ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Localization of Dirac Electrons in Rotated Graphene Bilayers

View Author Information
Laboratoire de Physique Théorique et Modélisation, Université de Cergy-Pontoise-CNRS, F-95302 Cergy-Pontoise Cedex, France
Institut Néel, CNRS - Université Joseph Fourier, F-38042 Grenoble, France
* To whom correspondence should be addressed: [email protected]; [email protected]; [email protected]
Cite this: Nano Lett. 2010, 10, 3, 804–808
Publication Date (Web):February 1, 2010
https://doi.org/10.1021/nl902948m
Copyright © 2010 American Chemical Society

    Article Views

    11572

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    Abstract Image

    For Dirac electrons the Klein paradox implies that the confinement is difficult to achieve with an electrostatic potential although it can be of great importance for graphene-based devices. Here, ab initio and tight-binding approaches are combined and show that the wave function of Dirac electrons can be localized in rotated graphene bilayers due to the Moiré pattern. This localization of wave function is maximum in the limit of the small rotation angle between the two layers.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Cited By

    This article is cited by 603 publications.

    1. Yujin Wang, Haolei Dai, Zibo Liu, Dameng Liu. Van Hove Singularity Modulation of Phonon Transport in Twisted Bilayer Graphene. The Journal of Physical Chemistry C 2023, 127 (49) , 23752-23759. https://doi.org/10.1021/acs.jpcc.3c05942
    2. Hanping Xiong, Xianhua Nie, Li Zhao, Shuai Deng, Xiya Song. Twist-Angle-Dependent Phonon Transport of van der Waals MoSe2 Thermoelectric Materials for the Recycling of Waste Heat. ACS Applied Nano Materials 2023, 6 (17) , 15685-15696. https://doi.org/10.1021/acsanm.3c02512
    3. James E. Nunn, Andrew McEllistrim, Astrid Weston, Aitor Garcia-Ruiz, Matthew D. Watson, Marcin Mucha-Kruczynski, Cephise Cacho, Roman V. Gorbachev, Vladimir I. Fal’ko, Neil R. Wilson. ARPES Signatures of Few-Layer Twistronic Graphenes. Nano Letters 2023, 23 (11) , 5201-5208. https://doi.org/10.1021/acs.nanolett.3c01173
    4. Xiaorong Weng, Philippe David, Valérie Guisset, Lucio Martinelli, Olivier Geaymond, Johann Coraux, Gilles Renaud. Superstructures, Commensurations, and Rotation of Single-Layer TaS2 on Au(111) Induced by Cs Intercalation/Deintercalation. ACS Nano 2023, 17 (6) , 5459-5471. https://doi.org/10.1021/acsnano.2c10655
    5. Mustafa Neşet Çınar, Aleandro Antidormi, Viet-Hung Nguyen, Alessandro Kovtun, Samuel Lara-Avila, Andrea Liscio, Jean-Christophe Charlier, Stephan Roche, Hâldun Sevinçli. Toward Optimized Charge Transport in Multilayer Reduced Graphene Oxides. Nano Letters 2022, 22 (6) , 2202-2208. https://doi.org/10.1021/acs.nanolett.1c03883
    6. Jiao An, Jun Kang. Emergence and Tuning of Multiple Flat Bands in Twisted Bilayer γ-Graphyne. The Journal of Physical Chemistry Letters 2021, 12 (51) , 12283-12291. https://doi.org/10.1021/acs.jpclett.1c03384
    7. Yixuan Jiang, Saiyu Bu, Dechun Zhou, Xiaoguang Shi, Feng Pan, Qingmin Ji, Tianchao Niu. Two-Dimensional Iron Oxide on Au(111): Growth Mechanism and Interfacial Properties. The Journal of Physical Chemistry C 2021, 125 (44) , 24755-24763. https://doi.org/10.1021/acs.jpcc.1c08238
    8. Hiroaki Ishizuka, Ali Fahimniya, Francisco Guinea, Leonid Levitov. Purcell-like Enhancement of Electron–Phonon Interactions in Long-Period Superlattices: Linear-Temperature Resistivity and Cooling Power. Nano Letters 2021, 21 (18) , 7465-7471. https://doi.org/10.1021/acs.nanolett.1c00565
    9. Nikita V. Tepliakov, QuanSheng Wu, Oleg V. Yazyev. Crystal Field Effect and Electric Field Screening in Multilayer Graphene with and without Twist. Nano Letters 2021, 21 (11) , 4636-4642. https://doi.org/10.1021/acs.nanolett.1c00678
    10. Tobias Stauber, Tony Low, Guillermo Gómez-Santos. Plasmon-Enhanced Near-Field Chirality in Twisted van der Waals Heterostructures. Nano Letters 2020, 20 (12) , 8711-8718. https://doi.org/10.1021/acs.nanolett.0c03519
    11. Nikita V. Tepliakov, Artem V. Orlov, Evgeny V. Kundelev, Ivan D. Rukhlenko. Twisted Bilayer Graphene Quantum Dots for Chiral Nanophotonics. The Journal of Physical Chemistry C 2020, 124 (41) , 22704-22710. https://doi.org/10.1021/acs.jpcc.0c07416
    12. Olga Arroyo-Gascón, Ricardo Fernández-Perea, Eric Suárez Morell, Carlos Cabrillo, Leonor Chico. One-Dimensional Moiré Superlattices and Flat Bands in Collapsed Chiral Carbon Nanotubes. Nano Letters 2020, 20 (10) , 7588-7593. https://doi.org/10.1021/acs.nanolett.0c03091
    13. A. Kochaev, K. Katin, M. Maslov, R. Meftakhutdinov. AA-Stacked Borophene-Graphene Bilayer with Covalent Bonding: Ab Initio Investigation of Structural, Electronic and Elastic properties. The Journal of Physical Chemistry Letters 2020, 11 (14) , 5668-5673. https://doi.org/10.1021/acs.jpclett.0c01443
    14. Stephen Carr, Chenyuan Li, Ziyan Zhu, Efthimios Kaxiras, Subir Sachdev, Alexander Kruchkov. Ultraheavy and Ultrarelativistic Dirac Quasiparticles in Sandwiched Graphenes. Nano Letters 2020, 20 (5) , 3030-3038. https://doi.org/10.1021/acs.nanolett.9b04979
    15. Fatemeh Haddadi, QuanSheng Wu, Alex J. Kruchkov, Oleg V. Yazyev. Moiré Flat Bands in Twisted Double Bilayer Graphene. Nano Letters 2020, 20 (4) , 2410-2415. https://doi.org/10.1021/acs.nanolett.9b05117
    16. Jing Shang, Xiao Tang, Xin Tan, Aijun Du, Ting Liao, Sean C. Smith, Yuantong Gu, Chun Li, Liangzhi Kou. Stacking-Dependent Interlayer Magnetic Coupling in 2D CrI3/CrGeTe3 Nanostructures for Spintronics. ACS Applied Nano Materials 2020, 3 (2) , 1282-1288. https://doi.org/10.1021/acsanm.9b02055
    17. Maximilian Fleischmann, Reena Gupta, Florian Wullschläger, Simon Theil, Dominik Weckbecker, Velimir Meded, Sangeeta Sharma, Bernd Meyer, Samuel Shallcross. Perfect and Controllable Nesting in Minimally Twisted Bilayer Graphene. Nano Letters 2020, 20 (2) , 971-978. https://doi.org/10.1021/acs.nanolett.9b04027
    18. Tommaso Cea, Niels R. Walet, Francisco Guinea. Twists and the Electronic Structure of Graphitic Materials. Nano Letters 2019, 19 (12) , 8683-8689. https://doi.org/10.1021/acs.nanolett.9b03335
    19. Davide Mandelli, Wengen Ouyang, Michael Urbakh, Oded Hod. The Princess and the Nanoscale Pea: Long-Range Penetration of Surface Distortions into Layered Materials Stacks. ACS Nano 2019, 13 (7) , 7603-7609. https://doi.org/10.1021/acsnano.9b00645
    20. Jia Liu, Xiao Hu, Xiannian Chi, Junyi Yue, Jinzhong Cai, Zhisheng Peng, Julienne Impundu, Weiguo Chu, Lianfeng Sun. Raman Spectroscopy of Folded Tetralayer Graphenes Prepared by Atomic Force Microscope. The Journal of Physical Chemistry C 2018, 122 (49) , 28362-28367. https://doi.org/10.1021/acs.jpcc.8b09423
    21. Kuan-Sen Lin, Mei-Yin Chou. Topological Properties of Gapped Graphene Nanoribbons with Spatial Symmetries. Nano Letters 2018, 18 (11) , 7254-7260. https://doi.org/10.1021/acs.nanolett.8b03417
    22. Zhe Zhang, Gang Ouyang. Band Modulation of Black Phosphorus and Molybdenum Disulfide van der Waals Heterojunction: Twist and Electric Field Effects. ACS Applied Energy Materials 2018, 1 (10) , 5675-5684. https://doi.org/10.1021/acsaem.8b01228
    23. Ivan Brihuega and Felix Yndurain . Selective Hydrogen Adsorption in Graphene Rotated Bilayers. The Journal of Physical Chemistry B 2018, 122 (2) , 595-600. https://doi.org/10.1021/acs.jpcb.7b05085
    24. Penghong Ci, Yabin Chen, Jun Kang, Ryuji Suzuki, Hwan Sung Choe, Joonki Suh, Changhyun Ko, Taegyun Park, Ke Shen, Yoshihiro Iwasa, Sefaattin Tongay, Joel W. Ager, III, Lin-Wang Wang, and Junqiao Wu . Quantifying van der Waals Interactions in Layered Transition Metal Dichalcogenides from Pressure-Enhanced Valence Band Splitting. Nano Letters 2017, 17 (8) , 4982-4988. https://doi.org/10.1021/acs.nanolett.7b02159
    25. Liang Xu, Wei-Qing Huang, Wangyu Hu, Ke Yang, Bing-Xin Zhou, Anlian Pan, and Gui-Fang Huang . Two-Dimensional MoS2-Graphene-Based Multilayer van der Waals Heterostructures: Enhanced Charge Transfer and Optical Absorption, and Electric-Field Tunable Dirac Point and Band Gap. Chemistry of Materials 2017, 29 (13) , 5504-5512. https://doi.org/10.1021/acs.chemmater.7b00281
    26. Matthew Conrad, Feng Wang, Meredith Nevius, Katherine Jinkins, Arlensiú Celis, Maya Narayanan Nair, Amina Taleb-Ibrahimi, Antonio Tejeda, Yves Garreau, Alina Vlad, Alessandro Coati, Paul F. Miceli, and Edward H. Conrad . Wide Band Gap Semiconductor from a Hidden 2D Incommensurate Graphene Phase. Nano Letters 2017, 17 (1) , 341-347. https://doi.org/10.1021/acs.nanolett.6b04196
    27. Tobias Stauber and Heinerich Kohler . Quasi-Flat Plasmonic Bands in Twisted Bilayer Graphene. Nano Letters 2016, 16 (11) , 6844-6849. https://doi.org/10.1021/acs.nanolett.6b02587
    28. Huy Q. Ta, David J. Perello, Dinh Loc Duong, Gang Hee Han, Sandeep Gorantla, Van Luan Nguyen, Alicja Bachmatiuk, Slava V. Rotkin, Young Hee Lee, and Mark H. Rümmeli . Stranski–Krastanov and Volmer–Weber CVD Growth Regimes To Control the Stacking Order in Bilayer Graphene. Nano Letters 2016, 16 (10) , 6403-6410. https://doi.org/10.1021/acs.nanolett.6b02826
    29. Yong-Hui Tian, Jingsong Huang, Xiaolan Sheng, Bobby G. Sumpter, Mina Yoon, and Miklos Kertesz . Nitrogen Doping Enables Covalent-Like π–π Bonding between Graphenes. Nano Letters 2015, 15 (8) , 5482-5491. https://doi.org/10.1021/acs.nanolett.5b01940
    30. Jiang-Bin Wu, Zhi-Xin Hu, Xin Zhang, Wen-Peng Han, Yan Lu, Wei Shi, Xiao-Fen Qiao, Mari Ijiäs, Silvia Milana, Wei Ji, Andrea C. Ferrari, and Ping-Heng Tan . Interface Coupling in Twisted Multilayer Graphene by Resonant Raman Spectroscopy of Layer Breathing Modes. ACS Nano 2015, 9 (7) , 7440-7449. https://doi.org/10.1021/acsnano.5b02502
    31. Marta Pelc, Eric Suárez Morell, Luis Brey, and Leonor Chico . Electronic Conductance of Twisted Bilayer Nanoribbon Flakes. The Journal of Physical Chemistry C 2015, 119 (18) , 10076-10084. https://doi.org/10.1021/acs.jpcc.5b00685
    32. Chao-Hui Yeh, Yung-Chang Lin, Yu-Chen Chen, Chun-Chieh Lu, Zheng Liu, Kazu Suenaga, and Po-Wen Chiu . Gating Electron–Hole Asymmetry in Twisted Bilayer Graphene. ACS Nano 2014, 8 (7) , 6962-6969. https://doi.org/10.1021/nn501775h
    33. Thomas E. Beechem, Taisuke Ohta, Bogdan Diaconescu, and Jeremy T. Robinson . Rotational Disorder in Twisted Bilayer Graphene. ACS Nano 2014, 8 (2) , 1655-1663. https://doi.org/10.1021/nn405999z
    34. Lede Xian, Z. F. Wang, and M. Y. Chou . Coupled Dirac Fermions and Neutrino-like Oscillations in Twisted Bilayer Graphene. Nano Letters 2013, 13 (11) , 5159-5164. https://doi.org/10.1021/nl4024403
    35. Jun Kang, Jingbo Li, Shu-Shen Li, Jian-Bai Xia, and Lin-Wang Wang . Electronic Structural Moiré Pattern Effects on MoS2/MoSe2 2D Heterostructures. Nano Letters 2013, 13 (11) , 5485-5490. https://doi.org/10.1021/nl4030648
    36. Chun-Chieh Lu, Yung-Chang Lin, Zheng Liu, Chao-Hui Yeh, Kazu Suenaga, and Po-Wen Chiu . Twisting Bilayer Graphene Superlattices. ACS Nano 2013, 7 (3) , 2587-2594. https://doi.org/10.1021/nn3059828
    37. Jeremy T. Robinson, Scott W. Schmucker, C. Bogdan Diaconescu, James P. Long, James C. Culbertson, Taisuke Ohta, Adam L. Friedman, and Thomas E. Beechem . Electronic Hybridization of Large-Area Stacked Graphene Films. ACS Nano 2013, 7 (1) , 637-644. https://doi.org/10.1021/nn304834p
    38. Xiuyun Zhang, Ziwei Xu, Li Hui, John Xin, and Feng Ding . How the Orientation of Graphene Is Determined during Chemical Vapor Deposition Growth. The Journal of Physical Chemistry Letters 2012, 3 (19) , 2822-2827. https://doi.org/10.1021/jz301029g
    39. Ramakrishna Podila, Rahul Rao, Ryuichi Tsuchikawa, Masa Ishigami, and Apparao M. Rao . Raman Spectroscopy of Folded and Scrolled Graphene. ACS Nano 2012, 6 (7) , 5784-5790. https://doi.org/10.1021/nn302331p
    40. Xueheng Kuang, Pierre A Pantaleón Peralta, Jose Angel Silva-Guillén, Shengjun Yuan, Francisco Guinea, Zhen Zhan. Optical properties and plasmons in moiré structures. Journal of Physics: Condensed Matter 2024, 36 (17) , 173001. https://doi.org/10.1088/1361-648X/ad1f8c
    41. Viet-Anh Tran, Viet-Hung Nguyen, Jean-Christophe Charlier. Klein tunneling degradation and enhanced Fabry-Pérot interference in graphene/h-BN moiré-superlattice devices. 2D Materials 2024, 11 (2) , 025023. https://doi.org/10.1088/2053-1583/ad27e8
    42. Alejandro Pacheco-Sanjuan, Pradeep Kumar, Salvador Barraza-Lopez. Size-dependent ferroelectric-to-paraelectric sliding transformations and antipolar-to-ferroelectric topological phase transitions in binary homobilayers. Physical Review Materials 2024, 8 (4) https://doi.org/10.1103/PhysRevMaterials.8.044001
    43. Priyanka Sinha, Ayan Mondal, Simão Meneses João, Bheema Lingam Chittari. Electronic and magnetotransport properties of twisted bilayer graphene in the presence of external electric and magnetic fields. Physical Review B 2024, 109 (15) https://doi.org/10.1103/PhysRevB.109.155412
    44. Kai Shao, Hao Geng, Erfu Liu, Jose L. Lado, Wei Chen, D. Y. Xing. Non-Hermitian Moiré Valley Filter. Physical Review Letters 2024, 132 (15) https://doi.org/10.1103/PhysRevLett.132.156301
    45. Baojuan Xin, Kaixin Zou, Dayong Liu, Boyan Li, Hong Dong, Yahui Cheng, Hui Liu, Liang-Jian Zou, Feng Luo, Feng Lu, Wei-Hua Wang. Electronic structures and quantum capacitance of twisted bilayer graphene with defects based on three-band tight-binding model. Physical Chemistry Chemical Physics 2024, 26 (12) , 9687-9696. https://doi.org/10.1039/D3CP05913H
    46. Canxun Zhang, Tiancong Zhu, Salman Kahn, Tomohiro Soejima, Kenji Watanabe, Takashi Taniguchi, Alex Zettl, Feng Wang, Michael P. Zaletel, Michael F. Crommie. Manipulation of chiral interface states in a moiré quantum anomalous Hall insulator. Nature Physics 2024, 10 https://doi.org/10.1038/s41567-024-02444-w
    47. Mihir Pendharkar, Steven J. Tran, Gregory Zaborski, Joe Finney, Aaron L. Sharpe, Rupini V. Kamat, Sandesh S. Kalantre, Marisa Hocking, Nathan J. Bittner, Kenji Watanabe, Takashi Taniguchi, Bede Pittenger, Christina J. Newcomb, Marc A. Kastner, Andrew J. Mannix, David Goldhaber-Gordon. Torsional force microscopy of van der Waals moirés and atomic lattices. Proceedings of the National Academy of Sciences 2024, 121 (10) https://doi.org/10.1073/pnas.2314083121
    48. Cheng Huang, Xu Zhang, Gaopei Pan, Heqiu Li, Kai Sun, Xi Dai, Zi Yang Meng. Evolution from quantum anomalous Hall insulator to heavy-fermion semimetal in magic-angle twisted bilayer graphene. Physical Review B 2024, 109 (12) https://doi.org/10.1103/PhysRevB.109.125404
    49. Zhu-Jun Wang, Xiao Kong, Yuan Huang, Jun Li, Lihong Bao, Kecheng Cao, Yuxiong Hu, Jun Cai, Lifen Wang, Hui Chen, Yueshen Wu, Yiwen Zhang, Fei Pang, Zhihai Cheng, Petr Babor, Miroslav Kolibal, Zhongkai Liu, Yulin Chen, Qiang Zhang, Yi Cui, Kaihui Liu, Haitao Yang, Xinhe Bao, Hong-Jun Gao, Zhi Liu, Wei Ji, Feng Ding, Marc-Georg Willinger. Conversion of chirality to twisting via sequential one-dimensional and two-dimensional growth of graphene spirals. Nature Materials 2024, 23 (3) , 331-338. https://doi.org/10.1038/s41563-023-01632-y
    50. Ma Luo. Tuning the magnetic configuration of bilayer graphene quantum dot by twisting. MRS Bulletin 2024, 49 (3) , 194-204. https://doi.org/10.1557/s43577-023-00608-2
    51. Michael R. Koblischka, Anjela Koblischka-Veneva. Review of Moiré superconductivity and application of the Roeser-Huber formula. Superconductivity 2024, 9 , 100073. https://doi.org/10.1016/j.supcon.2023.100073
    52. Xin-Miao Qiu, Ning Yang, Weidong Chu, Jie-Yun Yan. Detection of the chirality of twisted bilayer graphene by the optical absorption. Physical Review B 2024, 109 (12) https://doi.org/10.1103/PhysRevB.109.125419
    53. Li-Ya Qiao, Xiu-Cai Jiang, Ze Ruan, Yu-Zhong Zhang. Tunable magnetism in bilayer transition metal dichalcogenides. Physical Review Materials 2024, 8 (3) https://doi.org/10.1103/PhysRevMaterials.8.034003
    54. Felipe Pérez Riffo, Sanber Vizcaya, E. Menéndez-Proupin, Juan M. Florez, Leonor Chico, Eric Suárez Morell. Behavior of localized states in double twisted ABC trilayer graphene. Carbon 2024, 222 , 118952. https://doi.org/10.1016/j.carbon.2024.118952
    55. Germán E. López, Chumin Wang. Superconductivity in correlated carbon nanotubes under pressure: A Bogoliubov-de Gennes study. Physica B: Condensed Matter 2024, 675 , 415602. https://doi.org/10.1016/j.physb.2023.415602
    56. Yingcheng Hu, Canhong Chen, Shengjie Dong, Lulu Yang, Zhuo Mao, Zhaoqi Pan, Wucheng Xie, Jiesen Li. First-principles prediction of moiré ultra-flat bands in twisted bilayer nitrogene. Solid State Communications 2024, 379 , 115422. https://doi.org/10.1016/j.ssc.2023.115422
    57. Jin Wang, Ali Khosravi, Andrea Vanossi, Erio Tosatti. Colloquium : Sliding and pinning in structurally lubric 2D material interfaces. Reviews of Modern Physics 2024, 96 (1) https://doi.org/10.1103/RevModPhys.96.011002
    58. Runze Han, Jiazhou Chen, Mengyue Zhang, Jinze Gao, Yicheng Xiong, Yue Pan, Tianxing Ma. Zigzag edge ferromagnetism of triangular-graphene-quantum-dot-like system. Physical Review B 2024, 109 (7) https://doi.org/10.1103/PhysRevB.109.075117
    59. Jie Pan, Haibo Xie, Pengyuan Shi, Xiaoyu Wang, Lihao Zhang, Zhe Wang. Berry curvature dipole in bilayer graphene with interlayer sliding. Physical Review B 2024, 109 (7) https://doi.org/10.1103/PhysRevB.109.075415
    60. Menghan Song, Jiarui Zhao, Yang Qi, Junchen Rong, Zi Yang Meng. Quantum criticality and entanglement for the two-dimensional long-range Heisenberg bilayer. Physical Review B 2024, 109 (8) https://doi.org/10.1103/PhysRevB.109.L081114
    61. Alina Wania Rodrigues, Maciej Bieniek, Paweł Potasz, Daniel Miravet, Ronny Thomale, Marek Korkusiński, Paweł Hawrylak. Atomistic theory of the moiré Hofstadter butterfly in magic-angle graphene. Physical Review B 2024, 109 (7) https://doi.org/10.1103/PhysRevB.109.075166
    62. Gerardo G Naumis, Saúl A Herrera, Shiva P Poudel, Hiro Nakamura, Salvador Barraza-Lopez. Mechanical, electronic, optical, piezoelectric and ferroic properties of strained graphene and other strained monolayers and multilayers: an update. Reports on Progress in Physics 2024, 87 (1) , 016502. https://doi.org/10.1088/1361-6633/ad06db
    63. Linwei Yao, Jiangni Yun, Peng Kang, Hongyuan Zhao, Siyu Zhang, Liru Zeng, Zhisong Bi, Junfeng Yan, Wu Zhao, Zhiyong Zhang. Twist angle and electric gating controllable electronic structure of the two-dimensional stacked BP homo-structure. Physical Chemistry Chemical Physics 2024, 556 https://doi.org/10.1039/D3CP03591C
    64. Abdullah Yar, Sadaf Rashid, Kashif Sabeeh. Twist angle tuned electronic transport in narrow bands. The European Physical Journal Plus 2024, 139 (1) https://doi.org/10.1140/epjp/s13360-023-04815-3
    65. Nina C. Georgoulea, Nuala M. Caffrey, Stephen R. Power. One-dimensional topological channels in heterostrained bilayer graphene. Physical Review B 2024, 109 (3) https://doi.org/10.1103/PhysRevB.109.035403
    66. Chiun-Yan Lin, Chih-Wei Chiu, Ming-Fa Lin. Feature-rich plasmon excitations in sliding bilayer graphene. Annals of Physics 2024, 460 , 169553. https://doi.org/10.1016/j.aop.2023.169553
    67. Tamanna Akter Jui, Raj Kumar Pal. Topological localized modes in moiré lattices of bilayer elastic plates with resonators. Journal of Sound and Vibration 2024, 99 , 118268. https://doi.org/10.1016/j.jsv.2024.118268
    68. L. L. Lage, A. Latgé. Quasi-one-dimensional carbon-based fractal lattices. Frontiers in Carbon 2023, 2 https://doi.org/10.3389/frcrb.2023.1305515
    69. Canxun Zhang, Tiancong Zhu, Tomohiro Soejima, Salman Kahn, Kenji Watanabe, Takashi Taniguchi, Alex Zettl, Feng Wang, Michael P. Zaletel, Michael F. Crommie. Local spectroscopy of a gate-switchable moiré quantum anomalous Hall insulator. Nature Communications 2023, 14 (1) https://doi.org/10.1038/s41467-023-39110-3
    70. Muhammad Sufyan Ramzan, Zachary A. H. Goodwin, Arash A. Mostofi, Agnieszka Kuc, Johannes Lischner. Effect of Coulomb impurities on the electronic structure of magic angle twisted bilayer graphene. npj 2D Materials and Applications 2023, 7 (1) https://doi.org/10.1038/s41699-023-00403-2
    71. Jiarui Zhao, Menghan Song, Yang Qi, Junchen Rong, Zi Yang Meng. Finite-temperature critical behaviors in 2D long-range quantum Heisenberg model. npj Quantum Materials 2023, 8 (1) https://doi.org/10.1038/s41535-023-00591-6
    72. Elias Andrade, Pierre A. Pantaleón, Francisco Guinea, Gerardo G. Naumis. Flat bands and electronic localization in twisted bilayer graphene nanoribbons. Physical Review B 2023, 108 (23) https://doi.org/10.1103/PhysRevB.108.235418
    73. Alejandro Jimeno‐Pozo, Zachary A. H. Goodwin, Pierre A. Pantaleón, Valerio Vitale, Lennart Klebl, Dante M. Kennes, Arash A. Mostofi, Johannes Lischner, Francisco Guinea. Short Versus Long Range Exchange Interactions in Twisted Bilayer Graphene. Advanced Physics Research 2023, 2 (12) https://doi.org/10.1002/apxr.202300048
    74. Chunxiang Zhao, Shuai Zhang, Chunyao Niu, Fei Wang, Bin Cui, Chong Li, Yu Jia. Electrostatic gating-driven transition from Schottky contact to p–n junction in moiré patterned Ars/Gra heterostructures. Journal of Materials Chemistry C 2023, 11 (44) , 15454-15462. https://doi.org/10.1039/D3TC02467A
    75. Ganesh C. Paul, Patrik Recher, Luis Santos. Particle dynamics and ergodicity breaking in twisted-bilayer optical lattices. Physical Review A 2023, 108 (5) https://doi.org/10.1103/PhysRevA.108.053305
    76. Tian Xia, Jianyun Cao, Mark A. Bissett, Harry Waring, Ying Xiang, Gergo Pinter, Andrey V. Kretinin, Pei Yang, Yanlei Zhu, Xin Zhao, Stephen A. Hodge, Thomas Thomson, Ian A. Kinloch. Graphenization of graphene oxide films for strongly anisotropic thermal conduction and high electromagnetic interference shielding. Carbon 2023, 215 , 118496. https://doi.org/10.1016/j.carbon.2023.118496
    77. Yiwei Zhao, Yan Li, Mingxia Liu, Kewei Xu, Fei Ma. Rotation angle dependent Li intercalation and the induced phase transition in bilayer MoTe2. Surfaces and Interfaces 2023, 42 , 103497. https://doi.org/10.1016/j.surfin.2023.103497
    78. Xin Sui, Zhibin Zhang, Kaihui Liu. Controllable growth of two-dimensional quantum materials. Science China Physics, Mechanics & Astronomy 2023, 66 (11) https://doi.org/10.1007/s11433-022-1989-9
    79. Zhen 镇 Zhang 张, Lu 露 Wen 文, Youkai 友凯 Qiao 乔, Zhiqiang 志强 Li 李. Effects of strain on the flat band in twisted bilayer graphene. Chinese Physics B 2023, 32 (10) , 107302. https://doi.org/10.1088/1674-1056/acb2c1
    80. V. Hung Nguyen, J. -C. Charlier. Recursive Green’s functions optimized for atomistic modelling of large superlattice-based devices. Journal of Computational Electronics 2023, 22 (5) , 1215-1230. https://doi.org/10.1007/s10825-023-02052-6
    81. Andreas Sinner, Pierre A. Pantaleón, Francisco Guinea. Strain-Induced Quasi-1D Channels in Twisted Moiré Lattices. Physical Review Letters 2023, 131 (16) https://doi.org/10.1103/PhysRevLett.131.166402
    82. Kai Liu. A Phase Field Crystal Method for Multilayer Graphene. Journal of Physics: Conference Series 2023, 2607 (1) , 012004. https://doi.org/10.1088/1742-6596/2607/1/012004
    83. Florie Mesple, Niels R. Walet, Guy Trambly de Laissardière, Francisco Guinea, Djordje Došenović, Hanako Okuno, Colin Paillet, Adrien Michon, Claude Chapelier, Vincent T. Renard. Giant Atomic Swirl in Graphene Bilayers with Biaxial Heterostrain. Advanced Materials 2023, 35 (41) https://doi.org/10.1002/adma.202306312
    84. Sofia Sanz, Nick Papior, Géza Giedke, Daniel Sánchez-Portal, Mads Brandbyge, Thomas Frederiksen. Mach–Zehnder-like interferometry with graphene nanoribbon networks. Journal of Physics: Condensed Matter 2023, 35 (37) , 374001. https://doi.org/10.1088/1361-648X/acd832
    85. Abdullah Yar. Brownian dynamics of Dirac fermions in twisted bilayer graphene. Physica Scripta 2023, 98 (9) , 095949. https://doi.org/10.1088/1402-4896/acf0f5
    86. Emmanuele Cappelluti, Jose Angel Silva-Guillén, Habib Rostami, Francisco Guinea. Flat-band optical phonons in twisted bilayer graphene. Physical Review B 2023, 108 (12) https://doi.org/10.1103/PhysRevB.108.125401
    87. Chiranjit Mondal, Rasoul Ghadimi, Bohm-Jung Yang. Quantum valley and subvalley Hall effect in large-angle twisted bilayer graphene. Physical Review B 2023, 108 (12) https://doi.org/10.1103/PhysRevB.108.L121405
    88. Yuma Kitagawa, Yuta Suzuki, Shin-ichiro Tezuka, Hiroshi Akera. Spin current between buckled atomic layers with a twist generated by locally broken inversion symmetry. Physical Review B 2023, 108 (11) https://doi.org/10.1103/PhysRevB.108.115431
    89. Lucas Baldo, Tomas Löthman, Patric Holmvall, Annica M. Black-Schaffer. Defect-induced band restructuring and length scales in twisted bilayer graphene. Physical Review B 2023, 108 (12) https://doi.org/10.1103/PhysRevB.108.125141
    90. Farzaneh Shayeganfar, Ali Ramazani. Quantum transport and fractional hall effect in Moiré correlated/anticorrelated interface channels. Journal of Materials Chemistry C 2023, 11 (34) , 11705-11718. https://doi.org/10.1039/D3TC02222F
    91. Spenser Talkington, Eugene J. Mele. Terahertz circular dichroism in commensurate twisted bilayer graphene. Physical Review B 2023, 108 (8) https://doi.org/10.1103/PhysRevB.108.085421
    92. Jin Wang, Ali Khosravi, Andrea Silva, Michele Fabrizio, Andrea Vanossi, Erio Tosatti. Bending stiffness collapse, buckling, topological bands of freestanding twisted bilayer graphene. Physical Review B 2023, 108 (8) https://doi.org/10.1103/PhysRevB.108.L081407
    93. Denis Gratias, Marianne Quiquandon. Crystallography of homophase twisted bilayers: coincidence, union lattices and space groups. Acta Crystallographica Section A Foundations and Advances 2023, 79 (4) , 301-317. https://doi.org/10.1107/S2053273323003662
    94. Saiyu Bu, Yao Chen, Debra J. Searles, Qinghong Yuan. Relationship between graphene nucleation density and epitaxial growth orientation on Cu(111) surfaces. Materials Today Chemistry 2023, 31 , 101612. https://doi.org/10.1016/j.mtchem.2023.101612
    95. Menghan Song, Jiarui Zhao, Chengkang Zhou, Zi Yang Meng. Dynamical properties of quantum many-body systems with long-range interactions. Physical Review Research 2023, 5 (3) https://doi.org/10.1103/PhysRevResearch.5.033046
    96. Guodong Yu, Yunhua Wang, Mikhail I. Katsnelson, Shengjun Yuan. Origin of the magic angle in twisted bilayer graphene from hybridization of valence and conduction bands. Physical Review B 2023, 108 (4) https://doi.org/10.1103/PhysRevB.108.045138
    97. Tomasz Chwiej. Look-alike Landau levels in locally biased twisted bilayer graphene. Physica B: Condensed Matter 2023, 658 , 414826. https://doi.org/10.1016/j.physb.2023.414826
    98. Xu Zhang, Gaopei Pan, Bin-Bin Chen, Heqiu Li, Kai Sun, Zi Yang Meng. Polynomial sign problem and topological Mott insulator in twisted bilayer graphene. Physical Review B 2023, 107 (24) https://doi.org/10.1103/PhysRevB.107.L241105
    99. Ahmed Khalifa, Ganpathy Murthy, Ribhu K. Kaul. Lattice model for the quantum anomalous Hall effect in moiré graphene. Physical Review B 2023, 107 (23) https://doi.org/10.1103/PhysRevB.107.235137
    100. Kyungjin Shin, Yunsu Jang, Jiseon Shin, Jeil Jung, Hongki Min. Electronic structure of biased alternating-twist multilayer graphene. Physical Review B 2023, 107 (24) https://doi.org/10.1103/PhysRevB.107.245139
    Load more citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect