

  1. 1
    Talapin, D. V.; Lee, J.-S.; Kovalenko, M. V.; Shevchenko, E. V. Chem. Rev. 2009, 110, 389 458
  2. 2
    Lan, X.; Masala, S.; Sargent, E. H. Nat. Mater. 2014, 13, 233 240
  3. 3
    Hetsch, F.; Zhao, N.; Kershaw, S. V.; Rogach, A. L. Mater. Today 2013, 16, 312 325
  4. 4
    Shirasaki, Y.; Supran, G. J.; Bawendi, M. G.; Bulovic, V. Nat. Photonics 2013, 7, 13 23
  5. 5
    Chen, O.; Zhao, J.; Chauhan, V. P.; Cui, J.; Wong, C.; Harris, D. K.; Wei, H.; Han, H.-S.; Fukumura, D.; Jain, R. K.; Bawendi, M. G. Nat. Mater. 2013, 12, 445 451
  6. 6
    Murray, C. B.; Norris, D. J.; Bawendi, M. G. J. Am. Chem. Soc. 1993, 115, 8706 8715
  7. 7
    Aldakov, D.; Lefrancois, A.; Reiss, P. J. Mater. Chem. C 2013, 1, 3756 3776
  8. 8
    Fan, F.-J.; Wu, L.; Yu, S.-H. Energy Environ. Sci. 2014, 7, 190 208
  9. 9
    Yu, X.; Shavel, A.; An, X.; Luo, Z.; Ibáñez, M.; Cabot, A. J. Am. Chem. Soc. 2014, 136, 9236 9239
  10. 10
    Gratzel, M. Nat. Mater. 2014, 13, 838 842
  11. 11
    Green, M. A.; Ho-Baillie, A.; Snaith, H. J. Nat. Photonics 2014, 8, 506 514
  12. 12
    Park, N.-G. J. Phys. Chem. Lett. 2013, 4, 2423 2429
  13. 13
    Zhou, H.; Chen, Q.; Li, G.; Luo, S.; Song, T.-b.; Duan, H.-S.; Hong, Z.; You, J.; Liu, Y.; Yang, Y. Science 2014, 345, 542 546
  14. 14
    Chung, I.; Lee, B.; He, J.; Chang, R. P. H.; Kanatzidis, M. G. Nature 2012, 485, 486 489
  15. 15
    Moller, C. K. Nature 1958, 182, 1436 1436
  16. 16
    Sharma, S.; Weiden, N.; Weiss, A. Z. Phys. Chem. 1992, 175, 63 80
  17. 17
    Trots, D. M.; Myagkota, S. V. J. Phys. Chem. Solids 2008, 69, 2520 2526
  18. 18
    Stoumpos, C. C.; Malliakas, C. D.; Kanatzidis, M. G. Inorg. Chem. 2013, 52, 9019 9038
  19. 19
    Babin, V.; Fabeni, P.; Nikl, M.; Nitsch, K.; Pazzi, G. P.; Zazubovich, S. Phys. Status Solidi B 2001, 226, 419 428
  20. 20
    Christodoulou, S.; Vaccaro, G.; Pinchetti, V.; De Donato, F.; Grim, J. Q.; Casu, A.; Genovese, A.; Vicidomini, G.; Diaspro, A.; Brovelli, S.; Manna, L.; Moreels, I. J. Mater. Chem. C 2014, 2, 3439 3447
  21. 21
    Wehrenfennig, C.; Liu, M.; Snaith, H. J.; Johnston, M. B.; Herz, L. M. J. Phys. Chem. Lett. 2014, 5, 1300 1306
  22. 22
    Zhang, M.; Yu, H.; Lyu, M.; Wang, Q.; Yun, J.-H.; Wang, L. Chem. Commun. 2014, 50, 11727 11730
  23. 23
    Xing, G.; Mathews, N.; Lim, S. S.; Yantara, N.; Liu, X.; Sabba, D.; Grätzel, M.; Mhaisalkar, S.; Sum, T. C. Nat. Mater. 2014, 13, 476 480
  24. 24
    Deschler, F.; Price, M.; Pathak, S.; Klintberg, L. E.; Jarausch, D.-D.; Higler, R.; Hüttner, S.; Leijtens, T.; Stranks, S. D.; Snaith, H. J.; Atatüre, M.; Phillips, R. T.; Friend, R. H. J. Phys. Chem. Lett. 2014, 5, 1421 1426
  25. 25
    Tan, Z.-K.; Moghaddam, R. S.; Lai, M. L.; Docampo, P.; Higler, R.; Deschler, F.; Price, M.; Sadhanala, A.; Pazos, L. M.; Credgington, D.; Hanusch, F.; Bein, T.; Snaith, H. J.; Friend, R. H. Nat. Nanotechnol. 2014, 9, 687 692
  26. 26
    Ueng, H. Y.; Hwang, H. L. J. Phys. Chem. Solids 1989, 50, 1297 1305
  27. 27
    Huang, L.; Zhu, X.; Publicover, N. G.; Hunter, K. W.; Ahmadiantehrani, M.; de Bettencourt-Dias, A.; Bell, T. W. J. Nanopart. Res. 2013, 15, 2056
  28. 28
    De Trizio, L.; Prato, M.; Genovese, A.; Casu, A.; Povia, M.; Simonutti, R.; Alcocer, M. J. P.; D’Andrea, C.; Tassone, F.; Manna, L. Chem. Mater. 2012, 24, 2400 2406
  29. 29
    Zhang, W.; Zhong, X. Inorg. Chem. 2011, 50, 4065 4072
  30. 30
    Kresse, G.; Joubert, D. Phys. Rev. B 1999, 59, 1758
  31. 31
    Baroni, S.; de Gironcoli, S.; Dal Corso, A.; Giannozzi, P. Rev. Mod. Phys. 2001, 73, 515
  32. 32
    Yu, P. Y.; Cardona, M. Fundamentals of Semiconductors; Springer: New York, 1996.
  33. 33
    Even, J.; Pedesseau, L.; Katan, C. J. Phys. Chem. C 2014, 118, 11566 11572
  34. 34
    Frost, J. M.; Butler, K. T.; Brivio, F.; Hendon, C. H.; van Schilfgaarde, M.; Walsh, A. Nano Lett. 2014, 14, 2584 2590
  35. 35
    Menéndez-Proupin, E.; Palacios, P.; Wahnón, P.; Conesa, J. Phys. Rev. B 2014, 90, 045207
  36. 36
    Saba, M.; Cadelano, M.; Marongiu, D.; Chen, F.; Sarritzu, V.; Sestu, N.; Figus, C.; Aresti, M.; Piras, R.; Geddo Lehmann, A.; Cannas, C.; Musinu, A.; Quochi, F.; Mura, A.; Bongiovanni, G. Nat. Commun. 2014, 5, 5049
  37. 37
    Kim, T.-H.; Jun, S.; Cho, K.-S.; Choi, B. L.; Jang, E. MRS Bull. 2013, 38, 712 720
  38. 38
    Supran, G. J.; Shirasaki, Y.; Song, K. W.; Caruge, J.-M.; Kazlas, P. T.; Coe-Sullivan, S.; Andrew, T. L.; Bawendi, M. G.; Bulović, V. MRS Bull. 2013, 38, 703 711
  39. 39
    Ye, S.; Xiao, F.; Pan, Y. X.; Ma, Y. Y.; Zhang, Q. Y. Mater. Sci. Eng. R 2010, 71, 1 34
  40. 40
    Bomm, J.; Buechtemann, A.; Chatten, A. J.; Bose, R.; Farrell, D. J.; Chan, N. L. A.; Xiao, Y.; Slooff, L. H.; Meyer, T.; Meyer, A.; van Sark, W. G. J. H. M.; Koole, R. Sol. Energy Mater. Sol. Cells 2011, 95, 2087 2094
  41. 41
    Meinardi, F.; Colombo, A.; Velizhanin, K. A.; Simonutti, R.; Lorenzon, M.; Beverina, L.; Viswanatha, R.; Klimov, V. I.; Brovelli, S. Nat. Photonics 2014, 8, 392 399
  42. 42
    Gruetzmacher, H.; Geier, J.; Stein, D.; Ott, T.; Schoenberg, H.; Sommerlade, R. H.; Boulmaaz, S.; Wolf, J.-P.; Murer, P.; Ulrich, T. Chimia 2008, 62, 18 22

Cited By

ARTICLE SECTIONS
Jump To

This article is cited by 6580 publications.

  1. Avijit Pramanik, Olorunsola Praise Kolawole, Sanchita Kundu, Kaelin Gates, Shivangee Rai, Christen Robinson, Paresh Chandra Ray. Dimension and Thickness Control Synthesis of Strongly Confined Cesium Lead Iodide Perovskites with Excellent Two-Photon Absorption Properties. ACS Applied Optical Materials 2024, 2 (2) , 301-312. https://doi.org/10.1021/acsaom.3c00412
  2. Juan Casanova-Chafer, Rocio Garcia-Aboal, Eduard Llobet, Pedro Atienzar. Enhanced CO2 Sensing by Oxygen Plasma-Treated Perovskite–Graphene Nanocomposites. ACS Sensors 2024, 9 (2) , 830-839. https://doi.org/10.1021/acssensors.3c02166
  3. Juanjuan Xue, Danyang Chen, Huamei Zhang, Li Guo, Pengcui Li, Dan Han, Xing Guo, Qianqian Duan, Shengbo Sang. Highly Stable and Biocompatible CsPbBr3 Nanocrystals Synthesized by Different Methods for Bioimaging Applications. ACS Applied Nano Materials 2024, 7 (4) , 3997-4007. https://doi.org/10.1021/acsanm.3c05605
  4. Tian Chen, Xue-Chen Ru, Zhen-Yu Ma, Li-Zhe Feng, Kuang-Hui Song, Jing Ge, Bai-Sheng Zhu, Jun-Nan Yang, Hong-Bin Yao. Tetrafluoroborate-Passivated CsPbBrxCl3–x Nanocrystals for Spectrally Stable Pure Blue Perovskite Light-Emitting Diodes. ACS Applied Nano Materials 2024, 7 (4) , 4474-4480. https://doi.org/10.1021/acsanm.3c06211
  5. Mike Pols, Adri C. T. van Duin, Sofía Calero, Shuxia Tao. Mixing I and Br in Inorganic Perovskites: Atomistic Insights from Reactive Molecular Dynamics Simulations. The Journal of Physical Chemistry C 2024, Article ASAP.
  6. Yifeng Feng, Meiyi Zhu, Qingli Cao, Hongjin Li, Xiaofang Zhu, Xinyi Lyu, Xingliang Dai, Haiping He, Zhizhen Ye. p-π Conjugated L-Type Ligand for Pure-Red Perovskite Light-Emitting Diodes. ACS Energy Letters 2024, Article ASAP.
  7. David R. Graupner, Dmitri S. Kilin. Nonadiabatic Dynamics in Two-Dimensional Perovskites Assisted by Machine Learned Force Fields. The Journal of Physical Chemistry C 2024, Article ASAP.
  8. Chenyu Zhao, Claudio Cazorla, Xuliang Zhang, Hehe Huang, Xinyu Zhao, Du Li, Junwei Shi, Qian Zhao, Wanli Ma, Jianyu Yuan. Fast Organic Cation Exchange in Colloidal Perovskite Quantum Dots toward Functional Optoelectronic Applications. Journal of the American Chemical Society 2024, 146 (7) , 4913-4921. https://doi.org/10.1021/jacs.3c14000
  9. Yuechun Li, Zhaowen Cui, Longhua Shi, Jinrui Shan, Wentao Zhang, Yanru Wang, Yanwei Ji, Daohong Zhang, Jianlong Wang. Perovskite Nanocrystals: Superior Luminogens for Food Quality Detection Analysis. Journal of Agricultural and Food Chemistry 2024, Article ASAP.
  10. Kenichi Cho, Takao Sato, Takumi Yamada, Ryota Sato, Masaki Saruyama, Toshiharu Teranishi, Hidekatsu Suzuura, Yoshihiko Kanemitsu. Size Dependence of Trion and Biexciton Binding Energies in Lead Halide Perovskite Nanocrystals. ACS Nano 2024, 18 (7) , 5723-5729. https://doi.org/10.1021/acsnano.3c11842
  11. Maryna I. Bodnarchuk, Leon G. Feld, Chenglian Zhu, Simon C. Boehme, Federica Bertolotti, Jonathan Avaro, Marcel Aebli, Showkat Hassan Mir, Norberto Masciocchi, Rolf Erni, Sudip Chakraborty, Antonietta Guagliardi, Gabriele Rainò, Maksym V. Kovalenko. Colloidal Aziridinium Lead Bromide Quantum Dots. ACS Nano 2024, 18 (7) , 5684-5697. https://doi.org/10.1021/acsnano.3c11579
  12. Karayadi H. Fausia, Bijoy Nharangatt, Ramachandran Nair Vinayakan, Analiparambil R. Ramesh, Vijayan Santhi, Kuppathil R. Dhandapani, Thathamkulam Prabhakaran Manoj, Raghu Chatanathodi, Deepthi Jose, Kulangara Sandeep. Probing the Structural Degradation of CsPbBr3 Perovskite Nanocrystals in the Presence of H2O and H2S: How Weak Interactions and HSAB Matter. ACS Omega 2024, 9 (7) , 8417-8424. https://doi.org/10.1021/acsomega.3c09600
  13. Dan Liu, Kangkang Weng, Haifeng Zhao, Song Wang, Hengwei Qiu, Xiyu Luo, Shaoyong Lu, Lian Duan, Sai Bai, Hao Zhang, Jinghong Li. Nondestructive Direct Optical Patterning of Perovskite Nanocrystals with Carbene-Based Ligand Cross-Linkers. ACS Nano 2024, Article ASAP.
  14. Shipei Sun, Peng Huang, Xian-gang Wu, Cuili Chen, Xiangmin Hu, Zelong Bai, Anatoly Pushkarev, Haizheng Zhong. Ligand Exchange-Induced Shape Transformation of CsPbBr3 Nanocrystals Boosts the Efficiency of Perovskite Light-Emitting Diodes. The Journal of Physical Chemistry C 2024, Article ASAP.
  15. Yiying Zhu, Guoxun Sun, Yining Wang, Yixin Sun, Xiaole Xing, Mengmeng Shang. Multiwavelength Excitation in Ho3+-Doped All-Inorganic Double Perovskites Achieved by Codoping Mn2+ for Warm-White LEDs and Plant Growth. Inorganic Chemistry 2024, Article ASAP.
  16. Muhammad Munir, Ramis Arbi, Jinglan Tan, Pedro Oliveira, Seung Il Lee, Markus Clark Scharber, Niyazi Serdar Sariciftci, Fan Xu, Gu Xu, Ayse Turak. Leveraging Bromine-Induced Large Stokes Shift in Pyrrolidinium Perovskite Nanoparticles for Improved Organic Photovoltaic Performance. ACS Applied Nano Materials 2024, Article ASAP.
  17. Zhe Zhang, Feilong Song, Kai-Xuan Xu, Wen-Kai Lou, Kai Chang, Jun Zhang. Single-Mode Surface-Emitting Polariton Lasing with Switchable Polarization in a CsPbBr3 Microwire Folded Fabry–Pérot Cavity. ACS Photonics 2024, Article ASAP.
  18. Dale Xie, Dong Zhong, Zongsong Gan. Direct Lithography of Perovskite Quantum Dots Inside an Organic Transparent Medium. ACS Photonics 2024, Article ASAP.
  19. Nuoya Li, Jin Wang, Guohui Zhao, Jun Du, Yaping Li, Yu Bai, Zhengquan Li, Yujie Xiong. Enabling CsPbBr3 Perovskites for Photocatalytic CO2 Methanation by Rationalizing a Z-Scheme Heterojunction with Zinc Phthalocyanine. ACS Materials Letters 2024, Article ASAP.
  20. Zhiwei Zeng, Yuhan Meng, Zunxian Yang, Yuliang Ye, Qiuxiang Lin, Zongyi Meng, Hongyi Hong, Songwei Ye, Zhiming Cheng, Qianting Lan, Jiaxiang Wang, Ye Chen, Hui Zhang, Yuting Bai, Xudong Jiang, Benfang Liu, Jiajie Hong, Tailiang Guo, Fushan Li, Yongyi Chen, Zhenzhen Weng. Efficient CsPbBr3 Perovskite Light-Emitting Diodes via Novel Multi-Step Ligand Exchange Strategy Based on Zwitterionic Molecules. ACS Applied Materials & Interfaces 2024, Article ASAP.
  21. Yizhao Qing, Bing Han, Runnan Yu, Zhiming Zhou, Guangzheng Wu, Changxiao Li, Peijin Ma, Chengyang Zhang, Zhan’ao Tan. Bright Blue Emission Lead-Free Halides with Narrow Bandwidth Enabled by Oversaturated Europium Doping. The Journal of Physical Chemistry Letters 2024, 15 (6) , 1668-1676. https://doi.org/10.1021/acs.jpclett.3c03526
  22. Sehui Chang, Ja Hoon Koo, Jisu Yoo, Min Seok Kim, Moon Kee Choi, Dae-Hyeong Kim, Young Min Song. Flexible and Stretchable Light-Emitting Diodes and Photodetectors for Human-Centric Optoelectronics. Chemical Reviews 2024, 124 (3) , 768-859. https://doi.org/10.1021/acs.chemrev.3c00548
  23. Radha Rathod, Samadhan Kapse, Dipayan Pal, Manash R. Das, Ranjit Thapa, Pralay K. Santra. Restricting Anion Migrations by Atomic Layer-Deposited Alumina on Perovskite Nanocrystals while Preserving Structural and Optical Properties. Chemistry of Materials 2024, 36 (3) , 1719-1727. https://doi.org/10.1021/acs.chemmater.3c03113
  24. Conglu Ming, Hairong Wang, Zhengrong Zhu, Chenyu Wu, Wencan Qian, Weikai Fan, Jiarun Qi, Huan Chen, Xiaojing Liu, Jiang Wu, Yongfeng Qi. Photovoltaic Performance Study of Cs2SnI6-Based Perovskite Solar Cells with Gradient Structures: First-Principles Calculations and SCAPS Analysis. Energy & Fuels 2024, Article ASAP.
  25. Tejas Dhanalaxmi Raju, Hojin Lee, Vignesh Murugadoss, Pavan Kumar Odugu, Wanqi Ren, Jang Hyuk Kwon, Tae Geun Kim. Understanding the Correlation between the Crystallization Kinetics and Defect Formation in (FA)1.5Cs0.5AgBi(Cl0.75Br0.25)6 Double Perovskites. ACS Energy Letters 2024, 9 (2) , 468-477. https://doi.org/10.1021/acsenergylett.3c02270
  26. Saptarshi Chakraborty, Subham Das, Gauttam Dash, Ranjani Viswanatha. Evolution of Colloidal Plasmonic Heterostructures from Traditional Semiconductor Nanocrystals to Lead Halide Perovskites: A Review. ACS Applied Nano Materials 2024, 7 (3) , 2494-2514. https://doi.org/10.1021/acsanm.3c05141
  27. Je-Ruei Wen, Anna Champ, Giselle Bauer, Matthew T. Sheldon. Chemical and Structural Stability of CsPbX3 Nanorods during Postsynthetic Anion-Exchange: Implications for Optoelectronic Functionality. ACS Applied Nano Materials 2024, 7 (3) , 3024-3031. https://doi.org/10.1021/acsanm.3c05024
  28. Shengyuan Wang, Junyi Zhu. Surface Purification and Compensation of I Interstitial in Quasi-2D CsPbI3. The Journal of Physical Chemistry C 2024, 128 (5) , 2215-2222. https://doi.org/10.1021/acs.jpcc.3c07522
  29. Avijit Patra, Koushik Jagadish, N. Ravishankar, Narayan Pradhan. Epitaxial Heterostructures of CsPbBr3 Perovskite Nanocrystals with Post-transition Metal Bismuth. Nano Letters 2024, 24 (5) , 1710-1716. https://doi.org/10.1021/acs.nanolett.3c04513
  30. Akshaya Chemmangat, Jishnudas Chakkamalayath, Jeffrey T. DuBose, Prashant V. Kamat. Tuning Energy Transfer Pathways in Halide Perovskite–Dye Hybrids through Bandgap Engineering. Journal of the American Chemical Society 2024, 146 (5) , 3352-3362. https://doi.org/10.1021/jacs.3c12630
  31. Wenhu Zhang, Bowen Zheng, Hairui Sun, Pin Lv, Xiaobing Liu. Enhancement and Broadening of the Internal Electric Field of Hole-Transport-Layer-Free Perovskite Solar Cells by Quantum Dot Interface Modification. ACS Applied Materials & Interfaces 2024, 16 (5) , 6665-6673. https://doi.org/10.1021/acsami.3c17432
  32. Tong Cai, Wenwu Shi, Rongzhen Wu, Chun Chu, Na Jin, Junyu Wang, Weiwei Zheng, Xinzhong Wang, Ou Chen. Lanthanide Doping into All-Inorganic Heterometallic Halide Layered Double Perovskite Nanocrystals for Multimodal Visible and Near-Infrared Emission. Journal of the American Chemical Society 2024, 146 (5) , 3200-3209. https://doi.org/10.1021/jacs.3c11164
  33. Joonyun Kim, Young Ho Chu, Jinu Park, Kijoon Bang, Sunggun Yoon, Seoyeon Park, Kitae Park, Jiyoung Kwon, Nakyung Kim, Kyung Tak Yoon, Yunna Kim, Yun Seog Lee, Byungha Shin. Spectrally Stable Deep-Blue Light-Emitting Diodes Based on Layer-Transferred Single-Crystalline Ruddlesden–Popper Halide Perovskites. ACS Applied Materials & Interfaces 2024, 16 (5) , 6274-6283. https://doi.org/10.1021/acsami.3c17911
  34. Xiong Shen, Zhongming Wang, Lin Chen, Jinhe Wei, Qiuyun Ouyang. Enhanced Photoelectric Properties of CsPbBr3 by SiO2 and TiO2 Bilayer Heterostructures. Langmuir 2024, 40 (5) , 2719-2728. https://doi.org/10.1021/acs.langmuir.3c03334
  35. Keqiang Chen, Dan Liu, Weiqi Lu, Kaihuai Zhuo, Guogang Li. Surface and Interface Engineering for Highly Stable CsPbBr3/ZnS Core/Shell Nanocrystals. Inorganic Chemistry 2024, 63 (4) , 2247-2256. https://doi.org/10.1021/acs.inorgchem.3c04210
  36. Pierre Martin, Audrey Potdevin, Geneviève Chadeyron, François Réveret, Damien Boyer. New Antisolvent Precipitation Synthesis of Green-Emitting Lead-Free Zinc-Alloyed Perovskite-Inspired Manganese Halides Cs3Mn1–xZnxBr5. ACS Applied Optical Materials 2024, 2 (1) , 139-148. https://doi.org/10.1021/acsaom.3c00377
  37. Sarjeet Kumar, Akshaykumar Salunke, Santanu Pradhan. Achieving Ultra-Stable, Near-Unity Photoluminescence Quantum Yield Under Extreme Humidity and High Electric Field for CsPbBr3 Nanocrystals Through the Surface Attachment of ZnO Nanoparticles. ACS Applied Optical Materials 2024, 2 (1) , 128-138. https://doi.org/10.1021/acsaom.3c00376
  38. Mengke Wang, Xi Zhang, Lei Liu, Xiaoyu Zhang, Jiahe Yan, Weihua Jin, Peng Zhang, Jun Wang. Stable and Highly Efficient Photocatalysis with Two-Dimensional Organic–Inorganic Hybrid Perovskites. ACS Omega 2024, 9 (3) , 3931-3941. https://doi.org/10.1021/acsomega.3c08356
  39. David O. Tiede, Carlos Romero-Pérez, Katherine A. Koch, K. Burak Ucer, Mauricio E. Calvo, Ajay Ram Srimath Kandada, Juan F. Galisteo-López, Hernán Míguez. Effect of Connectivity on the Carrier Transport and Recombination Dynamics of Perovskite Quantum-Dot Networks. ACS Nano 2024, 18 (3) , 2325-2334. https://doi.org/10.1021/acsnano.3c10239
  40. Qingye Zhang, Feiyu Diao, Yiqian Wang. The Role of Antisolvents with Different Functional Groups in the Formation of Cs4PbBr6 and CsPbBr3 Particles. Inorganic Chemistry 2024, 63 (3) , 1562-1574. https://doi.org/10.1021/acs.inorgchem.3c03398
  41. Sergey S. Anoshkin, Ivan I. Shishkin, Daria I. Markina, Lev S. Logunov, Hilmi Volkan Demir, Andrey L. Rogach, Anatoly P. Pushkarev, Sergey V. Makarov. Photoinduced Transition from Quasi-Two-Dimensional Ruddlesden–Popper to Three-Dimensional Halide Perovskites for the Optical Writing of Multicolor and Light-Erasable Images. The Journal of Physical Chemistry Letters 2024, 15 (2) , 540-548. https://doi.org/10.1021/acs.jpclett.3c03151
  42. Xuefei Li, Liuqing Yang, Chenxu Wang, Shumeng Wang, Junqiao Ding. Bulky Passivation by an Electroactive Phosphonate Dendrimer for High-Performance Perovskite Quantum Dot Light-Emitting Diodes. The Journal of Physical Chemistry C 2024, 128 (2) , 877-884. https://doi.org/10.1021/acs.jpcc.3c05857
  43. Jishnudas Chakkamalayath, Lauren E. Martin, Prashant V. Kamat. Extending Infrared Emission via Energy Transfer in a CsPbI3–Cyanine Dye Hybrid. The Journal of Physical Chemistry Letters 2024, 15 (2) , 401-407. https://doi.org/10.1021/acs.jpclett.3c03144
  44. Ziyad Thekkayil, Shabnum Maqbool, Riteeka Tanwar, Pankaj Mandal. Broadband Tunability of Third Harmonic Upconversion in Pyridinium Lead Halides. ACS Photonics 2024, 11 (1) , 196-203. https://doi.org/10.1021/acsphotonics.3c01279
  45. Bing Chen, Rongrong Yu, Guansheng Xing, Yulong Wang, Wenlong Wang, Ya Chen, Xiuwen Xu, Qiang Zhao. Dielectric Engineering of 2D Organic–Inorganic Hybrid Perovskites. ACS Energy Letters 2024, 9 (1) , 226-242. https://doi.org/10.1021/acsenergylett.3c02069
  46. Mengmeng Hao, Shanshan Ding, Sabah Gaznaghi, Huiyuan Cheng, Lianzhou Wang. Perovskite Quantum Dot Solar Cells: Current Status and Future Outlook. ACS Energy Letters 2024, 9 (1) , 308-322. https://doi.org/10.1021/acsenergylett.3c01983
  47. Deyin Wang, Zifang Hong, Jiacheng Sun, Yuhua Wang. High-Performance In3+-Doped CsPbBr3 Quantum Dots for Wide Color Gamut Backlighting. ACS Applied Nano Materials 2024, 7 (1) , 323-330. https://doi.org/10.1021/acsanm.3c04511
  48. Deepak Yadav, Atif Suhail, Arun Kumar, Mandeep Jangra, Kanhaiya Lal Yadav, Arnab Datta, Monojit Bag. Hysteric Influence of Grain Multiplicity in All-Inorganic Halide Perovskite Nanocrystals. ACS Applied Electronic Materials 2024, Article ASAP.
  49. Chunyin Ye, Yujie Zhou, Jing Ge, Qun Zhang. Mechanistic Insights into the Photoluminescence Enhancement in Surface Ligand Modified CsPbBr3 Perovskite Nanocrystals. The Journal of Physical Chemistry Letters 2024, 15 (1) , 226-233. https://doi.org/10.1021/acs.jpclett.3c03325
  50. Binghang Liu, Song Wang, Xiaofeng Lai, Jiaqi Liu, Kai Pan, Ying Xie. CsPbBr3 Nanorod Luminescent Property Study. The Journal of Physical Chemistry C 2024, 128 (1) , 642-650. https://doi.org/10.1021/acs.jpcc.3c07383
  51. Cheng Li, Peigeng Han, Wei Zhou, Xiaochen Wang, Zhiling Ding, Zhongyi Wang, Yang Yu, Ruifeng Lu. Lanthanide/Bismuth-Codoped Lead-Free Halide Double Perovskite Nanocrystals with Upconversion and Short-Wave Infrared Luminescence. The Journal of Physical Chemistry C 2024, 128 (1) , 190-196. https://doi.org/10.1021/acs.jpcc.3c05951
  52. Dallas Strandell, Carlos Mora Perez, Yifan Wu, Oleg V. Prezhdo, Patanjali Kambhampati. Excitonic Quantum Coherence in Light Emission from CsPbBr3 Metal-Halide Perovskite Nanocrystals. Nano Letters 2024, 24 (1) , 61-66. https://doi.org/10.1021/acs.nanolett.3c03180
  53. Jia Wei Melvin Lim, Yuanyuan Guo, Minjun Feng, Rui Cai, Tze Chien Sum. Making and Breaking of Exciton Cooling Bottlenecks in Halide Perovskite Nanocrystals. Journal of the American Chemical Society 2024, 146 (1) , 437-449. https://doi.org/10.1021/jacs.3c09761
  54. Monika Ahlawat, Neelakshi, Ramesh Ramapanicker, Vishal Govind Rao. Enhancing Photocatalytic Attributes of Perovskite Nanocrystals in Aqueous Media via Ligand Engineering. ACS Applied Materials & Interfaces 2024, 16 (1) , 623-632. https://doi.org/10.1021/acsami.3c14321
  55. Mayank Gupta, Susmita Jana, B. R. K. Nanda. Electronic Structure and Optoelectronic Properties of Halide Double Perovskites: Fundamental Insights and Design of a Theoretical Workflow. Chemistry of Materials 2024, 36 (1) , 132-145. https://doi.org/10.1021/acs.chemmater.3c01048
  56. Dallas P. Strandell, Davide Zenatti, Priya Nagpal, Arnab Ghosh, Dmitry N. Dirin, Maksym V. Kovalenko, Patanjali Kambhampati. Hot Excitons Cool in Metal Halide Perovskite Nanocrystals as Fast as CdSe Nanocrystals. ACS Nano 2024, 18 (1) , 1054-1062. https://doi.org/10.1021/acsnano.3c10301
  57. Shuo Wang, Zhongyu Wei, Qi Xu, Long Yu, Yuxiu Xiao. Trinity Strategy: Enabling Perovskite as Hydrophilic and Efficient Fluorescent Nanozyme for Constructing Biomarker Reporting Platform. ACS Nano 2024, 18 (1) , 1084-1097. https://doi.org/10.1021/acsnano.3c10548
  58. Boyang Zhou, Meizhi Han, Yan He, Ruizhen Qian, Wei Xiong, Chunyu Zhao, Ling He, Aizhao Pan. Insight into the Water-Triggered Conversion of Cs4PbBr6/Mesoporous Silica-Based Nanocomposites: In Situ Formation, Water Responsiveness, and Multistage Anticounterfeiting. Crystal Growth & Design 2024, 24 (1) , 301-307. https://doi.org/10.1021/acs.cgd.3c01032
  59. Weihao Sun, Yuan-Ting Hung, Wen-Tse Huang, Ru-Shi Liu, Wuzong Zhou. Photoluminescent Nano-CsPbBr3 Embedded in Cs4PbBr6 Crystals: Formation Mechanism and Properties. Crystal Growth & Design 2024, 24 (1) , 545-553. https://doi.org/10.1021/acs.cgd.3c01226
  60. Mingyan Chen, Xinxin Han, Ke Xing, Yusheng Song, Sheng Cao, Bingsuo Zou, Jinju Zheng, Jialong Zhao. Exciton-to-Dopant Energy Transfer Dynamics in Mn2+ Doped CsPbBr3 Nanowires Synthesized by Diffusion Doping. The Journal of Physical Chemistry Letters 2023, 14 (51) , 11543-11549. https://doi.org/10.1021/acs.jpclett.3c03036
  61. Shir Yudco, Juan Bisquert, Lioz Etgar. Enhanced LED Performance by Ion Migration in Multiple Quantum Well Perovskite. The Journal of Physical Chemistry Letters 2023, 14 (51) , 11610-11617. https://doi.org/10.1021/acs.jpclett.3c02822
  62. Aifei Wang, Jiaxin Liu, Junjie Li, Suwen Cheng, Yupeng Zhang, Yanchen Wang, Yuan Xie, Chen Yu, Ying Chu, Jingjin Dong, Jiupeng Cao, Fangfang Wang, Wei Huang, Tianshi Qin. Dendrimer-Encapsulated Halide Perovskite Nanocrystals for Self-Powered White Light-Emitting Glass. Journal of the American Chemical Society 2023, 145 (51) , 28156-28165. https://doi.org/10.1021/jacs.3c10657
  63. Aaron Forde, Sergei Tretiak, Amanda J. Neukirch. Dielectric Screening and Charge-Transfer in 2D Lead-Halide Perovskites for Reduced Exciton Binding Energies. Nano Letters 2023, 23 (24) , 11586-11592. https://doi.org/10.1021/acs.nanolett.3c03320
  64. Dallas Strandell, Dmitry Dirin, Davide Zenatti, Priya Nagpal, Arnab Ghosh, Gabriele Raino, Maksym V. Kovalenko, Patanjali Kambhampati. Enhancing Multiexcitonic Emission in Metal-Halide Perovskites by Quantum Confinement. ACS Nano 2023, 17 (24) , 24910-24918. https://doi.org/10.1021/acsnano.3c06497
  65. Rakesh Kumar Behera, Narayan Pradhan. Impact of Thermal Annealing on Facet-Directed Epitaxial and Decorated Nonepitaxial Pd-CsPbBr3 Nanocrystal Heterostructures. Chemistry of Materials 2023, 35 (24) , 10694-10701. https://doi.org/10.1021/acs.chemmater.3c02563
  66. Yanhui Chen, Rui Zhang, Zusheng Xu, Xianzhuang Qin. Sol–Gel Synthesis of Thermally Stable and Waterproof Silica-Coated CsPbBr3 Nanocrystals for White Light-Emitting Diodes. ACS Applied Nano Materials 2023, 6 (24) , 23122-23129. https://doi.org/10.1021/acsanm.3c04495
  67. Dallas Strandell, Yifan Wu, Carlos Mora-Perez, Oleg Prezhdo, Patanjali Kambhampati. Breaking the Condon Approximation for Light Emission from Metal Halide Perovskite Nanocrystals. The Journal of Physical Chemistry Letters 2023, 14 (50) , 11281-11285. https://doi.org/10.1021/acs.jpclett.3c02826
  68. Mutibah Alanazi, Ashley Marshall, Shaoni Kar, Yincheng Liu, Jinwoo Kim, Henry J. Snaith, Robert A. Taylor, Tristan Farrow. Stability of Mixed Lead Halide Perovskite Films Encapsulated in Cyclic Olefin Copolymer at Room and Cryogenic Temperatures. The Journal of Physical Chemistry Letters 2023, 14 (50) , 11333-11341. https://doi.org/10.1021/acs.jpclett.3c02733
  69. Min Kyu Kim, Young Seung Choi, Dooho Kim, Kang Heo, Seung Jin Oh, Sujeong Lee, Jeongho An, Hyeonjae Yoo, Sang Hoon Kim, Taek-Soo Kim, Byungha Shin. Integration of Large-Area Halide Perovskite Single Crystals and Substrates via Chemical Welding Using an Ionic Liquid for Applications in X-ray Detection. ACS Applied Materials & Interfaces 2023, 15 (49) , 57404-57414. https://doi.org/10.1021/acsami.3c09854
  70. Dallas P. Strandell, Patanjali Kambhampati. Light Emission from CsPbBr3 Metal Halide Perovskite Nanocrystals Arises from Dual Emitting States with Distinct Lattice Couplings. Nano Letters 2023, 23 (23) , 11330-11336. https://doi.org/10.1021/acs.nanolett.3c03975
  71. Seonkwon Kim, Joo-Hong Lee, Ji-Sang Park, Ga-Yeong Kim, Minsu Kang, Sae Byeok Jo, Jae-Min Myoung, Jin-Wook Lee, Jeong Ho Cho. Enhancing Efficiency and Stability of Tin Halide Perovskite Light-Emitting Diodes via Engineered Alkali/Multivalent Metal Salts. ACS Applied Materials & Interfaces 2023, 15 (49) , 57350-57358. https://doi.org/10.1021/acsami.3c12987
  72. Hannah McKeever, Niraj Nitish Patil, Manoj Palabathuni, Shalini Singh. Functional Alkali Metal-Based Ternary Chalcogenides: Design, Properties, and Opportunities. Chemistry of Materials 2023, 35 (23) , 9833-9846. https://doi.org/10.1021/acs.chemmater.3c01652
  73. Lingfeng Li, Zutao Fan, Jie Zhang, Dianyuan Fan, Xiaogang Liu, Yu Wang. Yellow Emissive CsCu2I3 Nanocrystals Induced by Mn2+ for High-Resolution X-ray Imaging. Inorganic Chemistry 2023, 62 (49) , 19848-19855. https://doi.org/10.1021/acs.inorgchem.3c03724
  74. Pooja Aggarwal, Anubhab Halder, Neelakshi, Ramesh Ramapanicker, Vishal Govind Rao. Enhanced Stability and Energy Transfer in Perovskite Nanocrystals: Paving the Way for Moisture-Resistant Light-Harvesting Devices. ACS Applied Nano Materials 2023, 6 (23) , 21616-21625. https://doi.org/10.1021/acsanm.3c03600
  75. Maarten L. S. van der Geest, Jeroen J. de Boer, Kevin Murzyn, Peter Jürgens, Bruno Ehrler, Peter M. Kraus. Transient High-Harmonic Spectroscopy in an Inorganic–Organic Lead Halide Perovskite. The Journal of Physical Chemistry Letters 2023, 14 (48) , 10810-10818. https://doi.org/10.1021/acs.jpclett.3c02588
  76. Xingyu Liu, Zhen Fan, Yuhui Zheng, Jiajia Zha, Yong Zhang, Siyuan Zhu, Zhang Zhang, Xuyan Zhang, Fei Huang, Tong Liang, Chunxia Li, Qianming Wang, Chaoliang Tan. Controlled Synthesis of Lead-Free Double Perovskite Colloidal Nanocrystals for Nonvolatile Resistive Memory Devices. ACS Applied Materials & Interfaces 2023, 15 (48) , 55991-56002. https://doi.org/10.1021/acsami.3c12576
  77. Wei Wan, Yifei Zhao, Shuai Zhang, Fangrui Cheng, Shi Ye. Facile Synthesis of CsPbBr3/K4–xNb6O17 Nanocomposites with Sandwich-like and Scroll-like Heterostructures. Crystal Growth & Design 2023, 23 (12) , 8800-8808. https://doi.org/10.1021/acs.cgd.3c00922
  78. Yuan Liu, Yuxuan Li, Kaimin Gao, Jingyi Zhu, Kaifeng Wu. Sub-Single-Exciton Optical Gain in Lead Halide Perovskite Quantum Dots Revealed by Exciton Polarization Spectroscopy. Journal of the American Chemical Society 2023, 145 (47) , 25864-25873. https://doi.org/10.1021/jacs.3c10281
  79. Shuya Li, Hanjie Lin, Chun Chu, Chandler Martin, Walker MacSwain, Robert W. Meulenberg, John M. Franck, Arindam Chakraborty, Weiwei Zheng. Interfacial B-Site Ion Diffusion in All-Inorganic Core/Shell Perovskite Nanocrystals. ACS Nano 2023, 17 (22) , 22467-22477. https://doi.org/10.1021/acsnano.3c05876
  80. Zhuoying Yang, Shaomin Peng, Ying Wu, Xiwen Ma, Ming Sun, Wei Song, Longmeng Wei, Ben Ma, Guichuan Xing, Lin Yu. Controllable Self-Assembly Enabling the Stabilization of Deep Blue Emitting CsPbBr3 Nanoplatelets. The Journal of Physical Chemistry C 2023, 127 (46) , 22673-22681. https://doi.org/10.1021/acs.jpcc.3c06082
  81. Marianna D’Amato, Lucien Belzane, Corentin Dabard, Mathieu Silly, Gilles Patriarche, Quentin Glorieux, Hanna Le Jeannic, Emmanuel Lhuillier, Alberto Bramati. Highly Photostable Zn-Treated Halide Perovskite Nanocrystals for Efficient Single Photon Generation. Nano Letters 2023, 23 (22) , 10228-10235. https://doi.org/10.1021/acs.nanolett.3c02739
  82. Alessandra Milloch, Umberto Filippi, Paolo Franceschini, Michele Galvani, Selene Mor, Stefania Pagliara, Gabriele Ferrini, Francesco Banfi, Massimo Capone, Dmitry Baranov, Liberato Manna, Claudio Giannetti. Halide Perovskite Artificial Solids as a New Platform to Simulate Collective Phenomena in Doped Mott Insulators. Nano Letters 2023, 23 (22) , 10617-10624. https://doi.org/10.1021/acs.nanolett.3c03715
  83. Bhawna Rawat, Venugopala Rao Battula, Pabitra Kumar Nayak, Dibyajyoti Ghosh, Kamalakannan Kailasam. Utilizing the Undesirable Oxidation of Lead-Free Hybrid Halide Perovskite Nanosheets for Solar-Driven Photocatalytic C(sp3)─H Activation: Unraveling the Serendipity. ACS Applied Materials & Interfaces 2023, 15 (46) , 53604-53613. https://doi.org/10.1021/acsami.3c14217
  84. Xiaoling Guo, Huidong Xie, Wentao Cai, Fu Wang, Bing Xu, Chang Yang. Preparation of Ultrastable and Highly Luminescent CsPbBr3 Quantum Dots by a Synergistic Internal and External Strategy of Ligand Modification and Silica Coating. The Journal of Physical Chemistry C 2023, 127 (45) , 22139-22148. https://doi.org/10.1021/acs.jpcc.3c05055
  85. Michael W. Swift, John L. Lyons. Lone-Pair Stereochemistry Induces Ferroelectric Distortion and the Rashba Effect in Inorganic Halide Perovskites. Chemistry of Materials 2023, 35 (21) , 9370-9377. https://doi.org/10.1021/acs.chemmater.3c02201
  86. Lacie Dube, Peter Saghy, Ou Chen. Post-Synthetic Doping and Ligand Engineering of Cs2AgInCl6 Double Perovskite Nanocrystals. The Journal of Physical Chemistry C 2023, 127 (44) , 21849-21859. https://doi.org/10.1021/acs.jpcc.3c05901
  87. Jinqiu Liu, Chao Zhu, Mike Pols, Zhen Zhang, Fengrui Hu, Lin Wang, Chunfeng Zhang, Zheng Liu, Shuxia Tao, Min Xiao, Xiaoyong Wang. Discrete Elemental Distributions inside a Single Mixed-Halide Perovskite Nanocrystal for the Self-Assembly of Multiple Quantum-Light Sources. Nano Letters 2023, 23 (21) , 10089-10096. https://doi.org/10.1021/acs.nanolett.3c03761
  88. Liberato Manna. The Bright and Enlightening Science of Quantum Dots. Nano Letters 2023, 23 (21) , 9673-9676. https://doi.org/10.1021/acs.nanolett.3c03904
  89. Pu Guo, Junyao Zhang, Dapeng Liu, Ruizhi Wang, Li Li, Li Tian, Jia Huang. Optoelectronic Synaptic Transistors Based on Solution-Processable Organic Semiconductors and CsPbCl3 Quantum Dots for Visual Nociceptor Simulation and Neuromorphic Computing. ACS Applied Materials & Interfaces 2023, 15 (44) , 51483-51491. https://doi.org/10.1021/acsami.3c09355
  90. Hannah Funk, Tal Binyamin, Lioz Etgar, Oleksandra Shargaieva, Thomas Unold, Alberto Eljarrat, Christoph T. Koch, Daniel Abou-Ras. Phase Segregation Mechanisms in Mixed-Halide CsPb(BrxI1–x)3 Nanocrystals in Dependence of Their Sizes and Their Initial [Br]:[I] Ratios. ACS Materials Au 2023, 3 (6) , 687-698. https://doi.org/10.1021/acsmaterialsau.3c00056
  91. Kai Zhao, Yanbo Zhao, Rong Qian, Changqing Ye, Yanlin Song. Recent Advances in Interactive Mechanosensory Electronics with Luminescence/Coloration Outputs for Wearable Applications. ACS Materials Letters 2023, 5 (11) , 3093-3116. https://doi.org/10.1021/acsmaterialslett.3c00800
  92. Chen Chang, Wanggui Ye, Chuandong Zuo, Yingkui Li, Zicheng Wen, Liwei Guo, Yongge Cao, Chaoyang Ma. Highly Moisture-Stable and Enhanced Luminescence-Efficient Mn4+-Activated Red-Emitting Fluoride Phosphors via a Bi-hydrogen-Bond Organic Coating. ACS Sustainable Chemistry & Engineering 2023, 11 (44) , 15887-15897. https://doi.org/10.1021/acssuschemeng.3c03955
  93. Sihang Ji, Zixuan Liu, Lijia Zhao, Ke Zhao, Haimei Tan, Jin Wang, Jialong Zhao, Jinju Zheng, Xi Yuan. Controlled Photoluminescence Lifetimes and Quantum Efficiencies in Mn-Doped Two-Dimensional Perovskite via A-Site Cation Engineering. The Journal of Physical Chemistry C 2023, 127 (43) , 21313-21320. https://doi.org/10.1021/acs.jpcc.3c04461
  94. Zhaolun Yang, Xi Yuan, Yusheng Song, Mingyan Chen, Ke Xing, Sheng Cao, Jinju Zheng, Jialong Zhao. Thickness-Dependent Photoluminescence Properties of Mn-Doped CsPbBr3 Perovskite Nanoplatelets Synthesized at Room Temperature. The Journal of Physical Chemistry C 2023, 127 (43) , 21227-21234. https://doi.org/10.1021/acs.jpcc.3c05639
  95. Cong He, Chunwen Ye, Meng Wu, Shiwei Yang, Herui Zhao, Yiping Wu, Yanjie Zhang. CsPbBr3/Cs4PbBr6 Quantum Dots in Rigid Lithium Disilicate Glass Ceramics for Lighting and Displays. ACS Applied Nano Materials 2023, 6 (20) , 19338-19348. https://doi.org/10.1021/acsanm.3c03812
  96. Soumi Roy, Edamana Prasad. Effect of Co2+ Doping on Optical Property and Exciton–Phonon Coupling in CsPbI3 Perovskite Nanocrystals. The Journal of Physical Chemistry C 2023, 127 (42) , 20802-20810. https://doi.org/10.1021/acs.jpcc.3c05555
  97. Jing Wang, Jianfeng Zhang, Shan Ni, Huifang Xing, Qiyu Meng, Yangyang Bian, Zihao Xu, Meng Rong, Huizhou Liu, Liangrong Yang. Cation-Intercalated Lamellar MoS2 Adsorbent Enables Highly Selective Capture of Cesium. ACS Applied Materials & Interfaces 2023, 15 (42) , 49095-49106. https://doi.org/10.1021/acsami.3c08848
  98. Siddharth Singh, Arsha Choudhary, Vishal Govind Rao. CsPbBr3 Nanocrystals as Efficient Photocatalysts for Dehydrohalogenation: Toward Environmentally Friendly Trichloroethylene Synthesis. ACS Applied Materials & Interfaces 2023, 15 (42) , 49204-49212. https://doi.org/10.1021/acsami.3c10832
  99. Jakob C. Dahl, Samuel Niblett, Yeongsu Cho, Xingzhi Wang, Ye Zhang, Emory M. Chan, A. Paul Alivisatos. Scientific Machine Learning of 2D Perovskite Nanosheet Formation. Journal of the American Chemical Society 2023, 145 (42) , 23076-23087. https://doi.org/10.1021/jacs.3c05984
  100. Junhua Shen, Weiguang Zhu, Zhen Lian, Aming Lin, Su-Fei Shi, Kun Yang, Mingxin Li, Dong Zhao, Yi-Yang Sun, Jie Lian. Metal Ion-Incorporated Lead-Free Perovskites toward Broadband Photodetectors. ACS Applied Electronic Materials 2023, 5 (10) , 5291-5302. https://doi.org/10.1021/acsaelm.2c01265
Load more citations
  • Abstract

    Figure 1

    Figure 1. Monodisperse CsPbX3 NCs and their structural characterization. (a) Schematic of the cubic perovskite lattice; (b,c) typical transmission electron microscopy (TEM) images of CsPbBr3 NCs; (d) X-ray diffraction patterns for typical ternary and mixed-halide NCs.

    Figure 2

    Figure 2. Colloidal perovskite CsPbX3 NCs (X = Cl, Br, I) exhibit size- and composition-tunable bandgap energies covering the entire visible spectral region with narrow and bright emission: (a) colloidal solutions in toluene under UV lamp (λ = 365 nm); (b) representative PL spectra (λexc = 400 nm for all but 350 nm for CsPbCl3 samples); (c) typical optical absorption and PL spectra; (d) time-resolved PL decays for all samples shown in (c) except CsPbCl3.

    Figure 3

    Figure 3. (a) Quantum-size effects in the absorption and emission spectra of 5–12 nm CsPbBr3 NCs. (b) Experimental versus theoretical (effective mass approximation, EMA) size dependence of the band gap energy.

    Figure 4

    Figure 4. (a) Emission from CsPbX3 NCs (black data points) plotted on CEI chromaticity coordinates and compared to most common color standards (LCD TV, dashed white triangle, and NTSC TV, solid white triangle). Radiant Imaging Color Calculator software from Radiant Zemax (http://www.radiantzemax.com) was used to map the colors. (b) Photograph (λexc = 365 nm) of highly luminescent CsPbX3 NCs-PMMA polymer monoliths obtained with Irgacure 819 as photoinitiator for polymerization.

  • References

    ARTICLE SECTIONS
    Jump To

    This article references 42 other publications.

    1. 1
      Talapin, D. V.; Lee, J.-S.; Kovalenko, M. V.; Shevchenko, E. V. Chem. Rev. 2009, 110, 389 458
    2. 2
      Lan, X.; Masala, S.; Sargent, E. H. Nat. Mater. 2014, 13, 233 240
    3. 3
      Hetsch, F.; Zhao, N.; Kershaw, S. V.; Rogach, A. L. Mater. Today 2013, 16, 312 325
    4. 4
      Shirasaki, Y.; Supran, G. J.; Bawendi, M. G.; Bulovic, V. Nat. Photonics 2013, 7, 13 23
    5. 5
      Chen, O.; Zhao, J.; Chauhan, V. P.; Cui, J.; Wong, C.; Harris, D. K.; Wei, H.; Han, H.-S.; Fukumura, D.; Jain, R. K.; Bawendi, M. G. Nat. Mater. 2013, 12, 445 451
    6. 6
      Murray, C. B.; Norris, D. J.; Bawendi, M. G. J. Am. Chem. Soc. 1993, 115, 8706 8715
    7. 7
      Aldakov, D.; Lefrancois, A.; Reiss, P. J. Mater. Chem. C 2013, 1, 3756 3776
    8. 8
      Fan, F.-J.; Wu, L.; Yu, S.-H. Energy Environ. Sci. 2014, 7, 190 208
    9. 9
      Yu, X.; Shavel, A.; An, X.; Luo, Z.; Ibáñez, M.; Cabot, A. J. Am. Chem. Soc. 2014, 136, 9236 9239
    10. 10
      Gratzel, M. Nat. Mater. 2014, 13, 838 842
    11. 11
      Green, M. A.; Ho-Baillie, A.; Snaith, H. J. Nat. Photonics 2014, 8, 506 514
    12. 12
      Park, N.-G. J. Phys. Chem. Lett. 2013, 4, 2423 2429
    13. 13
      Zhou, H.; Chen, Q.; Li, G.; Luo, S.; Song, T.-b.; Duan, H.-S.; Hong, Z.; You, J.; Liu, Y.; Yang, Y. Science 2014, 345, 542 546
    14. 14
      Chung, I.; Lee, B.; He, J.; Chang, R. P. H.; Kanatzidis, M. G. Nature 2012, 485, 486 489
    15. 15
      Moller, C. K. Nature 1958, 182, 1436 1436
    16. 16
      Sharma, S.; Weiden, N.; Weiss, A. Z. Phys. Chem. 1992, 175, 63 80
    17. 17
      Trots, D. M.; Myagkota, S. V. J. Phys. Chem. Solids 2008, 69, 2520 2526
    18. 18
      Stoumpos, C. C.; Malliakas, C. D.; Kanatzidis, M. G. Inorg. Chem. 2013, 52, 9019 9038
    19. 19
      Babin, V.; Fabeni, P.; Nikl, M.; Nitsch, K.; Pazzi, G. P.; Zazubovich, S. Phys. Status Solidi B 2001, 226, 419 428
    20. 20
      Christodoulou, S.; Vaccaro, G.; Pinchetti, V.; De Donato, F.; Grim, J. Q.; Casu, A.; Genovese, A.; Vicidomini, G.; Diaspro, A.; Brovelli, S.; Manna, L.; Moreels, I. J. Mater. Chem. C 2014, 2, 3439 3447
    21. 21
      Wehrenfennig, C.; Liu, M.; Snaith, H. J.; Johnston, M. B.; Herz, L. M. J. Phys. Chem. Lett. 2014, 5, 1300 1306
    22. 22
      Zhang, M.; Yu, H.; Lyu, M.; Wang, Q.; Yun, J.-H.; Wang, L. Chem. Commun. 2014, 50, 11727 11730
    23. 23
      Xing, G.; Mathews, N.; Lim, S. S.; Yantara, N.; Liu, X.; Sabba, D.; Grätzel, M.; Mhaisalkar, S.; Sum, T. C. Nat. Mater. 2014, 13, 476 480
    24. 24
      Deschler, F.; Price, M.; Pathak, S.; Klintberg, L. E.; Jarausch, D.-D.; Higler, R.; Hüttner, S.; Leijtens, T.; Stranks, S. D.; Snaith, H. J.; Atatüre, M.; Phillips, R. T.; Friend, R. H. J. Phys. Chem. Lett. 2014, 5, 1421 1426
    25. 25
      Tan, Z.-K.; Moghaddam, R. S.; Lai, M. L.; Docampo, P.; Higler, R.; Deschler, F.; Price, M.; Sadhanala, A.; Pazos, L. M.; Credgington, D.; Hanusch, F.; Bein, T.; Snaith, H. J.; Friend, R. H. Nat. Nanotechnol. 2014, 9, 687 692
    26. 26
      Ueng, H. Y.; Hwang, H. L. J. Phys. Chem. Solids 1989, 50, 1297 1305
    27. 27
      Huang, L.; Zhu, X.; Publicover, N. G.; Hunter, K. W.; Ahmadiantehrani, M.; de Bettencourt-Dias, A.; Bell, T. W. J. Nanopart. Res. 2013, 15, 2056
    28. 28
      De Trizio, L.; Prato, M.; Genovese, A.; Casu, A.; Povia, M.; Simonutti, R.; Alcocer, M. J. P.; D’Andrea, C.; Tassone, F.; Manna, L. Chem. Mater. 2012, 24, 2400 2406
    29. 29
      Zhang, W.; Zhong, X. Inorg. Chem. 2011, 50, 4065 4072
    30. 30
      Kresse, G.; Joubert, D. Phys. Rev. B 1999, 59, 1758
    31. 31
      Baroni, S.; de Gironcoli, S.; Dal Corso, A.; Giannozzi, P. Rev. Mod. Phys. 2001, 73, 515
    32. 32
      Yu, P. Y.; Cardona, M. Fundamentals of Semiconductors; Springer: New York, 1996.
    33. 33
      Even, J.; Pedesseau, L.; Katan, C. J. Phys. Chem. C 2014, 118, 11566 11572
    34. 34
      Frost, J. M.; Butler, K. T.; Brivio, F.; Hendon, C. H.; van Schilfgaarde, M.; Walsh, A. Nano Lett. 2014, 14, 2584 2590
    35. 35
      Menéndez-Proupin, E.; Palacios, P.; Wahnón, P.; Conesa, J. Phys. Rev. B 2014, 90, 045207
    36. 36
      Saba, M.; Cadelano, M.; Marongiu, D.; Chen, F.; Sarritzu, V.; Sestu, N.; Figus, C.; Aresti, M.; Piras, R.; Geddo Lehmann, A.; Cannas, C.; Musinu, A.; Quochi, F.; Mura, A.; Bongiovanni, G. Nat. Commun. 2014, 5, 5049
    37. 37
      Kim, T.-H.; Jun, S.; Cho, K.-S.; Choi, B. L.; Jang, E. MRS Bull. 2013, 38, 712 720
    38. 38
      Supran, G. J.; Shirasaki, Y.; Song, K. W.; Caruge, J.-M.; Kazlas, P. T.; Coe-Sullivan, S.; Andrew, T. L.; Bawendi, M. G.; Bulović, V. MRS Bull. 2013, 38, 703 711
    39. 39
      Ye, S.; Xiao, F.; Pan, Y. X.; Ma, Y. Y.; Zhang, Q. Y. Mater. Sci. Eng. R 2010, 71, 1 34
    40. 40
      Bomm, J.; Buechtemann, A.; Chatten, A. J.; Bose, R.; Farrell, D. J.; Chan, N. L. A.; Xiao, Y.; Slooff, L. H.; Meyer, T.; Meyer, A.; van Sark, W. G. J. H. M.; Koole, R. Sol. Energy Mater. Sol. Cells 2011, 95, 2087 2094
    41. 41
      Meinardi, F.; Colombo, A.; Velizhanin, K. A.; Simonutti, R.; Lorenzon, M.; Beverina, L.; Viswanatha, R.; Klimov, V. I.; Brovelli, S. Nat. Photonics 2014, 8, 392 399
    42. 42
      Gruetzmacher, H.; Geier, J.; Stein, D.; Ott, T.; Schoenberg, H.; Sommerlade, R. H.; Boulmaaz, S.; Wolf, J.-P.; Murer, P.; Ulrich, T. Chimia 2008, 62, 18 22
  • Supporting Information

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Synthesis details, calculations, and additional figures. This material is available free of charge via the Internet at http://pubs.acs.org.


    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect