ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Phase Control of Graphene Nanoribbon by Carrier Doping: Appearance of Noncollinear Magnetism

View Author Information
Division of Mathematical and Physical Science, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan, Research Institute for Computational Sciences (RICS), National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan, Institute of Physics and Center for Computational Sciences, University of Tsukuba, Tennodai, Tsukuba 305-8571, Japan, Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan, and Nano Electronics Research Laboratories, NEC Corporation, 34 Miyukigaoka, Tsukuba 305-8501, Japan
* To whom correspondence should be addressed. E-mail: [email protected]
†Kanazawa University.
‡National Institute of Advanced Industrial Science and Technology (AIST).
§University of Tsukuba.
∥Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency.
⊥NEC Corporation.
Cite this: Nano Lett. 2009, 9, 1, 269–272
Publication Date (Web):December 19, 2008
https://doi.org/10.1021/nl8028569
Copyright © 2008 American Chemical Society

    Article Views

    2792

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    The zigzag graphene nanoribbon (ZGNR) has an antiferromagnetic property, that is, the relative spin angle θ between the two edges is 180°. By using noncollinear first-principles calculations, we find that the magnetic phase of the ZGNR can be controlled by injecting either electrons or holes: as the carrier density increases, θ continuously decreases from 180 to 0°, which indicates that the net magnetization is possible. Either FET doping or chemical doping is found to be possible.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 90 publications.

    1. Yong-Hui Tian, Jingsong Huang, Xiaolan Sheng, Bobby G. Sumpter, Mina Yoon, and Miklos Kertesz . Nitrogen Doping Enables Covalent-Like π–π Bonding between Graphenes. Nano Letters 2015, 15 (8) , 5482-5491. https://doi.org/10.1021/acs.nanolett.5b01940
    2. Vasilios Georgakilas, Jason A. Perman, Jiri Tucek, and Radek Zboril . Broad Family of Carbon Nanoallotropes: Classification, Chemistry, and Applications of Fullerenes, Carbon Dots, Nanotubes, Graphene, Nanodiamonds, and Combined Superstructures. Chemical Reviews 2015, 115 (11) , 4744-4822. https://doi.org/10.1021/cr500304f
    3. Hongliang Shi, Hui Pan, Yong-Wei Zhang, and Boris I. Yakobson . Electronic and Magnetic Properties of Graphene/Fluorographene Superlattices. The Journal of Physical Chemistry C 2012, 116 (34) , 18278-18283. https://doi.org/10.1021/jp305441b
    4. S. S. Rao, S. Narayana Jammalamadaka, A. Stesmans, and V. V. Moshchalkov , J. van Tol , D. V. Kosynkin, A. Higginbotham-Duque, and J. M. Tour . Ferromagnetism in Graphene Nanoribbons: Split versus Oxidative Unzipped Ribbons. Nano Letters 2012, 12 (3) , 1210-1217. https://doi.org/10.1021/nl203512c
    5. Zhuhua Zhang and Wanlin Guo . Controlling the Functionalizations of Hexagonal Boron Nitride Structures by Carrier Doping. The Journal of Physical Chemistry Letters 2011, 2 (17) , 2168-2173. https://doi.org/10.1021/jz2009506
    6. Ping Lou and Jin Yong Lee. Spin Controlling in Narrow Zigzag Silicon Carbon Nanoribbons by Carrier Doping. The Journal of Physical Chemistry C 2010, 114 (24) , 10947-10951. https://doi.org/10.1021/jp911953z
    7. Ping Lou and Jin Yong Lee. Electrical Control of Magnetization in Narrow Zigzag Silicon Carbon Nanoribbons. The Journal of Physical Chemistry C 2009, 113 (50) , 21213-21217. https://doi.org/10.1021/jp906558y
    8. Ping Lou and Jin Yong Lee. Band Structures of Narrow Zigzag Silicon Carbon Nanoribbons. The Journal of Physical Chemistry C 2009, 113 (29) , 12637-12640. https://doi.org/10.1021/jp903155r
    9. Teguh Budi Prayitno, Esmar Budi, Yanoar Pribadi Sarwono. Influence of doping and electric field on magnetism of NiBr2 monolayer: Possible potentiality for multiferroicity and thermoelectricity. Journal of Physics and Chemistry of Solids 2024, 188 , 111910. https://doi.org/10.1016/j.jpcs.2024.111910
    10. Ruigang Li, Pei-Hao Fu, Jun-Feng Liu, Jun Wang. Armchair edge states in shear-strained graphene: Magnetic properties and quantum valley Hall edge states. Physical Review B 2024, 109 (4) https://doi.org/10.1103/PhysRevB.109.045403
    11. Xiao-Dong Tan, Jun-Qiang Han, Le Zhang. Pauli susceptibility of zigzag graphene nanoribbons. Micro and Nanostructures 2023, 184 , 207687. https://doi.org/10.1016/j.micrna.2023.207687
    12. Chunhua Tian, Wenjing Miao, Lei Zhao, Jingang Wang. Graphene nanoribbons: Current status and challenges as quasi-one-dimensional nanomaterials. Reviews in Physics 2023, 10 , 100082. https://doi.org/10.1016/j.revip.2023.100082
    13. Mohamed Jerrari, Rachid Masrour, Taoufik Sahdane. Study of Magnetic and Magnetocaloric Properties of the Nano‐Graphene of Mixed Spins S  = 3/2 and σ  = 2: A Monte Carlo Simulation. physica status solidi (b) 2023, 260 (5) https://doi.org/10.1002/pssb.202200526
    14. M. Jerrari, R. Masrour, T. Sahdane. Study of magnetocaloric effect and magnetic properties of the nano-graphene bilayer with RKKY interactions of a mixed spins S = 3/2 and σ = 3: a Monte Carlo simulation. The European Physical Journal Plus 2023, 138 (3) https://doi.org/10.1140/epjp/s13360-023-03811-x
    15. Susumu MINAMI, Yoshimasa ABE, Takahiro SHIMADA. First-principles study of strain-induced magnetic phase transition in iron with carrier doping. Transactions of the JSME (in Japanese) 2023, 89 (924) , 23-00119-23-00119. https://doi.org/10.1299/transjsme.23-00119
    16. Dimas G de Oteyza, Thomas Frederiksen. Carbon-based nanostructures as a versatile platform for tunable π-magnetism. Journal of Physics: Condensed Matter 2022, 34 (44) , 443001. https://doi.org/10.1088/1361-648X/ac8a7f
    17. Teguh Budi Prayitno. Controlling phase transition in monolayer metal diiodides XI 2 (X: Fe, Co, and Ni) by carrier doping. Journal of Physics: Condensed Matter 2021, 33 (33) , 335803. https://doi.org/10.1088/1361-648X/ac0937
    18. Teguh Budi Prayitno. Impossibility of increasing Néel temperature in zigzag graphene nanoribbon by electric field and carrier doping. Physica E: Low-dimensional Systems and Nanostructures 2021, 129 , 114641. https://doi.org/10.1016/j.physe.2021.114641
    19. L A Sanjaya, T B Prayitno, E Budi. Electric-field-induced lowest state in bilayer zigzag graphene nanoribbon. Journal of Physics: Conference Series 2021, 1869 (1) , 012190. https://doi.org/10.1088/1742-6596/1869/1/012190
    20. Yusuf Zuntu Abdullahi, Zeynep Demir Vatansever, Ethem Aktürk, Ümit Akıncı, Olcay Üzengi Aktürk. Doping‐Driven Antiferromagnetic to Ferromagnetic Phase Transition in Tetragonal Cr2B2 Monolayer. physica status solidi (b) 2021, 258 (4) https://doi.org/10.1002/pssb.202000396
    21. Dier Feng, Ziye Zhu, Xiaofang Chen, Jingshan Qi. Electric-polarization-driven magnetic phase transition in a ferroelectric–ferromagnetic heterostructure. Applied Physics Letters 2021, 118 (6) https://doi.org/10.1063/5.0036302
    22. Wanxue Li, Chunsheng Guo, Qing Zang, Rui Ding, Yong Zhao. Magnetic Phase Transition in strained two-dimensional semiconductor MoTeI Monolayer. Applied Surface Science 2021, 536 , 147842. https://doi.org/10.1016/j.apsusc.2020.147842
    23. Yang Xiao, Qiaoli Ye, Jintao Liang, Xiaohong Yan, Ying Zhang. Different noncollinear magnetizations on two edges of zigzag graphene nanoribbons. Chinese Physics B 2020, 29 (12) , 127201. https://doi.org/10.1088/1674-1056/abc0e4
    24. Lei Sun, Wei Wang, Qi Li, Feng Wang, Hao-Jia Wu. Study on magnetic behaviors in a diluted ferrimagnetic Ising graphene nanoribbon. Superlattices and Microstructures 2020, 147 , 106701. https://doi.org/10.1016/j.spmi.2020.106701
    25. T B Prayitno, E Budi. Spin stiffness in zigzag graphene nanoribbon under electric field. Journal of Physics: Conference Series 2020, 1567 (2) , 022009. https://doi.org/10.1088/1742-6596/1567/2/022009
    26. T.B. Prayitno. Spin stiffness of bilayer zigzag graphene nanoribbon for several configurations. Physica E: Low-dimensional Systems and Nanostructures 2020, 118 , 113916. https://doi.org/10.1016/j.physe.2019.113916
    27. Sanae Zriouel. Phase transitions and compensation behavior of graphene-based Janus materials. Journal of Magnetism and Magnetic Materials 2020, 493 , 165711. https://doi.org/10.1016/j.jmmm.2019.165711
    28. T B Prayitno, E Budi, R Fahdiran. Band gap control of bilayer zigzag graphene nanoribbon by direction of magnetic moment. Journal of Physics: Conference Series 2019, 1402 (4) , 044106. https://doi.org/10.1088/1742-6596/1402/4/044106
    29. Teguh Budi Prayitno, Fumiyuki Ishii. Carrier-induced antisymmetric–symmetric tendencies of spin stiffness in zigzag graphene nanoribbons. Journal of Physics: Condensed Matter 2019, 31 (36) , 365801. https://doi.org/10.1088/1361-648X/ab1b9a
    30. N. Sethulakshmi, Avanish Mishra, P.M. Ajayan, Yoshiyuki Kawazoe, Ajit K. Roy, Abhishek K. Singh, Chandra Sekhar Tiwary. Magnetism in two-dimensional materials beyond graphene. Materials Today 2019, 27 , 107-122. https://doi.org/10.1016/j.mattod.2019.03.015
    31. Liang Liu, Xue Ren, Jihao Xie, Bin Cheng, Weikang Liu, Taiyu An, Hongwei Qin, Jifan Hu. Magnetic switches via electric field in BN nanoribbons. Applied Surface Science 2019, 480 , 300-307. https://doi.org/10.1016/j.apsusc.2019.02.203
    32. J.T. Liang, X.H. Yan, Y. Zhang, Y.D. Guo, Y. Xiao. Noncollinear magnetism in Lithium-doped zigzag graphene nanoribbons. Journal of Magnetism and Magnetic Materials 2019, 480 , 101-107. https://doi.org/10.1016/j.jmmm.2019.02.072
    33. Teguh Budi Prayitno, Fumiyuki Ishii. Implementation of Generalized Bloch Theorem Using Linear Combination of Pseudo-Atomic Orbitals. Journal of the Physical Society of Japan 2018, 87 (11) , 114709. https://doi.org/10.7566/JPSJ.87.114709
    34. Shenyuan Yang, Jing Li, Shu-Shen Li. Antiferromagnetic–ferromagnetic transition in zigzag graphene nanoribbons induced by substitutional doping. Chinese Physics B 2018, 27 (11) , 117102. https://doi.org/10.1088/1674-1056/27/11/117102
    35. Jingshan Qi, Kaige Hu, Xiao Li. Electric Control of the Edge Magnetization in Zigzag Stanene Nanoribbons from First Principles. Physical Review Applied 2018, 10 (3) https://doi.org/10.1103/PhysRevApplied.10.034048
    36. Qi Pei, Xiao-Cha Wang, Ji-Jun Zou, Wen-Bo Mi. Tunable electronic structure and magnetic coupling in strained two-dimensional semiconductor MnPSe3. Frontiers of Physics 2018, 13 (4) https://doi.org/10.1007/s11467-018-0796-9
    37. Jiří Tuček, Piotr Błoński, Ondřej Malina, Martin Pumera, Chun Kiang Chua, Michal Otyepka, Radek Zbořil. Morphology‐Dependent Magnetism in Nanographene: Beyond Nanoribbons. Advanced Functional Materials 2018, 28 (22) https://doi.org/10.1002/adfm.201800592
    38. Bui Dinh Hoi, Masoumeh Davoudiniya, Mohsen Yarmohammadi. Invalidity of the Fermi liquid theory and magnetic phase transition in quasi-1D dopant-induced armchair-edged graphene nanoribbons. Journal of Magnetism and Magnetic Materials 2018, 452 , 157-163. https://doi.org/10.1016/j.jmmm.2017.12.044
    39. M P López-Sancho, Luis Brey. Charged topological solitons in zigzag graphene nanoribbons. 2D Materials 2018, 5 (1) , 015026. https://doi.org/10.1088/2053-1583/aa9cd1
    40. Jiří Tuček, Piotr Błoński, Juri Ugolotti, Akshaya Kumar Swain, Toshiaki Enoki, Radek Zbořil. Emerging chemical strategies for imprinting magnetism in graphene and related 2D materials for spintronic and biomedical applications. Chemical Society Reviews 2018, 47 (11) , 3899-3990. https://doi.org/10.1039/C7CS00288B
    41. MingMin Zhong, Cheng Huang, Guangzhao Wang. Edge magnetism modulation of graphene nanoribbons via planar tetrahedral coordinated atoms embedding. Journal of Materials Science 2017, 52 (20) , 12307-12313. https://doi.org/10.1007/s10853-017-1359-0
    42. Y. Zhang, X.H. Yan, Y.D. Guo, Y. Xiao. Magnetization distribution and spin transport of graphene/h-BN/graphene nanoribbon-based magnetic tunnel junction. Physics Letters A 2017, 381 (35) , 2949-2958. https://doi.org/10.1016/j.physleta.2017.07.011
    43. Péter Vancsó, Imre Hagymási, Levente Tapasztó. A magnetic phase-transition graphene transistor with tunable spin polarization. 2D Materials 2017, 4 (2) , 024008. https://doi.org/10.1088/2053-1583/aa5f2d
    44. Y. Zhang, X. H. Yan, Y. D. Guo, Y. Xiao. Magnetic order and noncollinear spin transport of domain walls based on zigzag graphene nanoribbons. Journal of Applied Physics 2017, 121 (17) https://doi.org/10.1063/1.4982892
    45. Yun Ren, Jun He, Zhi-Qiang Fan, Xiang Zhu, Yi Liu, Meng-Qiu Long, Ke Xiao. Spin polarization current induced by hydrogen hybrid within closed hexagon graphene nanoribbon devices. Modern Physics Letters B 2016, 30 (27) , 1650333. https://doi.org/10.1142/S0217984916503334
    46. , O.S. Karpenko, V.V. Lobanov, , M.Т. Kartel, . Structure and properties of hexagonal carbon nanoclusters C95N of graphene-like structure. Himia, Fizika ta Tehnologia Poverhni 2016, 7 (2) , 157-166. https://doi.org/10.15407/hftp07.02.157
    47. J. Zhu, H. Park, R. Podila, A. Wadehra, P. Ayala, L. Oliveira, J. He, A.A. Zakhidov, A. Howard, J. Wilkins, A.M. Rao. Magnetic properties of sulfur-doped graphene. Journal of Magnetism and Magnetic Materials 2016, 401 , 70-76. https://doi.org/10.1016/j.jmmm.2015.10.012
    48. Guizhi Zhu, Qiang Sun. Recent advances in computational studies of organometallic sheets: Magnetism, adsorption and catalysis. Computational Materials Science 2016, 112 , 492-502. https://doi.org/10.1016/j.commatsci.2015.07.020
    49. Oleg V. Yazyev. Theory of Magnetism in Graphitic Materials. 2016, 1-24. https://doi.org/10.1007/978-3-319-39355-1_1
    50. R. M. Guzmán Arellano, Gonzalo Usaj. Transmission Through Gate-Induced Magnetic Islands on Graphene Nanoribbons. Journal of Low Temperature Physics 2015, 179 (1-2) , 69-74. https://doi.org/10.1007/s10909-014-1231-4
    51. Li-Hua Qu, Jian-Min Zhang, Ke-Wei Xu, Vincent Ji. Effects of vertical strain on zigzag graphene nanoribbon with a topological line defect. Physica E: Low-dimensional Systems and Nanostructures 2015, 67 , 116-120. https://doi.org/10.1016/j.physe.2014.11.012
    52. Hamze Mousavi, Mehran Bagheri. Electronic properties of impurity-infected few-layer graphene nanoribbons. Physica B: Condensed Matter 2015, 458 , 107-113. https://doi.org/10.1016/j.physb.2014.11.021
    53. G. P. Tang, Z. H. Zhang, X. Q. Deng, Z. Q. Fan, H. L. Zhu. Tuning spin polarization and spin transport of zigzag graphene nanoribbons by line defects. Physical Chemistry Chemical Physics 2015, 17 (1) , 638-643. https://doi.org/10.1039/C4CP03837A
    54. A. R. Carvalho, J. H. Warnes, C. H. Lewenkopf. Edge magnetization and local density of states in chiral graphene nanoribbons. Physical Review B 2014, 89 (24) https://doi.org/10.1103/PhysRevB.89.245444
    55. Keisuke Sawada, Fumiyuki Ishii, Mineo Saito. First-principles study of carrier-induced ferromagnetism in bilayer and multilayer zigzag graphene nanoribbons. Applied Physics Letters 2014, 104 (14) https://doi.org/10.1063/1.4870766
    56. J.J. Zhang, Z.H. Zhang, J. Li, D. Wang, Z. Zhu, G.P. Tang, X.Q. Deng, Z.Q. Fan. Enhanced half-metallicity in carbon-chain–linked trigonal graphene. Organic Electronics 2014, 15 (1) , 65-70. https://doi.org/10.1016/j.orgel.2013.10.022
    57. Jian Zhou, Qiang Sun. Carrier induced magnetic coupling transitions in phthalocyanine-based organometallic sheet. Nanoscale 2014, 6 (1) , 328-333. https://doi.org/10.1039/C3NR04041K
    58. Dibyajyoti Ghosh, Prakash Parida, Swapan K. Pati. Line defects at the heterojunction of hybrid boron nitride–graphene nanoribbons. J. Mater. Chem. C 2014, 2 (2) , 392-398. https://doi.org/10.1039/C3TC31784F
    59. Xingxing Li, Jinlong Yang. CrXTe 3 (X = Si, Ge) nanosheets: two dimensional intrinsic ferromagnetic semiconductors. Journal of Materials Chemistry C 2014, 2 (34) , 7071. https://doi.org/10.1039/C4TC01193G
    60. M. Ijäs, M. Ervasti, A. Uppstu, P. Liljeroth, J. van der Lit, I. Swart, A. Harju. Electronic states in finite graphene nanoribbons: Effect of charging and defects. Physical Review B 2013, 88 (7) https://doi.org/10.1103/PhysRevB.88.075429
    61. Lihua Pan, Jin An, Yong-Jun Liu. Noncollinear magnetism and half-metallicity in biased bilayer zigzag graphene nanoribbons. New Journal of Physics 2013, 15 (4) , 043016. https://doi.org/10.1088/1367-2630/15/4/043016
    62. Sudipta Dutta, Katsunori Wakabayashi. Tuning Charge and Spin Excitations in Zigzag Edge Nanographene Ribbons. Scientific Reports 2012, 2 (1) https://doi.org/10.1038/srep00519
    63. Hong Seok Kang. Spin-polarized transport through heterobilayers of graphene nanoribbons and ruthenium-porphyrin tapes. Chemical Physics 2012, 405 , 148-154. https://doi.org/10.1016/j.chemphys.2012.07.001
    64. Michael R. Philpott, Yoshiyuki Kawazoe. Magnetism and structure of graphene nanodots with interiors modified by boron, nitrogen, and charge. The Journal of Chemical Physics 2012, 137 (5) https://doi.org/10.1063/1.4742193
    65. Xiaowei Li, Jian Zhou, Qian Wang, Puru Jena. Magnetic properties of two dimensional silicon carbide triangular nanoflakes-based kagome lattices. Journal of Nanoparticle Research 2012, 14 (8) https://doi.org/10.1007/s11051-012-1056-5
    66. Juan Antonio Casao Pérez. Spin susceptibilities in zigzag graphene nanoribbons. Physica E: Low-dimensional Systems and Nanostructures 2012, 44 (10) , 2089-2093. https://doi.org/10.1016/j.physe.2012.06.019
    67. Min Kan, Jian Zhou, Yawei Li, Qiang Sun. Using carbon chains to mediate magnetic coupling in zigzag graphene nanoribbons. Applied Physics Letters 2012, 100 (17) https://doi.org/10.1063/1.4705302
    68. Min Kan, Jian Zhou, Qiang Sun, Qian Wang, Yoshiyuki Kawazoe, Puru Jena. Tuning magnetic properties of graphene nanoribbons with topological line defects: From antiferromagnetic to ferromagnetic. Physical Review B 2012, 85 (15) https://doi.org/10.1103/PhysRevB.85.155450
    69. Ping Lou, Jin-Yong Lee. Unusual Non-magnetic Metallic State in Narrow Silicon Carbon Nanoribbons by Electron or Hole Doping. Bulletin of the Korean Chemical Society 2012, 33 (3) , 763-769. https://doi.org/10.5012/bkcs.2012.33.3.763
    70. S.S. Rao, A. Stesmans, Y. Wang, Y. Chen. Direct ESR evidence for magnetic behavior of graphite oxide. Physica E: Low-dimensional Systems and Nanostructures 2012, 44 (6) , 1036-1039. https://doi.org/10.1016/j.physe.2011.07.019
    71. Hiroki Kotaka, Fumiyuki Ishii, Mineo Saito, Tadaaki Nagao, Shin Yaginuma. Edge States of Bi Nanoribbons on Bi Substrates: First-Principles Density Functional Study. Japanese Journal of Applied Physics 2012, 51 , 025201. https://doi.org/10.1143/JJAP.51.025201
    72. Hiroki Kotaka, Fumiyuki Ishii, Mineo Saito, Tadaaki Nagao, Shin Yaginuma. Edge States of Bi Nanoribbons on Bi Substrates: First-Principles Density Functional Study. Japanese Journal of Applied Physics 2012, 51 (2R) , 025201. https://doi.org/10.7567/JJAP.51.025201
    73. Oleg V. Yazyev, M.I. Katsnelson. Theory of Magnetism in Graphene. 2012, 71-103. https://doi.org/10.1016/B978-0-44-453681-5.00004-2
    74. Lihua Pan, Jin An, Yong-Jun Liu, Chang-De Gong. Zigzag graphene nanoribbons without inversion symmetry. Physical Review B 2011, 84 (11) https://doi.org/10.1103/PhysRevB.84.115434
    75. Keisuke Sawada, Fumiyuki Ishii, Mineo Saito. Magnetism in Dehydrogenated Armchair Graphene Nanoribbon. Journal of the Physical Society of Japan 2011, 80 (4) , 044712. https://doi.org/10.1143/JPSJ.80.044712
    76. B. Xu, Y. H. Lu, Z. D. Sha, Y. P. Feng, J. Y. Lin. Coupling of magnetic edge states in Li-intercalated bilayer and multilayer zigzag graphene nanoribbons. EPL (Europhysics Letters) 2011, 94 (2) , 27007. https://doi.org/10.1209/0295-5075/94/27007
    77. F J Culchac, A Latgé, A T Costa. Spin waves in zigzag graphene nanoribbons and the stability of edge ferromagnetism. New Journal of Physics 2011, 13 (3) , 033028. https://doi.org/10.1088/1367-2630/13/3/033028
    78. T. L. Makarova, A. L. Shelankov, I. T. Serenkov, V. I. Sakharov, D. W. Boukhvalov. Anisotropic magnetism of graphite irradiated with medium-energy hydrogen and helium ions. Physical Review B 2011, 83 (8) https://doi.org/10.1103/PhysRevB.83.085417
    79. K. Sawada, F. Ishii, M. Saito. Magnetism in graphene nanoribbons on Ni(111): First-principles density functional study. Physical Review B 2010, 82 (24) https://doi.org/10.1103/PhysRevB.82.245426
    80. Sudipta Dutta, Swapan K. Pati. Edge reconstructions induce magnetic and metallic behavior in zigzag graphene nanoribbons. Carbon 2010, 48 (15) , 4409-4413. https://doi.org/10.1016/j.carbon.2010.07.057
    81. Joo-Hyoung Lee, Jeffrey C. Grossman. Magnetic properties in graphene-graphane superlattices. Applied Physics Letters 2010, 97 (13) https://doi.org/10.1063/1.3495771
    82. Hirohito Asano, Susumu Muraki, Hiroki Endo, Shunji Bandow, Sumio Iijima. Strong magnetism observed in carbon nanoparticles produced by the laser vaporization of a carbon pellet in hydrogen-containing Ar balance gas. Journal of Physics: Condensed Matter 2010, 22 (33) , 334209. https://doi.org/10.1088/0953-8984/22/33/334209
    83. Tibor Höltzl, Tamás Veszprémi, Minh Tho Nguyen. Phosphaethyne polymers are analogues of cis-polyacetylene and graphane. Comptes Rendus Chimie 2010, 13 (8-9) , 1173-1179. https://doi.org/10.1016/j.crci.2010.03.033
    84. D.S.L. Abergel, V. Apalkov, J. Berashevich, K. Ziegler, Tapash Chakraborty. Properties of graphene: a theoretical perspective. Advances in Physics 2010, 59 (4) , 261-482. https://doi.org/10.1080/00018732.2010.487978
    85. Oleg V Yazyev. Emergence of magnetism in graphene materials and nanostructures. Reports on Progress in Physics 2010, 73 (5) , 056501. https://doi.org/10.1088/0034-4885/73/5/056501
    86. J. Jung, A. H. MacDonald. Magnetoelectric coupling in zigzag graphene nanoribbons. Physical Review B 2010, 81 (19) https://doi.org/10.1103/PhysRevB.81.195408
    87. Bo Xu, Jiang Yin, Hongming Weng, Yidong Xia, Xiangang Wan, Zhiguo Liu. Robust Dirac point in honeycomb-structure nanoribbons with zigzag edges. Physical Review B 2010, 81 (20) https://doi.org/10.1103/PhysRevB.81.205419
    88. Michael R. Philpott, Yoshiyuki Kawazoe. Bonding and magnetism in nanosized graphene molecules: Singlet states of zigzag edged hexangulenes C6m2H6m(m=2,3,…,10). The Journal of Chemical Physics 2009, 131 (21) https://doi.org/10.1063/1.3264885
    89. J. Jung, A. H. MacDonald. Carrier density and magnetism in graphene zigzag nanoribbons. Physical Review B 2009, 79 (23) https://doi.org/10.1103/PhysRevB.79.235433
    90. . Our choice from the recent literature. Nature Physics 2009, 85-85. https://doi.org/10.1038/nphys1201

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect