Phase Control of Graphene Nanoribbon by Carrier Doping: Appearance of Noncollinear MagnetismClick to copy article linkArticle link copied!
Abstract

The zigzag graphene nanoribbon (ZGNR) has an antiferromagnetic property, that is, the relative spin angle θ between the two edges is 180°. By using noncollinear first-principles calculations, we find that the magnetic phase of the ZGNR can be controlled by injecting either electrons or holes: as the carrier density increases, θ continuously decreases from 180 to 0°, which indicates that the net magnetization is possible. Either FET doping or chemical doping is found to be possible.
Cited By
Smart citations by scite.ai include citation statements extracted from the full text of the citing article. The number of the statements may be higher than the number of citations provided by ACS Publications if one paper cites another multiple times or lower if scite has not yet processed some of the citing articles.
This article is cited by 94 publications.
- Yong-Hui Tian, Jingsong Huang, Xiaolan Sheng, Bobby G. Sumpter, Mina Yoon, and Miklos Kertesz . Nitrogen Doping Enables Covalent-Like π–π Bonding between Graphenes. Nano Letters 2015, 15
(8)
, 5482-5491. https://doi.org/10.1021/acs.nanolett.5b01940
- Vasilios Georgakilas, Jason A. Perman, Jiri Tucek, and Radek Zboril . Broad Family of Carbon Nanoallotropes: Classification, Chemistry, and Applications of Fullerenes, Carbon Dots, Nanotubes, Graphene, Nanodiamonds, and Combined Superstructures. Chemical Reviews 2015, 115
(11)
, 4744-4822. https://doi.org/10.1021/cr500304f
- Hongliang Shi, Hui Pan, Yong-Wei Zhang, and Boris I. Yakobson . Electronic and Magnetic Properties of Graphene/Fluorographene Superlattices. The Journal of Physical Chemistry C 2012, 116
(34)
, 18278-18283. https://doi.org/10.1021/jp305441b
- S. S. Rao, S. Narayana Jammalamadaka, A. Stesmans, and V. V. Moshchalkov , J. van Tol , D. V. Kosynkin, A. Higginbotham-Duque, and J. M. Tour . Ferromagnetism in Graphene Nanoribbons: Split versus Oxidative Unzipped Ribbons. Nano Letters 2012, 12
(3)
, 1210-1217. https://doi.org/10.1021/nl203512c
- Zhuhua Zhang and Wanlin Guo . Controlling the Functionalizations of Hexagonal Boron Nitride Structures by Carrier Doping. The Journal of Physical Chemistry Letters 2011, 2
(17)
, 2168-2173. https://doi.org/10.1021/jz2009506
- Ping Lou and Jin Yong Lee. Spin Controlling in Narrow Zigzag Silicon Carbon Nanoribbons by Carrier Doping. The Journal of Physical Chemistry C 2010, 114
(24)
, 10947-10951. https://doi.org/10.1021/jp911953z
- Ping Lou and Jin Yong Lee. Electrical Control of Magnetization in Narrow Zigzag Silicon Carbon Nanoribbons. The Journal of Physical Chemistry C 2009, 113
(50)
, 21213-21217. https://doi.org/10.1021/jp906558y
- Ping Lou and Jin Yong Lee. Band Structures of Narrow Zigzag Silicon Carbon Nanoribbons. The Journal of Physical Chemistry C 2009, 113
(29)
, 12637-12640. https://doi.org/10.1021/jp903155r
- Teguh Budi Prayitno. Magnon energies and thermoelectric properties of AB-stacked bilayer zigzag graphene nanoribbons. Physica Scripta 2025, 100
(7)
, 075930. https://doi.org/10.1088/1402-4896/addf1d
- Teguh Budi Prayitno, Esmar Budi, Riri Jonuarti, Abdul Rahman Mohmad. Tunable magnetic transition and thermoelectric performance in single-layer metal dibromides MBr2 (M: Fe and Co). Physica B: Condensed Matter 2025, 707 , 417166. https://doi.org/10.1016/j.physb.2025.417166
- Qiuyue Ma, Yanfeng Ge, Wenhui Wan, Guochun Yang, Yong Liu. Half‐Metallic Ferromagnetism in 2D Janus Monolayers: Mn
2
GeX (X = As, Sb). physica status solidi (b) 2025, 262
(1)
https://doi.org/10.1002/pssb.202400340
- Gaojie Zhang, Hao Wu, Li Yang, Wen Jin, Wenfeng Zhang, Haixin Chang. Graphene-based spintronics. Applied Physics Reviews 2024, 11
(2)
https://doi.org/10.1063/5.0191362
- Teguh Budi Prayitno, Esmar Budi, Yanoar Pribadi Sarwono. Influence of doping and electric field on magnetism of NiBr2 monolayer: Possible potentiality for multiferroicity and thermoelectricity. Journal of Physics and Chemistry of Solids 2024, 188 , 111910. https://doi.org/10.1016/j.jpcs.2024.111910
- Ruigang Li, Pei-Hao Fu, Jun-Feng Liu, Jun Wang. Armchair edge states in shear-strained graphene: Magnetic properties and quantum valley Hall edge states. Physical Review B 2024, 109
(4)
https://doi.org/10.1103/PhysRevB.109.045403
- Xiao-Dong Tan, Jun-Qiang Han, Le Zhang. Pauli susceptibility of zigzag graphene nanoribbons. Micro and Nanostructures 2023, 184 , 207687. https://doi.org/10.1016/j.micrna.2023.207687
- Chunhua Tian, Wenjing Miao, Lei Zhao, Jingang Wang. Graphene nanoribbons: Current status and challenges as quasi-one-dimensional nanomaterials. Reviews in Physics 2023, 10 , 100082. https://doi.org/10.1016/j.revip.2023.100082
- Mohamed Jerrari, Rachid Masrour, Taoufik Sahdane. Study of Magnetic and Magnetocaloric Properties of the Nano‐Graphene of Mixed Spins
S
= 3/2 and
σ
= 2: A Monte Carlo Simulation. physica status solidi (b) 2023, 260
(5)
https://doi.org/10.1002/pssb.202200526
- M. Jerrari, R. Masrour, T. Sahdane. Study of magnetocaloric effect and magnetic properties of the nano-graphene bilayer with RKKY interactions of a mixed spins S = 3/2 and σ = 3: a Monte Carlo simulation. The European Physical Journal Plus 2023, 138
(3)
https://doi.org/10.1140/epjp/s13360-023-03811-x
- Susumu MINAMI, Yoshimasa ABE, Takahiro SHIMADA. First-principles study of strain-induced magnetic phase transition in iron with carrier doping. Transactions of the JSME (in Japanese) 2023, 89
(924)
, 23-00119-23-00119. https://doi.org/10.1299/transjsme.23-00119
- Dimas G de Oteyza, Thomas Frederiksen. Carbon-based nanostructures as a versatile platform for tunable π-magnetism. Journal of Physics: Condensed Matter 2022, 34
(44)
, 443001. https://doi.org/10.1088/1361-648X/ac8a7f
- Teguh Budi Prayitno. Controlling phase transition in monolayer metal diiodides XI
2
(X: Fe, Co, and Ni) by carrier doping. Journal of Physics: Condensed Matter 2021, 33
(33)
, 335803. https://doi.org/10.1088/1361-648X/ac0937
- Teguh Budi Prayitno. Impossibility of increasing Néel temperature in zigzag graphene nanoribbon by electric field and carrier doping. Physica E: Low-dimensional Systems and Nanostructures 2021, 129 , 114641. https://doi.org/10.1016/j.physe.2021.114641
- L A Sanjaya, T B Prayitno, E Budi. Electric-field-induced lowest state in bilayer zigzag graphene nanoribbon. Journal of Physics: Conference Series 2021, 1869
(1)
, 012190. https://doi.org/10.1088/1742-6596/1869/1/012190
- Yusuf Zuntu Abdullahi, Zeynep Demir Vatansever, Ethem Aktürk, Ümit Akıncı, Olcay Üzengi Aktürk. Doping‐Driven Antiferromagnetic to Ferromagnetic Phase Transition in Tetragonal Cr2B2 Monolayer. physica status solidi (b) 2021, 258
(4)
https://doi.org/10.1002/pssb.202000396
- Dier Feng, Ziye Zhu, Xiaofang Chen, Jingshan Qi. Electric-polarization-driven magnetic phase transition in a ferroelectric–ferromagnetic heterostructure. Applied Physics Letters 2021, 118
(6)
https://doi.org/10.1063/5.0036302
- Wanxue Li, Chunsheng Guo, Qing Zang, Rui Ding, Yong Zhao. Magnetic Phase Transition in strained two-dimensional semiconductor MoTeI Monolayer. Applied Surface Science 2021, 536 , 147842. https://doi.org/10.1016/j.apsusc.2020.147842
- Yang Xiao, Qiaoli Ye, Jintao Liang, Xiaohong Yan, Ying Zhang. Different noncollinear magnetizations on two edges of zigzag graphene nanoribbons. Chinese Physics B 2020, 29
(12)
, 127201. https://doi.org/10.1088/1674-1056/abc0e4
- Lei Sun, Wei Wang, Qi Li, Feng Wang, Hao-Jia Wu. Study on magnetic behaviors in a diluted ferrimagnetic Ising graphene nanoribbon. Superlattices and Microstructures 2020, 147 , 106701. https://doi.org/10.1016/j.spmi.2020.106701
- T B Prayitno, E Budi. Spin stiffness in zigzag graphene nanoribbon under electric field. Journal of Physics: Conference Series 2020, 1567
(2)
, 022009. https://doi.org/10.1088/1742-6596/1567/2/022009
- T.B. Prayitno. Spin stiffness of bilayer zigzag graphene nanoribbon for several configurations. Physica E: Low-dimensional Systems and Nanostructures 2020, 118 , 113916. https://doi.org/10.1016/j.physe.2019.113916
- Sanae Zriouel. Phase transitions and compensation behavior of graphene-based Janus materials. Journal of Magnetism and Magnetic Materials 2020, 493 , 165711. https://doi.org/10.1016/j.jmmm.2019.165711
- T B Prayitno, E Budi, R Fahdiran. Band gap control of bilayer zigzag graphene nanoribbon by direction of magnetic moment. Journal of Physics: Conference Series 2019, 1402
(4)
, 044106. https://doi.org/10.1088/1742-6596/1402/4/044106
- Teguh Budi Prayitno, Fumiyuki Ishii. Carrier-induced antisymmetric–symmetric tendencies of spin stiffness in zigzag graphene nanoribbons. Journal of Physics: Condensed Matter 2019, 31
(36)
, 365801. https://doi.org/10.1088/1361-648X/ab1b9a
- N. Sethulakshmi, Avanish Mishra, P.M. Ajayan, Yoshiyuki Kawazoe, Ajit K. Roy, Abhishek K. Singh, Chandra Sekhar Tiwary. Magnetism in two-dimensional materials beyond graphene. Materials Today 2019, 27 , 107-122. https://doi.org/10.1016/j.mattod.2019.03.015
- Liang Liu, Xue Ren, Jihao Xie, Bin Cheng, Weikang Liu, Taiyu An, Hongwei Qin, Jifan Hu. Magnetic switches via electric field in BN nanoribbons. Applied Surface Science 2019, 480 , 300-307. https://doi.org/10.1016/j.apsusc.2019.02.203
- J.T. Liang, X.H. Yan, Y. Zhang, Y.D. Guo, Y. Xiao. Noncollinear magnetism in Lithium-doped zigzag graphene nanoribbons. Journal of Magnetism and Magnetic Materials 2019, 480 , 101-107. https://doi.org/10.1016/j.jmmm.2019.02.072
- Teguh Budi Prayitno, Fumiyuki Ishii. Implementation of Generalized Bloch Theorem Using Linear Combination of Pseudo-Atomic Orbitals. Journal of the Physical Society of Japan 2018, 87
(11)
, 114709. https://doi.org/10.7566/JPSJ.87.114709
- Shenyuan Yang, Jing Li, Shu-Shen Li. Antiferromagnetic–ferromagnetic transition in zigzag graphene nanoribbons induced by substitutional doping. Chinese Physics B 2018, 27
(11)
, 117102. https://doi.org/10.1088/1674-1056/27/11/117102
- Jingshan Qi, Kaige Hu, Xiao Li. Electric Control of the Edge Magnetization in Zigzag Stanene Nanoribbons from First Principles. Physical Review Applied 2018, 10
(3)
https://doi.org/10.1103/PhysRevApplied.10.034048
- Qi Pei, Xiao-Cha Wang, Ji-Jun Zou, Wen-Bo Mi. Tunable electronic structure and magnetic coupling in strained two-dimensional semiconductor MnPSe3. Frontiers of Physics 2018, 13
(4)
https://doi.org/10.1007/s11467-018-0796-9
- Jiří Tuček, Piotr Błoński, Ondřej Malina, Martin Pumera, Chun Kiang Chua, Michal Otyepka, Radek Zbořil. Morphology‐Dependent Magnetism in Nanographene: Beyond Nanoribbons. Advanced Functional Materials 2018, 28
(22)
https://doi.org/10.1002/adfm.201800592
- Bui Dinh Hoi, Masoumeh Davoudiniya, Mohsen Yarmohammadi. Invalidity of the Fermi liquid theory and magnetic phase transition in quasi-1D dopant-induced armchair-edged graphene nanoribbons. Journal of Magnetism and Magnetic Materials 2018, 452 , 157-163. https://doi.org/10.1016/j.jmmm.2017.12.044
- M P López-Sancho, Luis Brey. Charged topological solitons in zigzag graphene nanoribbons. 2D Materials 2018, 5
(1)
, 015026. https://doi.org/10.1088/2053-1583/aa9cd1
- Jiří Tuček, Piotr Błoński, Juri Ugolotti, Akshaya Kumar Swain, Toshiaki Enoki, Radek Zbořil. Emerging chemical strategies for imprinting magnetism in graphene and related 2D materials for spintronic and biomedical applications. Chemical Society Reviews 2018, 47
(11)
, 3899-3990. https://doi.org/10.1039/C7CS00288B
- MingMin Zhong, Cheng Huang, Guangzhao Wang. Edge magnetism modulation of graphene nanoribbons via planar tetrahedral coordinated atoms embedding. Journal of Materials Science 2017, 52
(20)
, 12307-12313. https://doi.org/10.1007/s10853-017-1359-0
- Y. Zhang, X.H. Yan, Y.D. Guo, Y. Xiao. Magnetization distribution and spin transport of graphene/h-BN/graphene nanoribbon-based magnetic tunnel junction. Physics Letters A 2017, 381
(35)
, 2949-2958. https://doi.org/10.1016/j.physleta.2017.07.011
- Péter Vancsó, Imre Hagymási, Levente Tapasztó. A magnetic phase-transition graphene transistor with tunable spin polarization. 2D Materials 2017, 4
(2)
, 024008. https://doi.org/10.1088/2053-1583/aa5f2d
- Y. Zhang, X. H. Yan, Y. D. Guo, Y. Xiao. Magnetic order and noncollinear spin transport of domain walls based on zigzag graphene nanoribbons. Journal of Applied Physics 2017, 121
(17)
https://doi.org/10.1063/1.4982892
- Yun Ren, Jun He, Zhi-Qiang Fan, Xiang Zhu, Yi Liu, Meng-Qiu Long, Ke Xiao. Spin polarization current induced by hydrogen hybrid within closed hexagon graphene nanoribbon devices. Modern Physics Letters B 2016, 30
(27)
, 1650333. https://doi.org/10.1142/S0217984916503334
- , O.S. Karpenko, V.V. Lobanov, , M.Т. Kartel, . Structure and properties of hexagonal carbon nanoclusters C95N of graphene-like structure. Himia, Fizika ta Tehnologia Poverhni 2016, 7
(2)
, 157-166. https://doi.org/10.15407/hftp07.02.157
- J. Zhu, H. Park, R. Podila, A. Wadehra, P. Ayala, L. Oliveira, J. He, A.A. Zakhidov, A. Howard, J. Wilkins, A.M. Rao. Magnetic properties of sulfur-doped graphene. Journal of Magnetism and Magnetic Materials 2016, 401 , 70-76. https://doi.org/10.1016/j.jmmm.2015.10.012
- Guizhi Zhu, Qiang Sun. Recent advances in computational studies of organometallic sheets: Magnetism, adsorption and catalysis. Computational Materials Science 2016, 112 , 492-502. https://doi.org/10.1016/j.commatsci.2015.07.020
- Oleg V. Yazyev. Theory of Magnetism in Graphitic Materials. 2016, 1-24. https://doi.org/10.1007/978-3-319-39355-1_1
- R. M. Guzmán Arellano, Gonzalo Usaj. Transmission Through Gate-Induced Magnetic Islands on Graphene Nanoribbons. Journal of Low Temperature Physics 2015, 179
(1-2)
, 69-74. https://doi.org/10.1007/s10909-014-1231-4
- Li-Hua Qu, Jian-Min Zhang, Ke-Wei Xu, Vincent Ji. Effects of vertical strain on zigzag graphene nanoribbon with a topological line defect. Physica E: Low-dimensional Systems and Nanostructures 2015, 67 , 116-120. https://doi.org/10.1016/j.physe.2014.11.012
- Hamze Mousavi, Mehran Bagheri. Electronic properties of impurity-infected few-layer graphene nanoribbons. Physica B: Condensed Matter 2015, 458 , 107-113. https://doi.org/10.1016/j.physb.2014.11.021
- G. P. Tang, Z. H. Zhang, X. Q. Deng, Z. Q. Fan, H. L. Zhu. Tuning spin polarization and spin transport of zigzag graphene nanoribbons by line defects. Physical Chemistry Chemical Physics 2015, 17
(1)
, 638-643. https://doi.org/10.1039/C4CP03837A
- A. R. Carvalho, J. H. Warnes, C. H. Lewenkopf. Edge magnetization and local density of states in chiral graphene nanoribbons. Physical Review B 2014, 89
(24)
https://doi.org/10.1103/PhysRevB.89.245444
- Keisuke Sawada, Fumiyuki Ishii, Mineo Saito. First-principles study of carrier-induced ferromagnetism in bilayer and multilayer zigzag graphene nanoribbons. Applied Physics Letters 2014, 104
(14)
https://doi.org/10.1063/1.4870766
- J.J. Zhang, Z.H. Zhang, J. Li, D. Wang, Z. Zhu, G.P. Tang, X.Q. Deng, Z.Q. Fan. Enhanced half-metallicity in carbon-chain–linked trigonal graphene. Organic Electronics 2014, 15
(1)
, 65-70. https://doi.org/10.1016/j.orgel.2013.10.022
- Jian Zhou, Qiang Sun. Carrier induced magnetic coupling transitions in phthalocyanine-based organometallic sheet. Nanoscale 2014, 6
(1)
, 328-333. https://doi.org/10.1039/C3NR04041K
- Dibyajyoti Ghosh, Prakash Parida, Swapan K. Pati. Line defects at the heterojunction of hybrid boron nitride–graphene nanoribbons. J. Mater. Chem. C 2014, 2
(2)
, 392-398. https://doi.org/10.1039/C3TC31784F
- Xingxing Li, Jinlong Yang. CrXTe
3
(X = Si, Ge) nanosheets: two dimensional intrinsic ferromagnetic semiconductors. Journal of Materials Chemistry C 2014, 2
(34)
, 7071. https://doi.org/10.1039/C4TC01193G
- M. Ijäs, M. Ervasti, A. Uppstu, P. Liljeroth, J. van der Lit, I. Swart, A. Harju. Electronic states in finite graphene nanoribbons: Effect of charging and defects. Physical Review B 2013, 88
(7)
https://doi.org/10.1103/PhysRevB.88.075429
- Lihua Pan, Jin An, Yong-Jun Liu. Noncollinear magnetism and half-metallicity in biased bilayer zigzag graphene nanoribbons. New Journal of Physics 2013, 15
(4)
, 043016. https://doi.org/10.1088/1367-2630/15/4/043016
- Sudipta Dutta, Katsunori Wakabayashi. Tuning Charge and Spin Excitations in Zigzag Edge Nanographene Ribbons. Scientific Reports 2012, 2
(1)
https://doi.org/10.1038/srep00519
- Hong Seok Kang. Spin-polarized transport through heterobilayers of graphene nanoribbons and ruthenium-porphyrin tapes. Chemical Physics 2012, 405 , 148-154. https://doi.org/10.1016/j.chemphys.2012.07.001
- Michael R. Philpott, Yoshiyuki Kawazoe. Magnetism and structure of graphene nanodots with interiors modified by boron, nitrogen, and charge. The Journal of Chemical Physics 2012, 137
(5)
https://doi.org/10.1063/1.4742193
- Xiaowei Li, Jian Zhou, Qian Wang, Puru Jena. Magnetic properties of two dimensional silicon carbide triangular nanoflakes-based kagome lattices. Journal of Nanoparticle Research 2012, 14
(8)
https://doi.org/10.1007/s11051-012-1056-5
- Juan Antonio Casao Pérez. Spin susceptibilities in zigzag graphene nanoribbons. Physica E: Low-dimensional Systems and Nanostructures 2012, 44
(10)
, 2089-2093. https://doi.org/10.1016/j.physe.2012.06.019
- Min Kan, Jian Zhou, Yawei Li, Qiang Sun. Using carbon chains to mediate magnetic coupling in zigzag graphene nanoribbons. Applied Physics Letters 2012, 100
(17)
https://doi.org/10.1063/1.4705302
- Min Kan, Jian Zhou, Qiang Sun, Qian Wang, Yoshiyuki Kawazoe, Puru Jena. Tuning magnetic properties of graphene nanoribbons with topological line defects: From antiferromagnetic to ferromagnetic. Physical Review B 2012, 85
(15)
https://doi.org/10.1103/PhysRevB.85.155450
- Ping Lou, Jin-Yong Lee. Unusual Non-magnetic Metallic State in Narrow Silicon Carbon Nanoribbons by Electron or Hole Doping. Bulletin of the Korean Chemical Society 2012, 33
(3)
, 763-769. https://doi.org/10.5012/bkcs.2012.33.3.763
- S.S. Rao, A. Stesmans, Y. Wang, Y. Chen. Direct ESR evidence for magnetic behavior of graphite oxide. Physica E: Low-dimensional Systems and Nanostructures 2012, 44
(6)
, 1036-1039. https://doi.org/10.1016/j.physe.2011.07.019
- Hiroki Kotaka, Fumiyuki Ishii, Mineo Saito, Tadaaki Nagao, Shin Yaginuma. Edge States of Bi Nanoribbons on Bi Substrates: First-Principles Density Functional Study. Japanese Journal of Applied Physics 2012, 51 , 025201. https://doi.org/10.1143/JJAP.51.025201
- Hiroki Kotaka, Fumiyuki Ishii, Mineo Saito, Tadaaki Nagao, Shin Yaginuma. Edge States of Bi Nanoribbons on Bi Substrates: First-Principles Density Functional Study. Japanese Journal of Applied Physics 2012, 51
(2R)
, 025201. https://doi.org/10.7567/JJAP.51.025201
- Oleg V. Yazyev, M.I. Katsnelson. Theory of Magnetism in Graphene. 2012, 71-103. https://doi.org/10.1016/B978-0-44-453681-5.00004-2
- Lihua Pan, Jin An, Yong-Jun Liu, Chang-De Gong. Zigzag graphene nanoribbons without inversion symmetry. Physical Review B 2011, 84
(11)
https://doi.org/10.1103/PhysRevB.84.115434
- Keisuke Sawada, Fumiyuki Ishii, Mineo Saito. Magnetism in Dehydrogenated Armchair Graphene Nanoribbon. Journal of the Physical Society of Japan 2011, 80
(4)
, 044712. https://doi.org/10.1143/JPSJ.80.044712
- B. Xu, Y. H. Lu, Z. D. Sha, Y. P. Feng, J. Y. Lin. Coupling of magnetic edge states in Li-intercalated bilayer and multilayer zigzag graphene nanoribbons. EPL (Europhysics Letters) 2011, 94
(2)
, 27007. https://doi.org/10.1209/0295-5075/94/27007
- F J Culchac, A Latgé, A T Costa. Spin waves in zigzag graphene nanoribbons and the stability of edge ferromagnetism. New Journal of Physics 2011, 13
(3)
, 033028. https://doi.org/10.1088/1367-2630/13/3/033028
- T. L. Makarova, A. L. Shelankov, I. T. Serenkov, V. I. Sakharov, D. W. Boukhvalov. Anisotropic magnetism of graphite irradiated with medium-energy hydrogen and helium ions. Physical Review B 2011, 83
(8)
https://doi.org/10.1103/PhysRevB.83.085417
- K. Sawada, F. Ishii, M. Saito. Magnetism in graphene nanoribbons on Ni(111): First-principles density functional study. Physical Review B 2010, 82
(24)
https://doi.org/10.1103/PhysRevB.82.245426
- Sudipta Dutta, Swapan K. Pati. Edge reconstructions induce magnetic and metallic behavior in zigzag graphene nanoribbons. Carbon 2010, 48
(15)
, 4409-4413. https://doi.org/10.1016/j.carbon.2010.07.057
- Joo-Hyoung Lee, Jeffrey C. Grossman. Magnetic properties in graphene-graphane superlattices. Applied Physics Letters 2010, 97
(13)
https://doi.org/10.1063/1.3495771
- Hirohito Asano, Susumu Muraki, Hiroki Endo, Shunji Bandow, Sumio Iijima. Strong magnetism observed in carbon nanoparticles produced by the laser vaporization of a carbon pellet in hydrogen-containing Ar balance gas. Journal of Physics: Condensed Matter 2010, 22
(33)
, 334209. https://doi.org/10.1088/0953-8984/22/33/334209
- Tibor Höltzl, Tamás Veszprémi, Minh Tho Nguyen. Phosphaethyne polymers are analogues of cis-polyacetylene and graphane. Comptes Rendus Chimie 2010, 13
(8-9)
, 1173-1179. https://doi.org/10.1016/j.crci.2010.03.033
- D.S.L. Abergel, V. Apalkov, J. Berashevich, K. Ziegler, Tapash Chakraborty. Properties of graphene: a theoretical perspective. Advances in Physics 2010, 59
(4)
, 261-482. https://doi.org/10.1080/00018732.2010.487978
- Oleg V Yazyev. Emergence of magnetism in graphene materials and nanostructures. Reports on Progress in Physics 2010, 73
(5)
, 056501. https://doi.org/10.1088/0034-4885/73/5/056501
- J. Jung, A. H. MacDonald. Magnetoelectric coupling in zigzag graphene nanoribbons. Physical Review B 2010, 81
(19)
https://doi.org/10.1103/PhysRevB.81.195408
- Bo Xu, Jiang Yin, Hongming Weng, Yidong Xia, Xiangang Wan, Zhiguo Liu. Robust Dirac point in honeycomb-structure nanoribbons with zigzag edges. Physical Review B 2010, 81
(20)
https://doi.org/10.1103/PhysRevB.81.205419
- Michael R. Philpott, Yoshiyuki Kawazoe. Bonding and magnetism in nanosized graphene molecules: Singlet states of zigzag edged hexangulenes C6m2H6m(m=2,3,…,10). The Journal of Chemical Physics 2009, 131
(21)
https://doi.org/10.1063/1.3264885
- J. Jung, A. H. MacDonald. Carrier density and magnetism in graphene zigzag nanoribbons. Physical Review B 2009, 79
(23)
https://doi.org/10.1103/PhysRevB.79.235433
- . Our choice from the recent literature. Nature Physics 2009, 85-85. https://doi.org/10.1038/nphys1201
Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.
Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.
The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.