ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

pH-Dependent Toxicity of High Aspect Ratio ZnO Nanowires in Macrophages Due to Intracellular Dissolution

View Author Information
Multi-Imaging Centre, Department of Physiology, Development and Neuroscience/Anatomy Building, University of Cambridge, Downing Street, Cambridge CB3 2DY, United Kingdom
Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
§ MRC Human Nutrition Research, Elsie Widdowson Laboratory, Fulbourn Road, Cambridge CB1 9NL, United Kingdom
* Address correspondence to [email protected]
Cite this: ACS Nano 2010, 4, 11, 6767–6779
Publication Date (Web):October 15, 2010
https://doi.org/10.1021/nn101192z
Copyright © 2010 American Chemical Society

    Article Views

    3529

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (4)»

    Abstract

    Abstract Image

    High-aspect ratio ZnO nanowires have become one of the most promising products in the nanosciences within the past few years with a multitude of applications at the interface of optics and electronics. The interaction of zinc with cells and organisms is complex, with both deficiency and excess causing severe effects. The emerging significance of zinc for many cellular processes makes it imperative to investigate the biological safety of ZnO nanowires in order to guarantee their safe economic exploitation. In this study, ZnO nanowires were found to be toxic to human monocyte macrophages (HMMs) at similar concentrations as ZnCl2. Confocal microscopy on live cells confirmed a rise in intracellular Zn2+ concentrations prior to cell death. In vitro, ZnO nanowires dissolved very rapidly in a simulated body fluid of lysosomal pH, whereas they were comparatively stable at extracellular pH. Bright-field transmission electron microscopy (TEM) showed a rapid macrophage uptake of ZnO nanowire aggregates by phagocytosis. Nanowire dissolution occurred within membrane-bound compartments, triggered by the acidic pH of the lysosomes. ZnO nanowire dissolution was confirmed by scanning electron microscopy/energy-dispersive X-ray spectrometry. Deposition of electron-dense material throughout the ZnO nanowire structures observed by TEM could indicate adsorption of cellular components onto the wires or localized zinc-induced protein precipitation. Our study demonstrates that ZnO nanowire toxicity in HMMs is due to pH-triggered, intracellular release of ionic Zn2+ rather than the high-aspect nature of the wires. Cell death had features of necrosis as well as apoptosis, with mitochondria displaying severe structural changes. The implications of these findings for the application of ZnO nanowires are discussed.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Figure S1 contains three confocal live imaging movies showing the rise of intracellular, free Zn2+ in HMMs prior to cell death. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 176 publications.

    1. Yilin Mao, Liang Wang, Zhengyi Xu, Wenjia Xie, Yuting Wang, Wei Qiao, Zhou Zhu, Jian Wang. Developing a Selection Framework for Zinc Ion-Based Biomaterial Design: Guided by the Biosafety Assessment of ZIF-8 and ZnO. ACS Biomaterials Science & Engineering 2024, Article ASAP.
    2. Zhuoyue Li, Shuang Zhang, Man Liu, Ting Zhong, Hui Li, Jingru Wang, Heng Zhao, Yubo Tian, Hui Wang, Jingwen Wang, Meiqi Xu, Shumin Wang, Xuan Zhang. Antitumor Activity of the Zinc Oxide Nanoparticles Coated with Low-Molecular-Weight Heparin and Doxorubicin Complex In Vitro and In Vivo. Molecular Pharmaceutics 2022, 19 (11) , 4179-4190. https://doi.org/10.1021/acs.molpharmaceut.2c00553
    3. Maxim Gongalsky, Georgii Gvindzhiliia, Konstantin Tamarov, Olga Shalygina, Alexander Pavlikov, Valery Solovyev, Andrey Kudryavtsev, Vladimir Sivakov, Liubov A. Osminkina. Radiofrequency Hyperthermia of Cancer Cells Enhanced by Silicic Acid Ions Released During the Biodegradation of Porous Silicon Nanowires. ACS Omega 2019, 4 (6) , 10662-10669. https://doi.org/10.1021/acsomega.9b01030
    4. Chunyue Gao, Yi Jin, Guang Jia, Xiaomin Suo, Huifang Liu, Dandan Liu, Xinjian Yang, Kun Ge, Xing-Jie Liang, Shuxiang Wang, Jinchao Zhang. Y2O3 Nanoparticles Caused Bone Tissue Damage by Breaking the Intracellular Phosphate Balance in Bone Marrow Stromal Cells. ACS Nano 2019, 13 (1) , 313-323. https://doi.org/10.1021/acsnano.8b06211
    5. Marion J. Limo, Anna Sola-Rabada, Estefania Boix, Veeranjaneyulu Thota, Zayd C. Westcott, Valeria Puddu, Carole C. Perry. Interactions between Metal Oxides and Biomolecules: from Fundamental Understanding to Applications. Chemical Reviews 2018, 118 (22) , 11118-11193. https://doi.org/10.1021/acs.chemrev.7b00660
    6. Timothy Ellis, Michele Chiappi, Andrés García-Trenco, Maryam Al-Ejji, Srijata Sarkar, Theoni K. Georgiou, Milo S. P. Shaffer, Teresa D. Tetley, Stephan Schwander, Mary P. Ryan, Alexandra E. Porter. Multimetallic Microparticles Increase the Potency of Rifampicin against Intracellular Mycobacterium tuberculosis. ACS Nano 2018, 12 (6) , 5228-5240. https://doi.org/10.1021/acsnano.7b08264
    7. Jun Li, Lei Tan, Xiangmei Liu, Zhenduo Cui, Xianjin Yang, Kelvin Wai Kwok Yeung, Paul K. Chu, and Shuilin Wu . Balancing Bacteria–Osteoblast Competition through Selective Physical Puncture and Biofunctionalization of ZnO/Polydopamine/Arginine-Glycine-Aspartic Acid-Cysteine Nanorods. ACS Nano 2017, 11 (11) , 11250-11263. https://doi.org/10.1021/acsnano.7b05620
    8. Josh E. Eixenberger, Catherine B. Anders, Rebecca J. Hermann, Raquel J. Brown, Kongara M. Reddy, Alex Punnoose, and Denise G. Wingett . Rapid Dissolution of ZnO Nanoparticles Induced by Biological Buffers Significantly Impacts Cytotoxicity. Chemical Research in Toxicology 2017, 30 (8) , 1641-1651. https://doi.org/10.1021/acs.chemrestox.7b00136
    9. Jing-Bo Chao, Xiao-Xia Zhou, Mo-Hai Shen, Zhi-Qiang Tan, Rui Liu, Su-Juan Yu, Xiao-Wei Wang, and Jing-Fu Liu . Speciation Analysis of Labile and Total Silver(I) in Nanosilver Dispersions and Environmental Waters by Hollow Fiber Supported Liquid Membrane Extraction. Environmental Science & Technology 2015, 49 (24) , 14213-14220. https://doi.org/10.1021/acs.est.5b02917
    10. A. Cacchioli, F. Ravanetti, R. Alinovi, S. Pinelli, F. Rossi, M. Negri, E. Bedogni, M. Campanini, M. Galetti, M. Goldoni, P. Lagonegro, R. Alfieri, F. Bigi, and G. Salviati . Cytocompatibility and Cellular Internalization Mechanisms of SiC/SiO2 Nanowires. Nano Letters 2014, 14 (8) , 4368-4375. https://doi.org/10.1021/nl501255m
    11. Qingshan Mu, Calin A. David, Josep Galceran, Carlos Rey-Castro, Łukasz Krzemiński, Rachel Wallace, Faith Bamiduro, Steven J. Milne, Nicole S. Hondow, Rik Brydson, Gema Vizcay-Barrena, Michael N. Routledge, Lars J. C. Jeuken, and Andy P. Brown . Systematic Investigation of the Physicochemical Factors That Contribute to the Toxicity of ZnO Nanoparticles. Chemical Research in Toxicology 2014, 27 (4) , 558-567. https://doi.org/10.1021/tx4004243
    12. Christa Watson, Jing Ge, Joel Cohen, Georgios Pyrgiotakis, Bevin P. Engelward, and Philip Demokritou . High-Throughput Screening Platform for Engineered Nanoparticle-Mediated Genotoxicity Using CometChip Technology. ACS Nano 2014, 8 (3) , 2118-2133. https://doi.org/10.1021/nn404871p
    13. Simon A. James, Bryce N. Feltis, Martin D. de Jonge, Manoj Sridhar, Justin A. Kimpton, Matteo Altissimo, Sheridan Mayo, Changxi Zheng, Andrew Hastings, Daryl L. Howard, David J. Paterson, Paul Frank A. Wright, Gareth F. Moorhead, Terence W. Turney, and Jing Fu . Quantification of ZnO Nanoparticle Uptake, Distribution, and Dissolution within Individual Human Macrophages. ACS Nano 2013, 7 (12) , 10621-10635. https://doi.org/10.1021/nn403118u
    14. Leona D. Scanlan, Robert B. Reed, Alexandre V. Loguinov, Philipp Antczak, Abderrahmane Tagmount, Shaul Aloni, Daniel Thomas Nowinski, Pauline Luong, Christine Tran, Nadeeka Karunaratne, Don Pham, Xin Xin Lin, Francesco Falciani, Christopher P. Higgins, James F. Ranville, Chris D. Vulpe, and Benjamin Gilbert . Silver Nanowire Exposure Results in Internalization and Toxicity to Daphnia magna. ACS Nano 2013, 7 (12) , 10681-10694. https://doi.org/10.1021/nn4034103
    15. Shu Chen, Ioannis G. Theodorou, Angela E. Goode, Andrew Gow, Stephan Schwander, Junfeng (Jim) Zhang, Kian Fan Chung, Teresa D. Tetley, Milo S. Shaffer, Mary P. Ryan, and Alexandra E. Porter . High-Resolution Analytical Electron Microscopy Reveals Cell Culture Media-Induced Changes to the Chemistry of Silver Nanowires. Environmental Science & Technology 2013, 47 (23) , 13813-13821. https://doi.org/10.1021/es403264d
    16. Bey Fen Leo, Shu Chen, Yoshihiko Kyo, Karla-Luise Herpoldt, Nicholas J. Terrill, Iain E. Dunlop, David S. McPhail, Milo S. Shaffer, Stephan Schwander, Andrew Gow, Junfeng Zhang, Kian Fan Chung, Teresa D. Tetley, Alexandra E. Porter, and Mary P. Ryan . The Stability of Silver Nanoparticles in a Model of Pulmonary Surfactant. Environmental Science & Technology 2013, 47 (19) , 11232-11240. https://doi.org/10.1021/es403377p
    17. Mathias Könczöl, Ella Goldenberg, Sandra Ebeling, Bianca Schäfer, Manuel Garcia-Käufer, Richard Gminski, Bernard Grobéty, Barbara Rothen-Rutishauser, Irmgard Merfort, Reto Gieré, and Volker Mersch-Sundermann . Cellular Uptake and Toxic Effects of Fine and Ultrafine Metal-Sulfate Particles in Human A549 Lung Epithelial Cells. Chemical Research in Toxicology 2012, 25 (12) , 2687-2703. https://doi.org/10.1021/tx300333z
    18. Zhaoxia Ji, Xiang Wang, Haiyuan Zhang, Sijie Lin, Huan Meng, Bingbing Sun, Saji George, Tian Xia, André E. Nel, and Jeffrey I. Zink . Designed Synthesis of CeO2 Nanorods and Nanowires for Studying Toxicological Effects of High Aspect Ratio Nanomaterials. ACS Nano 2012, 6 (6) , 5366-5380. https://doi.org/10.1021/nn3012114
    19. Danhong Yan, Guangfu Yin, Zhongbing Huang, Liang Li, Xiaoming Liao, Xianchun Chen, Yadong Yao, and Baoqing Hao . Cellular Compatibility of Biomineralized ZnO Nanoparticles Based on Prokaryotic and Eukaryotic Systems. Langmuir 2011, 27 (21) , 13206-13211. https://doi.org/10.1021/la2008107
    20. Hao Hong, Jian Shi, Yunan Yang, Yin Zhang, Jonathan W. Engle, Robert J. Nickles, Xudong Wang, and Weibo Cai . Cancer-Targeted Optical Imaging with Fluorescent Zinc Oxide Nanowires. Nano Letters 2011, 11 (9) , 3744-3750. https://doi.org/10.1021/nl201782m
    21. Faheem Muhammad, Mingyi Guo, Wenxiu Qi, Fuxing Sun, Aifei Wang, Yingjie Guo, and Guangshan Zhu . pH-Triggered Controlled Drug Release from Mesoporous Silica Nanoparticles via Intracelluar Dissolution of ZnO Nanolids. Journal of the American Chemical Society 2011, 133 (23) , 8778-8781. https://doi.org/10.1021/ja200328s
    22. Abdullah Shoaib, Sammia Shahid, Sana Mansoor, Mohsin Javed, Shahid Iqbal, Sajid Mahmood, Ali Bahadur, Fadi Jaber, Matar Alshalwi. Tailoring of an anti-diabetic drug empagliflozin onto zinc oxide nanoparticles: characterization and in vitro evaluation of anti-hyperglycemic potential. Scientific Reports 2024, 14 (1) https://doi.org/10.1038/s41598-024-52523-4
    23. Abdulsalam Abuelsamen, Shahrom Mahmud, Ghaseb N. Makhadmeh, Tariq AlZoubi, AhmadM. Al Diabat, Natheer A. Algadri, Osama Abu Noqta, Eman Absi, Amin Malik Shah Abdul Majid, Ammar A. Oglat. Pluronic F-127-coated ZnO nanoparticles as superior photosensitizers for effective bladder cancer photodynamic therapy: In-vitro evaluation. Journal of Drug Delivery Science and Technology 2024, 95 , 105550. https://doi.org/10.1016/j.jddst.2024.105550
    24. Simona Dordevic, Dani Dordevic, Karolina Tesikova, Petr Sedlacek, Michal Kalina, Lukas Vapenka, Marcela Nejezchlebova, Jakub Treml, Bohuslava Tremlova, Hana Koudelková Mikulášková. Nanometals incorporation into active and biodegradable chitosan films. Heliyon 2024, 10 (7) , e28430. https://doi.org/10.1016/j.heliyon.2024.e28430
    25. Darwish Badran, Ayman El-Baz El-Agroudy, Amira Adly Kassab, Khaled Saad El-Bayoumi, Zienab Helmy Eldken, Noha Ramadan Mohammed Elswaidy. Impact of peripheral blood mononuclear cells preconditioned by activated platelet supernatant in managing gastric mucosal damage induced by zinc oxide nanoparticles in rats. Anatomy & Cell Biology 2024, 57 (1) , 105-118. https://doi.org/10.5115/acb.23.217
    26. Majida Jumahh Al-Ragi, Sahar S Karieb, Neila Fathallah, Amira Zaïri. Effect of Zinc Oxide Nanoparticles on Liver Functions in Albino Mice. Cureus 2024, 23 https://doi.org/10.7759/cureus.54822
    27. Jing Yu, Fangyin Zhu, Ya Yang, Peixia Zhang, Yilin Zheng, Haijun Chen, Yu Gao. Ultrasmall iron-doped zinc oxide nanoparticles for ferroptosis assisted sono-chemodynamic cancer therapy. Colloids and Surfaces B: Biointerfaces 2023, 232 , 113606. https://doi.org/10.1016/j.colsurfb.2023.113606
    28. Manuel Alejandro Herrera-Rodríguez, María del Pilar Ramos-Godinez, Agustina Cano-Martínez, Francisco Correa Segura, Angélica Ruiz-Ramírez, Natalia Pavón, Elizabeth Lira-Silva, Rocío Bautista-Pérez, Rosina Sánchez Thomas, Norma Laura Delgado-Buenrostro, Yolanda Irasema Chirino, Rebeca López-Marure. Food-grade titanium dioxide and zinc oxide nanoparticles induce toxicity and cardiac damage after oral exposure in rats. Particle and Fibre Toxicology 2023, 20 (1) https://doi.org/10.1186/s12989-023-00553-7
    29. Bushra H. Shnawa, Parwin J. Jalil, Vinos M. Faris, Bilal A. Abdulla, Kawa J. Hamad, Mukhtar H. Ahmed. Anthelmintic activity of biosynthesized zinc oxide nanoparticles using Typha domingensis pers. against Echinococcus granulosus protoscoleces. Toxicology and Environmental Health Sciences 2023, 15 (4) , 411-423. https://doi.org/10.1007/s13530-023-00192-7
    30. Yang Yang, Yefei Zhu, Kairuo Wang, Yunqiu Miao, Yuanyuan Zhang, Jie Gao, Huanlong Qin, Yang Zhang. Activation of autophagy by in situ Zn2+ chelation reaction for enhanced tumor chemoimmunotherapy. Bioactive Materials 2023, 29 , 116-131. https://doi.org/10.1016/j.bioactmat.2023.06.022
    31. Hnin Ei Thu, Mohamed Haider, Shahzeb Khan, Mohammad Sohail, Zahid Hussain. Nanotoxicity induced by nanomaterials: A review of factors affecting nanotoxicity and possible adaptations. OpenNano 2023, 14 , 100190. https://doi.org/10.1016/j.onano.2023.100190
    32. Jagriti Gupta, P A Hassan, K C Barick. Multifunctional ZnO nanostructures: a next generation nanomedicine for cancer therapy, targeted drug delivery, bioimaging, and tissue regeneration. Nanotechnology 2023, 34 (28) , 282003. https://doi.org/10.1088/1361-6528/accc35
    33. Shaimaa A. Abdelrahman, Amal S. El-Shal, Abeer A. Abdelrahman, Ebtehal Zaid Hassen Saleh, Abeer A. Mahmoud. Neuroprotective effects of quercetin on the cerebellum of zinc oxide nanoparticles (ZnoNps)-exposed rats. Tissue Barriers 2023, 11 (3) https://doi.org/10.1080/21688370.2022.2115273
    34. Junlie Yao, Aoran Zhang, Yue Qiu, Zihou Li, Xiaoxia Wu, Zhouhua Li, Aiguo Wu, Fang Yang. Navigating zinc-involved nanomedicine in oncotherapy. Nanoscale 2023, 15 (9) , 4261-4276. https://doi.org/10.1039/D2NR06857E
    35. Zhiyan Yan, Chenrui Liu, Yun Liu, Xiaoqian Tan, Xinyue Li, Yan Shi, Chunlian Ding. The interaction of ZnO nanoparticles, Cr(VI), and microorganisms triggers a novel ROS scavenging strategy to inhibit microbial Cr(VI) reduction. Journal of Hazardous Materials 2023, 443 , 130375. https://doi.org/10.1016/j.jhazmat.2022.130375
    36. Wei Cui, Yuhua Zhao, Yanyang Han, Xiumin Wang, Rengui Guan, Shanshan Liu, Tao Zhang, Tao He. Electrochemically Accessing ROS‐Related Cytotoxicity through the Oxygen Reduction Reaction to Identify Antimicrobial Agents**. ChemElectroChem 2022, 9 (17) https://doi.org/10.1002/celc.202200560
    37. Barkat Ali Khan, Hina Khalid, Muhammad Khalid Khan, Khaled M. Hosny, Shahzeb Khan, Waleed Y. Rizg, Awaji Y. Safhi, Abdulrahman A. Halwani, Alshaimaa M. Almehmady, Farid Menaa. Biodegradable Polymers-Based Smart Nanocrystals for Loxoprofen Delivery with Enhanced Solubility: Design, Fabrication and Physical Characterizations. Polymers 2022, 14 (17) , 3464. https://doi.org/10.3390/polym14173464
    38. Mohsen Maddah, Charles P. Unsworth, Gideon J. Gouws, Natalie O. V. Plank, . Synthesis of encapsulated ZnO nanowires provide low impedance alternatives for microelectrodes. PLOS ONE 2022, 17 (6) , e0270164. https://doi.org/10.1371/journal.pone.0270164
    39. Mahshid Chireh, Zahra Miri Karam, Mahmoud Naseri, Saeideh Jafarinejad-Farsangi, Hamidreza Ghaedamini. Synthesis, characterization and cytotoxicity study of graphene/doped ZnO/SiO2 nanocomposites. Applied Physics A 2022, 128 (4) https://doi.org/10.1007/s00339-022-05367-6
    40. Ozge Inal, Ulya Badilli, A. Sibel Ozkan, Fariba Mollarasouli. Bioactive hybrid nanowires for drug delivery. 2022, 269-301. https://doi.org/10.1016/B978-0-323-85754-3.00012-5
    41. Brandon Ortiz-Casas, Andrés Galdámez-Martínez, Jorge Gutiérrez-Flores, Andrés Baca Ibañez, Pritam Kumar Panda, Guillermo Santana, Horacio Astudillo de la Vega, Mrutyunjay Suar, Citlaly Gutiérrez Rodelo, Ajeet Kaushik, Yogendra Kumar Mishra, Ateet Dutt. Bio-acceptable 0D and 1D ZnO nanostructures for cancer diagnostics and treatment. Materials Today 2021, 50 , 533-569. https://doi.org/10.1016/j.mattod.2021.07.025
    42. Zhiyuan Lv, Hongda Sun, Wei Du, Ruoyi Li, Hui Mao, Peter M. Kopittke. Interaction of different-sized ZnO nanoparticles with maize (Zea mays): Accumulation, biotransformation and phytotoxicity. Science of The Total Environment 2021, 796 , 148927. https://doi.org/10.1016/j.scitotenv.2021.148927
    43. Yiling Li, Wen-Xiong Wang. Uptake, intracellular dissolution, and cytotoxicity of silver nanowires in cell models. Chemosphere 2021, 281 , 130762. https://doi.org/10.1016/j.chemosphere.2021.130762
    44. Th. Abhishek Singh, Anirudh Sharma, Neeraj Tejwan, Noyel Ghosh, Joydeep Das, Parames C. Sil. A state of the art review on the synthesis, antibacterial, antioxidant, antidiabetic and tissue regeneration activities of zinc oxide nanoparticles. Advances in Colloid and Interface Science 2021, 295 , 102495. https://doi.org/10.1016/j.cis.2021.102495
    45. Anqi Sun, Ben Zhong Tang, Karl Wah-Keung Tsim, Wen-Xiong Wang. Unique interplay between Zn 2+ and nZnO determined the dynamic cellular stress in zebrafish cells. Environmental Science: Nano 2021, 8 (8) , 2324-2335. https://doi.org/10.1039/D1EN00146A
    46. Shamaa Anjum, Arvina Rajasekar. Surface Modification of Dental Implants - A Review. Journal of Evolution of Medical and Dental Sciences 2021, 10 (17) , 1246-1250. https://doi.org/10.14260/jemds/2021/265
    47. Emma Innes, Humphrey H. P. Yiu, Polly McLean, William Brown, Matthew Boyles. Simulated biological fluids – a systematic review of their biological relevance and use in relation to inhalation toxicology of particles and fibres. Critical Reviews in Toxicology 2021, 51 (3) , 217-248. https://doi.org/10.1080/10408444.2021.1903386
    48. John R. Aggas, Brandon K. Walther, Sara Abasi, Christian N. Kotanen, Olukayode Karunwi, Ann M. Wilson, Anthony Guiseppi-Elie. On the intersection of molecular bioelectronics and biosensors: 20 Years of C3B. Biosensors and Bioelectronics 2021, 176 , 112889. https://doi.org/10.1016/j.bios.2020.112889
    49. Meral Elcan, Hakan Erdoğan, Orhan Acar. Determination of total and extractable amount of aluminum, copper, zinc, and lead in surgical suture threads by electrothermal atomic absorption spectrometry. Spectroscopy Letters 2021, 54 (2) , 140-150. https://doi.org/10.1080/00387010.2021.1877157
    50. Marina Musa, Takao Yasui, Kazuki Nagashima, Masafumi Horiuchi, Zetao Zhu, Quanli Liu, Taisuke Shimada, Akihide Arima, Takeshi Yanagida, Yoshinobu Baba. ZnO/SiO 2 core/shell nanowires for capturing CpG rich single-stranded DNAs. Analytical Methods 2021, 13 (3) , 337-344. https://doi.org/10.1039/D0AY02138E
    51. Eşref Demir. A review on nanotoxicity and nanogenotoxicity of different shapes of nanomaterials. Journal of Applied Toxicology 2021, 41 (1) , 118-147. https://doi.org/10.1002/jat.4061
    52. Ghada H. Naguib, Gamal S. Abd El-Aziz, Hisham A. Mously, Sahar M. Bukhary, Mohamed T. Hamed. Assessment of the dose-dependent biochemical and cytotoxicity of zein-coated MgO nanowires in male and female albino rats. Annals of Medicine 2021, 53 (1) , 1850-1862. https://doi.org/10.1080/07853890.2021.1991587
    53. Th. Abhishek Singh, Joydeep Das, Parames C. Sil. Zinc oxide nanoparticles: A comprehensive review on its synthesis, anticancer and drug delivery applications as well as health risks. Advances in Colloid and Interface Science 2020, 286 , 102317. https://doi.org/10.1016/j.cis.2020.102317
    54. Juan Wu, Qi Yu, Thijs Bosker, Martina G. Vijver, Willie J. G. M. Peijnenburg. Quantifying the relative contribution of particulate versus dissolved silver to toxicity and uptake kinetics of silver nanowires in lettuce: impact of size and coating. Nanotoxicology 2020, 14 (10) , 1399-1414. https://doi.org/10.1080/17435390.2020.1831639
    55. Hamed Serati-Nouri, Amir Jafari, Leila Roshangar, Mehdi Dadashpour, Younes Pilehvar-Soltanahmadi, Nosratollah Zarghami. Biomedical applications of zeolite-based materials: A review. Materials Science and Engineering: C 2020, 116 , 111225. https://doi.org/10.1016/j.msec.2020.111225
    56. Sudeep Lama, Olivier Merlin-Zhang, Chunhua Yang. In Vitro and In Vivo Models for Evaluating the Oral Toxicity of Nanomedicines. Nanomaterials 2020, 10 (11) , 2177. https://doi.org/10.3390/nano10112177
    57. Chien-Yuan Pan, Fang-Yu Lin, Lung-Sen Kao, Chien-Chang Huang, Pei-Shan Liu, . Zinc oxide nanoparticles modulate the gene expression of ZnT1 and ZIP8 to manipulate zinc homeostasis and stress-induced cytotoxicity in human neuroblastoma SH-SY5Y cells. PLOS ONE 2020, 15 (9) , e0232729. https://doi.org/10.1371/journal.pone.0232729
    58. Xiaoming Cai, Xi Liu, Jun Jiang, Meng Gao, Weili Wang, Huizhen Zheng, Shujuan Xu, Ruibin Li. Molecular Mechanisms, Characterization Methods, and Utilities of Nanoparticle Biotransformation in Nanosafety Assessments. Small 2020, 16 (36) https://doi.org/10.1002/smll.201907663
    59. Yan Bao, Yan Yan, Jianzhong Ma, Wenbo Zhang, Yan Zong. ZnO encapsulants: Design and new view. Advances in Colloid and Interface Science 2020, 283 , 102238. https://doi.org/10.1016/j.cis.2020.102238
    60. Kummara Madhusudana Rao, Maduru Suneetha, Gyu Tae Park, Anam Giridhar Babu, Sung Soo Han. Hemostatic, biocompatible, and antibacterial non-animal fungal mushroom-based carboxymethyl chitosan-ZnO nanocomposite for wound-healing applications. International Journal of Biological Macromolecules 2020, 155 , 71-80. https://doi.org/10.1016/j.ijbiomac.2020.03.170
    61. S. Chen, S.L. Greasley, Z.Y. Ong, P. Naruphontjirakul, S.J. Page, J.V. Hanna, A.N. Redpath, O. Tsigkou, S. Rankin, M.P. Ryan, A.E. Porter, J.R. Jones. Biodegradable zinc-containing mesoporous silica nanoparticles for cancer therapy. Materials Today Advances 2020, 6 , 100066. https://doi.org/10.1016/j.mtadv.2020.100066
    62. Seishiro Hirano, Sanae Kanno. Relevance of autophagy markers to cytotoxicity of zinc compounds in macrophages. Toxicology in Vitro 2020, 65 , 104816. https://doi.org/10.1016/j.tiv.2020.104816
    63. Giuseppe Arrabito, Yana Aleeva, Vittorio Ferrara, Giuseppe Prestopino, Clara Chiappara, Bruno Pignataro. On the Interaction between 1D Materials and Living Cells. Journal of Functional Biomaterials 2020, 11 (2) , 40. https://doi.org/10.3390/jfb11020040
    64. Taisuke Shimada, Takao Yasui, Akihiro Yonese, Takeshi Yanagida, Noritada Kaji, Masaki Kanai, Kazuki Nagashima, Tomoji Kawai, Yoshinobu Baba. Mechanical Rupture-Based Antibacterial and Cell-Compatible ZnO/SiO2 Nanowire Structures Formed by Bottom-Up Approaches. Micromachines 2020, 11 (6) , 610. https://doi.org/10.3390/mi11060610
    65. Nerea Iturrioz-Rodríguez, Miguel Ángel Correa-Duarte, Rafael Valiente, Mónica L. Fanarraga. Engineering Sub-Cellular Targeting Strategies to Enhance Safe Cytosolic Silica Particle Dissolution in Cells. Pharmaceutics 2020, 12 (6) , 487. https://doi.org/10.3390/pharmaceutics12060487
    66. Elena Navarro-Palomares, Paula González-Saiz, Carlos Renero-Lecuna, Rosa Martín-Rodríguez, Fernando Aguado, David González-Alonso, Luis Fernández Barquín, Jesús González, Manuel Bañobre-López, Mónica L. Fanarraga, Rafael Valiente. Dye-doped biodegradable nanoparticle SiO 2 coating on zinc- and iron-oxide nanoparticles to improve biocompatibility and for in vivo imaging studies. Nanoscale 2020, 12 (10) , 6164-6175. https://doi.org/10.1039/C9NR08743E
    67. Zhiling Guo, Yali Luo, Peng Zhang, Andrew J. Chetwynd, Heidi Qunhui Xie, Fazel Abdolahpur Monikh, Wunqun Tao, Changjian Xie, Yiyun Liu, Li Xu, Zhiyong Zhang, Eugenia Valsami-Jones, Iseult Lynch, Bin Zhao. Deciphering the particle specific effects on metabolism in rat liver and plasma from ZnO nanoparticles versus ionic Zn exposure. Environment International 2020, 136 , 105437. https://doi.org/10.1016/j.envint.2019.105437
    68. B.J. Raos, M. Maddah, E.S. Graham, N.O.V. Plank, C.P. Unsworth. ZnO nanowire florets promote the growth of human neurons. Materialia 2020, 9 , 100577. https://doi.org/10.1016/j.mtla.2019.100577
    69. Tahereh Ziglari, Donald S. Anderson, Andrij Holian. Determination of the relative contribution of the non-dissolved fraction of ZnO NP on membrane permeability and cytotoxicity. Inhalation Toxicology 2020, 32 (2) , 86-95. https://doi.org/10.1080/08958378.2020.1743394
    70. Robin Augustine, Anwarul Hasan. Cellular response to nanobiomaterials. 2020, 473-504. https://doi.org/10.1016/B978-0-08-102967-1.00022-0
    71. Antreas Afantitis, Georgia Melagraki, Panagiotis Isigonis, Andreas Tsoumanis, Dimitra Danai Varsou, Eugenia Valsami-Jones, Anastasios Papadiamantis, Laura-Jayne A. Ellis, Haralambos Sarimveis, Philip Doganis, Pantelis Karatzas, Periklis Tsiros, Irene Liampa, Vladimir Lobaskin, Dario Greco, Angela Serra, Pia Anneli Sofia Kinaret, Laura Aliisa Saarimäki, Roland Grafström, Pekka Kohonen, Penny Nymark, Egon Willighagen, Tomasz Puzyn, Anna Rybinska-Fryca, Alexander Lyubartsev, Keld Alstrup Jensen, Jan Gerit Brandenburg, Stephen Lofts, Claus Svendsen, Samuel Harrison, Dieter Maier, Kaido Tamm, Jaak Jänes, Lauri Sikk, Maria Dusinska, Eleonora Longhin, Elise Rundén-Pran, Espen Mariussen, Naouale El Yamani, Wolfgang Unger, Jörg Radnik, Alexander Tropsha, Yoram Cohen, Jerzy Leszczynski, Christine Ogilvie Hendren, Mark Wiesner, David Winkler, Noriyuki Suzuki, Tae Hyun Yoon, Jang-Sik Choi, Natasha Sanabria, Mary Gulumian, Iseult Lynch. NanoSolveIT Project: Driving nanoinformatics research to develop innovative and integrated tools for in silico nanosafety assessment. Computational and Structural Biotechnology Journal 2020, 18 , 583-602. https://doi.org/10.1016/j.csbj.2020.02.023
    72. Niels Hadrup, Feriel Rahmani, Nicklas R. Jacobsen, Anne T. Saber, Petra Jackson, Stefan Bengtson, Andrew Williams, Håkan Wallin, Sabina Halappanavar, Ulla Vogel. Acute phase response and inflammation following pulmonary exposure to low doses of zinc oxide nanoparticles in mice. Nanotoxicology 2019, 13 (9) , 1275-1292. https://doi.org/10.1080/17435390.2019.1654004
    73. Eloisa Ferrone, Rodolfo Araneo, Andrea Notargiacomo, Marialilia Pea, Antonio Rinaldi. ZnO Nanostructures and Electrospun ZnO–Polymeric Hybrid Nanomaterials in Biomedical, Health, and Sustainability Applications. Nanomaterials 2019, 9 (10) , 1449. https://doi.org/10.3390/nano9101449
    74. Prashant Sharma, Na-Yoon Jang, Jae-Won Lee, Bum Chul Park, Young Keun Kim, Nam-Hyuk Cho. Application of ZnO-Based Nanocomposites for Vaccines and Cancer Immunotherapy. Pharmaceutics 2019, 11 (10) , 493. https://doi.org/10.3390/pharmaceutics11100493
    75. Ya Huang, Jianan Song, Cheng Yang, Yuanzheng Long, Hui Wu. Scalable manufacturing and applications of nanofibers. Materials Today 2019, 28 , 98-113. https://doi.org/10.1016/j.mattod.2019.04.018
    76. Pavlina Jelinkova, Aninda Mazumdar, Vishma Pratap Sur, Silvia Kociova, Kristyna Dolezelikova, Ana Maria Jimenez Jimenez, Zuzana Koudelkova, Pawan Kumar Mishra, Kristyna Smerkova, Zbynek Heger, Marketa Vaculovicova, Amitava Moulick, Vojtech Adam. Nanoparticle-drug conjugates treating bacterial infections. Journal of Controlled Release 2019, 307 , 166-185. https://doi.org/10.1016/j.jconrel.2019.06.013
    77. Yiqun Du, Jian Zhang, Shiyan Yan, Zhonghua Tao, Chenchen Wang, Mingzhu Huang, Xiaowei Zhang. PEGylated zinc oxide nanoparticles induce apoptosis in pancreatic cancer cells through reactive oxygen species. IET Nanobiotechnology 2019, 13 (5) , 536-540. https://doi.org/10.1049/iet-nbt.2018.5327
    78. Sanjiv Singh. Zinc oxide nanoparticles impacts: cytotoxicity, genotoxicity, developmental toxicity, and neurotoxicity. Toxicology Mechanisms and Methods 2019, 29 (4) , 300-311. https://doi.org/10.1080/15376516.2018.1553221
    79. Iftekhar Hassan, Fohad Mabood Husain, Rais Ahmad Khan, Hossam Ebaid, Jameel Al-Tamimi, Ibrahim M. Alhazza, Shazia Aman, Khalid Elfaki Ibrahim. Ameliorative effect of zinc oxide nanoparticles against potassium bromate-mediated toxicity in Swiss albino rats. Environmental Science and Pollution Research 2019, 26 (10) , 9966-9980. https://doi.org/10.1007/s11356-019-04443-4
    80. Sufiniza Nordin, Shahrom Mahmud, Azman Seeni, Nur Mariam Kamaruddin, Nur Syuhada Ahmad. Characterization and In Vitro Toxicity of French Process Zinc Oxide Nanoparticles with High Surficial Zinc. Solid State Phenomena 2019, 290 , 274-279. https://doi.org/10.4028/www.scientific.net/SSP.290.274
    81. Carlos Renero-Lecuna, Nerea Iturrioz-Rodríguez, Eloisa González-Lavado, Esperanza Padín-González, Elena Navarro-Palomares, Lourdes Valdivia-Fernández, Lorena García-Hevia, Mónica L. Fanarraga, Lorena González-Legarreta. Effect of Size, Shape, and Composition on the Interaction of Different Nanomaterials with HeLa Cells. Journal of Nanomaterials 2019, 2019 , 1-11. https://doi.org/10.1155/2019/7518482
    82. Zhen Chen, Shi-Bo Cheng, Pan Cao, Quan-Fa Qiu, Yan Chen, Min Xie, Yu Xu, Wei-Hua Huang. Detection of exosomes by ZnO nanowires coated three-dimensional scaffold chip device. Biosensors and Bioelectronics 2018, 122 , 211-216. https://doi.org/10.1016/j.bios.2018.09.033
    83. S. Sruthi, J. Ashtami, P.V. Mohanan. Biomedical application and hidden toxicity of Zinc oxide nanoparticles. Materials Today Chemistry 2018, 10 , 175-186. https://doi.org/10.1016/j.mtchem.2018.09.008
    84. Eric S. Melby, Yi Cui, Jaya Borgatta, Arielle C. Mensch, Mimi N. Hang, William B. Chrisler, Alice Dohnalkova, John M. Van Gilder, Catherine M. Alvarez, Jordan N. Smith, Robert J. Hamers, Galya Orr. Impact of lithiated cobalt oxide and phosphate nanoparticles on rainbow trout gill epithelial cells. Nanotoxicology 2018, 12 (10) , 1166-1181. https://doi.org/10.1080/17435390.2018.1508785
    85. Mona G. Amer, Rehab A. Karam. Morphological and Biochemical Features of Cerebellar Cortex After Exposure to Zinc Oxide Nanoparticles: Possible Protective Role of Curcumin. The Anatomical Record 2018, 301 (8) , 1454-1466. https://doi.org/10.1002/ar.23807
    86. Jalil Javedani Bafekr, Razieh Jalal. In vitro antibacterial activity of ceftazidime, unlike ciprofloxacin, improves in the presence of ZnO nanofluids under acidic conditions. IET Nanobiotechnology 2018, 12 (5) , 640-646. https://doi.org/10.1049/iet-nbt.2017.0119
    87. Jose E. Perez, Nouf Alsharif, Aldo I. Martínez-Banderas, Basmah Othman, Jasmeen Merzaban, Timothy Ravasi, Jürgen Kosel. Review of In Vitro Toxicity of Nanoparticles and Nanorods—Part 2. 2018https://doi.org/10.5772/intechopen.78616
    88. Frank S. Bierkandt, Lars Leibrock, Sandra Wagener, Peter Laux, Andreas Luch. The impact of nanomaterial characteristics on inhalation toxicity. Toxicology Research 2018, 7 (3) , 321-346. https://doi.org/10.1039/c7tx00242d
    89. Quan Zhong, Jinhuan Tian, Tianlong Liu, Zhenzhao Guo, Shan Ding, Hong Li. Preparation and antibacterial properties of carboxymethyl chitosan/ZnO nanocomposite microspheres with enhanced biocompatibility. Materials Letters 2018, 212 , 58-61. https://doi.org/10.1016/j.matlet.2017.10.062
    90. Luisa Racca, Marta Canta, Bianca Dumontel, Andrea Ancona, Tania Limongi, Nadia Garino, Marco Laurenti, Giancarlo Canavese, Valentina Cauda. Zinc Oxide Nanostructures in Biomedicine. 2018, 171-187. https://doi.org/10.1016/B978-0-12-814156-4.00012-4
    91. Catherine B. Anders, Josh E. Eixenberger, Nevil A. Franco, Rebecca J. Hermann, Katherine D. Rainey, Jordan J. Chess, Alex Punnoose, Denise G. Wingett. ZnO nanoparticle preparation route influences surface reactivity, dissolution and cytotoxicity. Environmental Science: Nano 2018, 5 (2) , 572-588. https://doi.org/10.1039/C7EN00888K
    92. R.I.M. Asri, W.S.W. Harun, M. Samykano, N.A.C. Lah, S.A.C. Ghani, F. Tarlochan, M.R. Raza. Corrosion and surface modification on biocompatible metals: A review. Materials Science and Engineering: C 2017, 77 , 1261-1274. https://doi.org/10.1016/j.msec.2017.04.102
    93. Yu Hang Leung, Mu Yao Guo, Angel P. Y. Ma, Alan M. C. Ng, Aleksandra B. Djurišić, Natalie Degger, Frederick C. C. Leung. Transmission electron microscopy artifacts in characterization of the nanomaterial-cell interactions. Applied Microbiology and Biotechnology 2017, 101 (13) , 5469-5479. https://doi.org/10.1007/s00253-017-8305-6
    94. Xu Yu, Yiqiu Xia, Yi Tang, Wen-Long Zhang, Yin-Ting Yeh, Huaguang Lu, Si-Yang Zheng. A Nanostructured Microfluidic Immunoassay Platform for Highly Sensitive Infectious Pathogen Detection. Small 2017, 13 (24) , 1700425. https://doi.org/10.1002/smll.201700425
    95. Xu Yu, Yiqiu Xia, Yi Tang, Wen-Long Zhang, Yin-Ting Yeh, Huaguang Lu, Si-Yang Zheng. Zinc oxide nanorod integrated microdevice for multiplex virus detection. 2017, 850-853. https://doi.org/10.1109/TRANSDUCERS.2017.7994182
    96. Melisa Bunderson-Schelvan, Andrij Holian, Raymond F. Hamilton. Engineered nanomaterial-induced lysosomal membrane permeabilization and anti-cathepsin agents. Journal of Toxicology and Environmental Health, Part B 2017, 20 (4) , 230-248. https://doi.org/10.1080/10937404.2017.1305924
    97. Zhengqing Yan, Andong Zhao, Xinping Liu, Jinsong Ren, Xiaogang Qu. A pH-switched mesoporous nanoreactor for synergetic therapy. Nano Research 2017, 10 (5) , 1651-1661. https://doi.org/10.1007/s12274-016-1377-2
    98. Kyu-Bong Kim, Young Woo Kim, Seong Kwang Lim, Tae Hyun Roh, Du Yeon Bang, Seul Min Choi, Duck Soo Lim, Yeon Joo Kim, Seol-Hwa Baek, Min-Kook Kim, Hyo-Seon Seo, Min-Hwa Kim, Hyung Sik Kim, Joo Young Lee, Sam Kacew, Byung-Mu Lee. Risk assessment of zinc oxide, a cosmetic ingredient used as a UV filter of sunscreens. Journal of Toxicology and Environmental Health, Part B 2017, 20 (3) , 155-182. https://doi.org/10.1080/10937404.2017.1290516
    99. Cheng Ai Li, Duk Hwan Kim, Jeunghee Park, Duckjong Kim. Membrane-based electrochemical device for monitoring nanowires in aqueous samples. Sensors and Actuators B: Chemical 2017, 242 , 238-243. https://doi.org/10.1016/j.snb.2016.11.065
    100. Swati C Asani, Rinku D Umrani, Kishore M Paknikar. Differential dose-dependent effects of zinc oxide nanoparticles on oxidative stress-mediated pancreatic β-cell death. Nanomedicine 2017, 12 (7) , 745-759. https://doi.org/10.2217/nnm-2016-0426
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect