ACS Publications. Most Trusted. Most Cited. Most Read
Diffusion Limited Photoluminescence Quantum Yields in 1-D Semiconductors: Single-Wall Carbon Nanotubes
My Activity
    Article

    Diffusion Limited Photoluminescence Quantum Yields in 1-D Semiconductors: Single-Wall Carbon Nanotubes
    Click to copy article linkArticle link copied!

    View Author Information
    Institute of Physical and Theoretical Chemistry & Department of Chemistry and Pharmacy, University of Würzburg, D-97074 Würzburg, Germany
    Institute of Organic Chemistry, University of Münster, 48149 Münster, Germany
    § Institute of Inorganic Chemistry, University of Köln, 50939 Köln, Germany
    * Address correspondence to [email protected]
    ⊥Current address: Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, United States
    Other Access Options

    ACS Nano

    Cite this: ACS Nano 2010, 4, 12, 7161–7168
    Click to copy citationCitation copied!
    https://doi.org/10.1021/nn101612b
    Published November 24, 2010
    Copyright © 2010 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Photoluminescence quantum yields and nonradiative decay of the excitonic S1 state in length fractionated (6,5) single-wall carbon nanotubes (SWNTs) are studied by continuous wave and time-resolved fluorescence spectroscopy. The experimental data are modeled by diffusion limited contact quenching of excitons at stationary quenching sites including tube ends. A combined analysis of the time-resolved photoluminescence decay and the length dependence of photoluminescence quantum yields (PL QYs) from SWNTs in sodium cholate suspensions allows to determine the exciton diffusion coefficient D = 10.7 ± 0.4 cm2s−1 and lifetime τPL for long tubes of 20 ± 1 ps. PL quantum yields ΦPL are found to scale with the inverse diffusion coefficient and the square of the mean quenching site distance, here ld = 120 ± 25 nm. The results suggest that low PL QYs of SWNTs are due to the combination of high-diffusive exciton mobility with the presence of only a few quenching sites.

    Copyright © 2010 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 165 publications.

    1. Daria D. Blach, Dana B. Sulas-Kern, Bipeng Wang, Run Long, Qiushi Ma, Oleg V. Prezhdo, Jeffrey L. Blackburn, Libai Huang. Long-Range Charge Transport Facilitated by Electron Delocalization in MoS2 and Carbon Nanotube Heterostructures. ACS Nano 2025, 19 (3) , 3439-3447. https://doi.org/10.1021/acsnano.4c12858
    2. Simon Settele, Florian Stammer, Finn L. Sebastian, Sebastian Lindenthal, Simon R. Wald, Han Li, Benjamin S. Flavel, Jana Zaumseil. Easy Access to Bright Oxygen Defects in Biocompatible Single-Walled Carbon Nanotubes via a Fenton-like Reaction. ACS Nano 2024, 18 (31) , 20667-20678. https://doi.org/10.1021/acsnano.4c06448
    3. Andrew T. Krasley, Eugene Li, Jesus M. Galeana, Chandima Bulumulla, Abraham G. Beyene, Gozde S. Demirer. Carbon Nanomaterial Fluorescent Probes and Their Biological Applications. Chemical Reviews 2024, 124 (6) , 3085-3185. https://doi.org/10.1021/acs.chemrev.3c00581
    4. Sonja Wieland, Abdurrahman Ali El Yumin, Simon Settele, Jana Zaumseil. Photo-Activated, Solid-State Introduction of Luminescent Oxygen Defects into Semiconducting Single-Walled Carbon Nanotubes. The Journal of Physical Chemistry C 2024, 128 (5) , 2012-2021. https://doi.org/10.1021/acs.jpcc.3c07000
    5. Finn L. Sebastian, Felicitas Becker, Yohei Yomogida, Yuuya Hosokawa, Simon Settele, Sebastian Lindenthal, Kazuhiro Yanagi, Jana Zaumseil. Unified Quantification of Quantum Defects in Small-Diameter Single-Walled Carbon Nanotubes by Raman Spectroscopy. ACS Nano 2023, 17 (21) , 21771-21781. https://doi.org/10.1021/acsnano.3c07668
    6. Nicolas F. Zorn, Simon Settele, Finn L. Sebastian, Sebastian Lindenthal, Jana Zaumseil. Tuning Electroluminescence from Functionalized SWCNT Networks Further into the Near-Infrared. ACS Applied Optical Materials 2023, 1 (10) , 1706-1714. https://doi.org/10.1021/acsaom.3c00261
    7. Stephanie M. Tenney, Lauren A. Tan, Xuanheng Tan, Mikayla L. Sonnleitner, Belle Coffey, Jillian A. Williams, Ricky Ronquillo, Timothy L. Atallah, Tasnim Ahmed, Justin R. Caram. Efficient 2D to 0D Energy Transfer in HgTe Nanoplatelet-Quantum Dot Heterostructures through High-Speed Exciton Diffusion. The Journal of Physical Chemistry Letters 2023, 14 (42) , 9456-9463. https://doi.org/10.1021/acs.jpclett.3c02168
    8. Klaus H. Eckstein, Pascal Kunkel, Markus Voelckel, Friedrich Schöppler, Tobias Hertel. Trions, Exciton Dynamics, and Spectral Modifications in Doped Carbon Nanotubes: A Singular Defect-Driven Mechanism. The Journal of Physical Chemistry C 2023, 127 (39) , 19659-19667. https://doi.org/10.1021/acs.jpcc.3c04889
    9. Chen Ma, C. Alexander Schrage, Juliana Gretz, Anas Akhtar, Linda Sistemich, Lena Schnitzler, Han Li, Kristina Tschulik, Benjamin S. Flavel, Sebastian Kruss. Stochastic Formation of Quantum Defects in Carbon Nanotubes. ACS Nano 2023, 17 (16) , 15989-15998. https://doi.org/10.1021/acsnano.3c04314
    10. Sonja Wieland, Abdurrahman Ali El Yumin, Jan M. Gotthardt, Jana Zaumseil. Impact of Dielectric Environment on Trion Emission from Single-Walled Carbon Nanotube Networks. The Journal of Physical Chemistry C 2023, 127 (6) , 3112-3122. https://doi.org/10.1021/acs.jpcc.2c08338
    11. Min-Ken Li, Adnan Riaz, Martina Wederhake, Karin Fink, Avishek Saha, Simone Dehm, Xiaowei He, Friedrich Schöppler, Manfred M. Kappes, Han Htoon, Valentin N. Popov, Stephen K. Doorn, Tobias Hertel, Frank Hennrich, Ralph Krupke. Electroluminescence from Single-Walled Carbon Nanotubes with Quantum Defects. ACS Nano 2022, 16 (8) , 11742-11754. https://doi.org/10.1021/acsnano.2c03083
    12. Finn L. Sebastian, Nicolas F. Zorn, Simon Settele, Sebastian Lindenthal, Felix J. Berger, Christoph Bendel, Han Li, Benjamin S. Flavel, Jana Zaumseil. Absolute Quantification of sp3 Defects in Semiconducting Single-Wall Carbon Nanotubes by Raman Spectroscopy. The Journal of Physical Chemistry Letters 2022, 13 (16) , 3542-3548. https://doi.org/10.1021/acs.jpclett.2c00758
    13. Alexander Spreinat, Maria M. Dohmen, Jan Lüttgens, Niklas Herrmann, Lars F. Klepzig, Robert Nißler, Sabrina Weber, Florian A. Mann, Jannika Lauth, Sebastian Kruss. Quantum Defects in Fluorescent Carbon Nanotubes for Sensing and Mechanistic Studies. The Journal of Physical Chemistry C 2021, 125 (33) , 18341-18351. https://doi.org/10.1021/acs.jpcc.1c05432
    14. Nicolas F. Zorn, Felix J. Berger, Jana Zaumseil. Charge Transport in and Electroluminescence from sp3-Functionalized Carbon Nanotube Networks. ACS Nano 2021, 15 (6) , 10451-10463. https://doi.org/10.1021/acsnano.1c02878
    15. Yoshiaki Niidome, Boda Yu, Gergely Juhasz, Tsuyohiko Fujigaya, Tomohiro Shiraki. Structure Dependence of Photoluminescence Solvatochromic Energy Shifts Based on Exciton Localization in Locally Functionalized Single-Walled Carbon Nanotubes. The Journal of Physical Chemistry C 2021, 125 (23) , 12758-12766. https://doi.org/10.1021/acs.jpcc.1c02109
    16. Felix J. Berger, J. Alejandro de Sousa, Shen Zhao, Nicolas F. Zorn, Abdurrahman Ali El Yumin, Aleix Quintana García, Simon Settele, Alexander Högele, Núria Crivillers, Jana Zaumseil. Interaction of Luminescent Defects in Carbon Nanotubes with Covalently Attached Stable Organic Radicals. ACS Nano 2021, 15 (3) , 5147-5157. https://doi.org/10.1021/acsnano.0c10341
    17. Jan M. Lüttgens, Felix J. Berger, Jana Zaumseil. Population of Exciton–Polaritons via Luminescent sp3 Defects in Single-Walled Carbon Nanotubes. ACS Photonics 2021, 8 (1) , 182-193. https://doi.org/10.1021/acsphotonics.0c01129
    18. Shiekh Zia Uddin, Hyungjin Kim, Monica Lorenzon, Matthew Yeh, Der-Hsien Lien, Edward S. Barnard, Han Htoon, Alexander Weber-Bargioni, Ali Javey. Neutral Exciton Diffusion in Monolayer MoS2. ACS Nano 2020, 14 (10) , 13433-13440. https://doi.org/10.1021/acsnano.0c05305
    19. Brendan J. Gifford, Svetlana Kilina, Han Htoon, Stephen K. Doorn, Sergei Tretiak. Controlling Defect-State Photophysics in Covalently Functionalized Single-Walled Carbon Nanotubes. Accounts of Chemical Research 2020, 53 (9) , 1791-1801. https://doi.org/10.1021/acs.accounts.0c00210
    20. Jessica T. Flach, Jialiang Wang, Michael S. Arnold, Martin T. Zanni. Providing Time to Transfer: Longer Lifetimes Lead to Improved Energy Transfer in Films of Semiconducting Carbon Nanotubes. The Journal of Physical Chemistry Letters 2020, 11 (15) , 6016-6024. https://doi.org/10.1021/acs.jpclett.0c01555
    21. Mengyu Gao, Hao Liu, Sunmoon Yu, Sheena Louisia, Ye Zhang, David P. Nenon, A. Paul Alivisatos, Peidong Yang. Scaling Laws of Exciton Recombination Kinetics in Low Dimensional Halide Perovskite Nanostructures. Journal of the American Chemical Society 2020, 142 (19) , 8871-8879. https://doi.org/10.1021/jacs.0c02000
    22. Rintaro Kawabe, Hiroshi Takaki, Takayuki Ibi, Yutaka Maeda, Kenta Nakagawa, Hideyuki Maki. Pure and Efficient Single-Photon Sources by Shortening and Functionalizing Air-Suspended Carbon Nanotubes. ACS Applied Nano Materials 2020, 3 (1) , 682-690. https://doi.org/10.1021/acsanm.9b02209
    23. Xiaojun Wei, Takeshi Tanaka, Shilong Li, Mayumi Tsuzuki, Guowei Wang, Zhihui Yao, Linhai Li, Yohei Yomogida, Atsushi Hirano, Huaping Liu, Hiromichi Kataura. Photoluminescence Quantum Yield of Single-Wall Carbon Nanotubes Corrected for the Photon Reabsorption Effect. Nano Letters 2020, 20 (1) , 410-417. https://doi.org/10.1021/acs.nanolett.9b04095
    24. Daniel R. McCulley, Mitchell J. Senger, Andrea Bertoni, Vasili Perebeinos, Ethan D. Minot. Extremely Efficient Photocurrent Generation in Carbon Nanotube Photodiodes Enabled by a Strong Axial Electric Field. Nano Letters 2020, 20 (1) , 433-440. https://doi.org/10.1021/acs.nanolett.9b04151
    25. Guoqing Zhou, Chao Cen, Shuyi Wang, Mingsen Deng, Oleg V. Prezhdo. Electron–Phonon Scattering Is Much Weaker in Carbon Nanotubes than in Graphene Nanoribbons. The Journal of Physical Chemistry Letters 2019, 10 (22) , 7179-7187. https://doi.org/10.1021/acs.jpclett.9b02874
    26. Linda Chio, Jackson Travis Del Bonis-O’Donnell, Mark A. Kline, Jae Hong Kim, Ian R. McFarlane, Ronald N. Zuckermann, Markita P. Landry. Electrostatic Assemblies of Single-Walled Carbon Nanotubes and Sequence-Tunable Peptoid Polymers Detect a Lectin Protein and Its Target Sugars. Nano Letters 2019, 19 (11) , 7563-7572. https://doi.org/10.1021/acs.nanolett.8b04955
    27. Brendan J. Gifford, Xiaowei He, Mijin Kim, Hyejin Kwon, Avishek Saha, Andrew E. Sifain, YuHuang Wang, Han Htoon, Svetlana Kilina, Stephen K. Doorn, Sergei Tretiak. Optical Effects of Divalent Functionalization of Carbon Nanotubes. Chemistry of Materials 2019, 31 (17) , 6950-6961. https://doi.org/10.1021/acs.chemmater.9b01438
    28. Felix J. Berger, Jan Lüttgens, Tim Nowack, Tobias Kutsch, Sebastian Lindenthal, Lucas Kistner, Christine C. Müller, Lukas M. Bongartz, Victoria A. Lumsargis, Yuriy Zakharko, Jana Zaumseil. Brightening of Long, Polymer-Wrapped Carbon Nanotubes by sp3 Functionalization in Organic Solvents. ACS Nano 2019, 13 (8) , 9259-9269. https://doi.org/10.1021/acsnano.9b03792
    29. Yunfeng Li, Xiaojian Wu, Mijin Kim, Jacob Fortner, Haoran Qu, YuHuang Wang. Fluorescent Ultrashort Nanotubes from Defect-Induced Chemical Cutting. Chemistry of Materials 2019, 31 (12) , 4536-4544. https://doi.org/10.1021/acs.chemmater.9b01196
    30. Younghee Kim, Kirill A. Velizhanin, Xiaowei He, Ibrahim Sarpkaya, Yohei Yomogida, Takeshi Tanaka, Hiromichi Kataura, Stephen K. Doorn, Han Htoon. Photoluminescence Intensity Fluctuations and Temperature-Dependent Decay Dynamics of Individual Carbon Nanotube sp3 Defects. The Journal of Physical Chemistry Letters 2019, 10 (6) , 1423-1430. https://doi.org/10.1021/acs.jpclett.8b03732
    31. Brendan J. Gifford . Functionalized Carbon Nanotube Excited States and Optical Properties. 2019, 181-207. https://doi.org/10.1021/bk-2019-1331.ch008
    32. Xiaowei He, Kirill A. Velizhanin, George Bullard, Yusong Bai, Jean-Hubert Olivier, Nicolai F. Hartmann, Brendan J. Gifford, Svetlana Kilina, Sergei Tretiak, Han Htoon, Michael J. Therien, Stephen K. Doorn. Solvent- and Wavelength-Dependent Photoluminescence Relaxation Dynamics of Carbon Nanotube sp3 Defect States. ACS Nano 2018, 12 (8) , 8060-8070. https://doi.org/10.1021/acsnano.8b02909
    33. Noémie Danné, Mijin Kim, Antoine G. Godin, Hyejin Kwon, Zhenghong Gao, Xiaojian Wu, Nicolai F. Hartmann, Stephen K. Doorn, Brahim Lounis, YuHuang Wang, Laurent Cognet. Ultrashort Carbon Nanotubes That Fluoresce Brightly in the Near-Infrared. ACS Nano 2018, 12 (6) , 6059-6065. https://doi.org/10.1021/acsnano.8b02307
    34. Ryosuke Senga, Thomas Pichler, Yohei Yomogida, Takeshi Tanaka, Hiromichi Kataura, Kazu Suenaga. Direct Proof of a Defect-Modulated Gap Transition in Semiconducting Nanotubes. Nano Letters 2018, 18 (6) , 3920-3925. https://doi.org/10.1021/acs.nanolett.8b01284
    35. Noémie Danné, Antoine G. Godin, Zhenghong Gao, Juan A. Varela, Laurent Groc, Brahim Lounis, and Laurent Cognet . Comparative Analysis of Photoluminescence and Upconversion Emission from Individual Carbon Nanotubes for Bioimaging Applications. ACS Photonics 2018, 5 (2) , 359-364. https://doi.org/10.1021/acsphotonics.7b01311
    36. Xiaowei He, Brendan J. Gifford, Nicolai F. Hartmann, Rachelle Ihly, Xuedan Ma, Svetlana V. Kilina, Yue Luo, Kamran Shayan, Stefan Strauf, Jeffrey L. Blackburn, Sergei Tretiak, Stephen K. Doorn, and Han Htoon . Low-Temperature Single Carbon Nanotube Spectroscopy of sp3 Quantum Defects. ACS Nano 2017, 11 (11) , 10785-10796. https://doi.org/10.1021/acsnano.7b03022
    37. Klaus H. Eckstein, Holger Hartleb, Melanie M. Achsnich, Friedrich Schöppler, and Tobias Hertel . Localized Charges Control Exciton Energetics and Energy Dissipation in Doped Carbon Nanotubes. ACS Nano 2017, 11 (10) , 10401-10408. https://doi.org/10.1021/acsnano.7b05543
    38. Jialiang Wang, Matthew J. Shea, Jessica T. Flach, Thomas J. McDonough, Austin J. Way, Martin T. Zanni, and Michael S. Arnold . Role of Defects as Exciton Quenching Sites in Carbon Nanotube Photovoltaics. The Journal of Physical Chemistry C 2017, 121 (15) , 8310-8318. https://doi.org/10.1021/acs.jpcc.7b01005
    39. Shuang Liang, Nan Wei, Ze Ma, Fanglin Wang, Huaping Liu, Sheng Wang, and Lian-Mao Peng . Microcavity-Controlled Chirality-Sorted Carbon Nanotube Film Infrared Light Emitters. ACS Photonics 2017, 4 (3) , 435-442. https://doi.org/10.1021/acsphotonics.6b00856
    40. Nicolai F. Hartmann, Rajib Pramanik, Anne-Marie Dowgiallo, Rachelle Ihly, Jeffrey L. Blackburn, and Stephen K. Doorn . Photoluminescence Imaging of Polyfluorene Surface Structures on Semiconducting Carbon Nanotubes: Implications for Thin Film Exciton Transport. ACS Nano 2016, 10 (12) , 11449-11458. https://doi.org/10.1021/acsnano.6b07168
    41. Tika R. Kafle, Ti Wang, Bhupal Kattel, Qingfeng Liu, Youpin Gong, Judy Wu, and Wai-Lun Chan . Hot Exciton Relaxation and Exciton Trapping in Single-Walled Carbon Nanotube Thin Films. The Journal of Physical Chemistry C 2016, 120 (42) , 24482-24490. https://doi.org/10.1021/acs.jpcc.6b08805
    42. Nicolai F. Hartmann, Kirill A. Velizhanin, Erik H. Haroz, Mijin Kim, Xuedan Ma, YuHuang Wang, Han Htoon, and Stephen K. Doorn . Photoluminescence Dynamics of Aryl sp3 Defect States in Single-Walled Carbon Nanotubes. ACS Nano 2016, 10 (9) , 8355-8365. https://doi.org/10.1021/acsnano.6b02986
    43. Felix F. Bergler, Sabine Stahl, Annika Goy, Friedrich Schöppler, and Tobias Hertel . Substrate-Mediated Cooperative Adsorption of Sodium Cholate on (6,5) Single-Wall Carbon Nanotubes. Langmuir 2016, 32 (37) , 9598-9603. https://doi.org/10.1021/acs.langmuir.6b02759
    44. Abasi Abudulimu, Florian Spaeth, Imge Namal, Tobias Hertel, and Larry Lüer . Chirality Specific Triplet Exciton Dynamics in Highly Enriched (6,5) and (7,5) Carbon Nanotube Networks. The Journal of Physical Chemistry C 2016, 120 (35) , 19778-19784. https://doi.org/10.1021/acs.jpcc.6b03923
    45. Randy D. Mehlenbacher, Thomas J. McDonough, Nicholas M. Kearns, Matthew J. Shea, Yongho Joo, Padma Gopalan, Michael S. Arnold, and Martin T. Zanni . Polarization-Controlled Two-Dimensional White-Light Spectroscopy of Semiconducting Carbon Nanotube Thin Films. The Journal of Physical Chemistry C 2016, 120 (30) , 17069-17080. https://doi.org/10.1021/acs.jpcc.6b04961
    46. Ondřej Kozák, Mária Sudolská, Goutam Pramanik, Petr Cígler, Michal Otyepka, and Radek Zbořil . Photoluminescent Carbon Nanostructures. Chemistry of Materials 2016, 28 (12) , 4085-4128. https://doi.org/10.1021/acs.chemmater.6b01372
    47. Matthias S. Hofmann, Jonathan Noé, Alexander Kneer, Jared J. Crochet, and Alexander Högele . Ubiquity of Exciton Localization in Cryogenic Carbon Nanotubes. Nano Letters 2016, 16 (5) , 2958-2962. https://doi.org/10.1021/acs.nanolett.5b04901
    48. Holger Hartleb, Florian Späth, and Tobias Hertel . Evidence for Strong Electronic Correlations in the Spectra of Gate-Doped Single-Wall Carbon Nanotubes. ACS Nano 2015, 9 (10) , 10461-10470. https://doi.org/10.1021/acsnano.5b04707
    49. Daniel Schilling, Christoph Mann, Pascal Kunkel, Friedrich Schöppler, and Tobias Hertel . Ultrafast Spectral Exciton Diffusion in Single-Wall Carbon Nanotubes Studied by Time-Resolved Hole Burning. The Journal of Physical Chemistry C 2015, 119 (42) , 24116-24123. https://doi.org/10.1021/acs.jpcc.5b06865
    50. Ibrahim Sarpkaya, Ehsaneh D. Ahmadi, Gabriella D. Shepard, Kevin S. Mistry, Jeffrey L. Blackburn, and Stefan Strauf . Strong Acoustic Phonon Localization in Copolymer-Wrapped Carbon Nanotubes. ACS Nano 2015, 9 (6) , 6383-6393. https://doi.org/10.1021/acsnano.5b01997
    51. Munechiyo Iwamura, Naoto Akizuki, Yuhei Miyauchi, Shinichiro Mouri, Jonah Shaver, Zhenghong Gao, Laurent Cognet, Brahim Lounis, and Kazunari Matsuda . Nonlinear Photoluminescence Spectroscopy of Carbon Nanotubes with Localized Exciton States. ACS Nano 2014, 8 (11) , 11254-11260. https://doi.org/10.1021/nn503803b
    52. Xuedan Ma, Lyudmyla Adamska, Hisato Yamaguchi, Sibel Ebru Yalcin, Sergei Tretiak, Stephen K. Doorn, and Han Htoon . Electronic Structure and Chemical Nature of Oxygen Dopant States in Carbon Nanotubes. ACS Nano 2014, 8 (10) , 10782-10789. https://doi.org/10.1021/nn504553y
    53. Florian Jakubka, Stefan B. Grimm, Yuriy Zakharko, Florentina Gannott, and Jana Zaumseil . Trion Electroluminescence from Semiconducting Carbon Nanotubes. ACS Nano 2014, 8 (8) , 8477-8486. https://doi.org/10.1021/nn503046y
    54. Maksim Grechko, Yumin Ye, Randy D. Mehlenbacher, Thomas J. McDonough, Meng-Yin Wu, Robert M. Jacobberger, Michael S. Arnold, and Martin T. Zanni . Diffusion-Assisted Photoexcitation Transfer in Coupled Semiconducting Carbon Nanotube Thin Films. ACS Nano 2014, 8 (6) , 5383-5394. https://doi.org/10.1021/nn4041798
    55. Han Li, Tilman C. Hain, Andreas Muzha, Friedrich Schöppler, and Tobias Hertel . Dynamical Contact Line Pinning and Zipping during Carbon Nanotube Coffee Stain Formation. ACS Nano 2014, 8 (6) , 6417-6424. https://doi.org/10.1021/nn501957y
    56. Jaehong Park, Pravas Deria, Jean-Hubert Olivier, and Michael J. Therien . Fluence-Dependent Singlet Exciton Dynamics in Length-Sorted Chirality-Enriched Single-Walled Carbon Nanotubes. Nano Letters 2014, 14 (2) , 504-511. https://doi.org/10.1021/nl403511s
    57. Søren A. Jensen, Ronald Ulbricht, Akimitsu Narita, Xinliang Feng, Klaus Müllen, Tobias Hertel, Dmitry Turchinovich, and Mischa Bonn . Ultrafast Photoconductivity of Graphene Nanoribbons and Carbon Nanotubes. Nano Letters 2013, 13 (12) , 5925-5930. https://doi.org/10.1021/nl402978s
    58. Felix F. Bergler, Friedrich Schöppler, Frank K. Brunecker, Michael Hailman, and Tobias Hertel . Fluorescence Spectroscopy of Gel-Immobilized Single-Wall Carbon Nanotubes with Microfluidic Control of the Surfactant Environment. The Journal of Physical Chemistry C 2013, 117 (25) , 13318-13323. https://doi.org/10.1021/jp403711e
    59. Laura Oudjedi, A. Nicholas G. Parra-Vasquez, Antoine G. Godin, Laurent Cognet, and Brahim Lounis . Metrological Investigation of the (6,5) Carbon Nanotube Absorption Cross Section. The Journal of Physical Chemistry Letters 2013, 4 (9) , 1460-1464. https://doi.org/10.1021/jz4003372
    60. Jay D. Sau, Jared J. Crochet, Stephen K. Doorn, and Marvin L. Cohen . Multiparticle Exciton Ionization in Shallow Doped Carbon Nanotubes. The Journal of Physical Chemistry Letters 2013, 4 (6) , 982-986. https://doi.org/10.1021/jz400049c
    61. Juan G. Duque, Laura Oudjedi, Jared J. Crochet, Sergei Tretiak, Brahim Lounis, Stephen K. Doorn, and Laurent Cognet . Mechanism of Electrolyte-Induced Brightening in Single-Wall Carbon Nanotubes. Journal of the American Chemical Society 2013, 135 (9) , 3379-3382. https://doi.org/10.1021/ja4001757
    62. Jared J. Crochet, Juan G. Duque, James H. Werner, Brahim Lounis, Laurent Cognet, and Stephen K. Doorn . Disorder Limited Exciton Transport in Colloidal Single-Wall Carbon Nanotubes. Nano Letters 2012, 12 (10) , 5091-5096. https://doi.org/10.1021/nl301739d
    63. Xu Xie, Ahmad E. Islam, Muhammad A. Wahab, Lina Ye, Xinning Ho, Muhammad A. Alam, and John A. Rogers . Electroluminescence in Aligned Arrays of Single-Wall Carbon Nanotubes with Asymmetric Contacts. ACS Nano 2012, 6 (9) , 7981-7988. https://doi.org/10.1021/nn3025496
    64. Etienne Gaufrès, Nicolas Izard, Adrien Noury, Xavier Le Roux, Gilles Rasigade, Alexandre Beck, and Laurent Vivien . Light Emission in Silicon from Carbon Nanotubes. ACS Nano 2012, 6 (5) , 3813-3819. https://doi.org/10.1021/nn204924n
    65. Shinichiro Mouri, Yuhei Miyauchi, and Kazunari Matsuda . Dispersion-Process Effects on the Photoluminescence Quantum Yields of Single-Walled Carbon Nanotubes Dispersed Using Aromatic Polymers. The Journal of Physical Chemistry C 2012, 116 (18) , 10282-10286. https://doi.org/10.1021/jp212040y
    66. William Walden-Newman, Ibrahim Sarpkaya, and Stefan Strauf . Quantum Light Signatures and Nanosecond Spectral Diffusion from Cavity-Embedded Carbon Nanotubes. Nano Letters 2012, 12 (4) , 1934-1941. https://doi.org/10.1021/nl204402v
    67. Paul Finnie and Jacques Lefebvre . Photoinduced Band Gap Shift and Deep Levels in Luminescent Carbon Nanotubes. ACS Nano 2012, 6 (2) , 1702-1714. https://doi.org/10.1021/nn204679s
    68. Tonya K. Cherukuri, Dmitri A. Tsyboulski, and R. Bruce Weisman . Length- and Defect-Dependent Fluorescence Efficiencies of Individual Single-Walled Carbon Nanotubes. ACS Nano 2012, 6 (1) , 843-850. https://doi.org/10.1021/nn2043516
    69. D. Mark Harrah, Jude R. Schneck, Alexander A. Green, Mark C. Hersam, Lawrence D. Ziegler, and Anna K. Swan . Intensity-Dependent Exciton Dynamics of (6,5) Single-Walled Carbon Nanotubes: Momentum Selection Rules, Diffusion, and Nonlinear Interactions. ACS Nano 2011, 5 (12) , 9898-9906. https://doi.org/10.1021/nn203604v
    70. Constantine Y. Khripin, Nicholas Arnold-Medabalimi, and Ming Zheng . Molecular-Crowding-Induced Clustering of DNA-Wrapped Carbon Nanotubes for Facile Length Fractionation. ACS Nano 2011, 5 (10) , 8258-8266. https://doi.org/10.1021/nn2029549
    71. Tao Liu and Zhiwei Xiao . Exact and Closed Form Solutions for the Quantum Yield, Exciton Diffusion Length, and Lifetime To Reveal the Universal Behaviors of the Photoluminescence of Defective Single-Walled Carbon Nanotubes. The Journal of Physical Chemistry C 2011, 115 (34) , 16920-16927. https://doi.org/10.1021/jp205458t
    72. Friedrich Schöppler, Christoph Mann, Tilman C. Hain, Felix M. Neubauer, Giulia Privitera, Francesco Bonaccorso, Daping Chu, Andrea C. Ferrari, and Tobias Hertel . Molar Extinction Coefficient of Single-Wall Carbon Nanotubes. The Journal of Physical Chemistry C 2011, 115 (30) , 14682-14686. https://doi.org/10.1021/jp205289h
    73. Jared J. Crochet, Jay D. Sau, Juan G. Duque, Stephen K. Doorn, and Marvin L. Cohen . Electrodynamic and Excitonic Intertube Interactions in Semiconducting Carbon Nanotube Aggregates. ACS Nano 2011, 5 (4) , 2611-2618. https://doi.org/10.1021/nn200427r
    74. Timur Biktagirov, Uwe Gerstmann, Wolf Gero Schmidt. Topological defects in semiconducting carbon nanotubes as triplet exciton traps and single-photon emitters. Nanoscale 2025, 17 (11) , 6884-6891. https://doi.org/10.1039/D4NR03904A
    75. Pakkirisamy Thilagar, Subhajit Ghosh Ghosh, Rajendra Nandi, Silvano Geremia, Neal Hickey, Abhishek Sirohiwal. Polymer Matrix Drives Dual Phosphorescence in Dispersed Chromophores. 2025https://doi.org/10.21203/rs.3.rs-5794027/v1
    76. Ryo Hamano, Yoshiaki Niidome, Naoki Tanaka, Tomohiro Shiraki, Tsuyohiko Fujigaya. Temperature response of defect photoluminescence in locally functionalized single-walled carbon nanotubes. RSC Advances 2025, 15 (6) , 4137-4148. https://doi.org/10.1039/D4RA08569H
    77. Jinli Chen, Chaohan Cui, Ben Lawrie, Yongzhou Xue, Saikat Guha, Matt Eichenfield, Huan Zhao, Xiaodong Yan. Low-dimensional solid-state single-photon emitters. Nanophotonics 2025, https://doi.org/10.1515/nanoph-2024-0569
    78. Aina Fitó-Parera, Miguel Ángel López Carrillo, Marcel Erwan Tonye, Maksiem Erkens, Pegie Cool, Wim Wenseleers, Salomé Forel, Sofie Cambré. Mild opening procedure to obtain open-ended yet long single-wall carbon nanotubes for subsequent filling. Carbon Trends 2025, 18 , 100439. https://doi.org/10.1016/j.cartre.2024.100439
    79. Finn L. Sebastian, Simon Settele, Han Li, Benjamin S. Flavel, Jana Zaumseil. How to recognize clustering of luminescent defects in single-wall carbon nanotubes. Nanoscale Horizons 2024, 9 (12) , 2286-2294. https://doi.org/10.1039/D4NH00383G
    80. Ryo Hamano, Naoki Tanaka, Tsuyohiko Fujigaya. Size exclusion chromatography-based length sorting of single-walled carbon nanotubes stably coated with cross-linked polymers. Materials Advances 2024, 5 (6) , 2482-2490. https://doi.org/10.1039/D3MA01069D
    81. Yoshiaki Niidome, Ryo Hamano, Kenta Nakamura, Song Qi, Shoko Ito, Boda Yu, Yukiko Nagai, Naoki Tanaka, Takeshi Mori, Yoshiki Katayama, Tsuyohiko Fujigaya, Tomohiro Shiraki. Near-infrared photoluminescent detection of serum albumin using single-walled carbon nanotubes locally functionalized with a long-chain fatty acid. Carbon 2024, 216 , 118533. https://doi.org/10.1016/j.carbon.2023.118533
    82. Bjoern Hill, Smitha Abraham, Anas Akhtar, Gabriele Selvaggio, Kristina Tschulik, Sebastian Kruss. Surfactant assisted exfoliation of near infrared fluorescent silicate nanosheets. RSC Advances 2023, 13 (30) , 20916-20925. https://doi.org/10.1039/D3RA04083F
    83. Timofei Eremin, Valentina Eremina, Yuri Svirko, Petr Obraztsov. Over Two-Fold Photoluminescence Enhancement from Single-Walled Carbon Nanotubes Induced by Oxygen Doping. Nanomaterials 2023, 13 (9) , 1561. https://doi.org/10.3390/nano13091561
    84. Daichi Kozawa, Xiaojian Wu, Akihiro Ishii, Jacob Fortner, Keigo Otsuka, Rong Xiang, Taiki Inoue, Shigeo Maruyama, YuHuang Wang, Yuichiro K. Kato. Formation of organic color centers in air-suspended carbon nanotubes using vapor-phase reaction. Nature Communications 2022, 13 (1) https://doi.org/10.1038/s41467-022-30508-z
    85. Björn Hill, Jennifer Mohr, Sebastian Kruss. Bioanalytik: Mit Nanoröhren Botenstoffe detektieren. Nachrichten aus der Chemie 2022, 70 (12) , 65-67. https://doi.org/10.1002/nadc.20224129375
    86. Yoshiaki Niidome, Rie Wakabayashi, Masahiro Goto, Tsuyohiko Fujigaya, Tomohiro Shiraki. Protein-structure-dependent spectral shifts of near-infrared photoluminescence from locally functionalized single-walled carbon nanotubes based on avidin–biotin interactions. Nanoscale 2022, 14 (36) , 13090-13097. https://doi.org/10.1039/D2NR01440H
    87. T. V. Raziman, C. Peter Visser, Shaojun Wang, Jaime Gómez Rivas, Alberto G. Curto. Exciton Diffusion and Annihilation in Nanophotonic Purcell Landscapes. Advanced Optical Materials 2022, 10 (17) https://doi.org/10.1002/adom.202200103
    88. Takeshi Koyama, Nobuki Umewaki, Kensuke Saito, Tomoki Tatsuno, Akira Fujisaki, Yasumitsu Miyata, Hiromichi Kataura, Hideo Kishida. Photoluminescence of metallic single-walled carbon nanotubes: Role of interband and intraband transitions. Physical Review B 2022, 106 (4) https://doi.org/10.1103/PhysRevB.106.045421
    89. Abasi Abudulimu, Klaus Eckstein, Mirella El Gemayel, Imge Namal, Adam B. Phillips, Randy J. Ellingson, Michael J. Heben, Tobias Hertel, Sebastian B. Meier, Larry Lüer. Single‐Walled Carbon Nanotubes as an Additive in Organic Photovoltaics: Effects on Carrier Generation and Recombination Dynamics. Solar RRL 2022, 6 (4) https://doi.org/10.1002/solr.202101010
    90. H. Machiya, D. Yamashita, A. Ishii, Y. K. Kato. Evidence for near-unity radiative quantum efficiency of bright excitons in carbon nanotubes from the Purcell effect. Physical Review Research 2022, 4 (2) https://doi.org/10.1103/PhysRevResearch.4.L022011
    91. Florian A. Mann, Phillip Galonska, Niklas Herrmann, Sebastian Kruss. Quantum defects as versatile anchors for carbon nanotube functionalization. Nature Protocols 2022, 17 (3) , 727-747. https://doi.org/10.1038/s41596-021-00663-6
    92. Jana Zaumseil. Luminescent Defects in Single‐Walled Carbon Nanotubes for Applications. Advanced Optical Materials 2022, 10 (2) https://doi.org/10.1002/adom.202101576
    93. V. S. Abhisha, Ranimol Stephen. Optical Properties of Carbon Nanotubes. 2022, 131-148. https://doi.org/10.1007/978-3-030-91346-5_57
    94. Simon Settele, Felix J. Berger, Sebastian Lindenthal, Shen Zhao, Abdurrahman Ali El Yumin, Nicolas F. Zorn, Andika Asyuda, Michael Zharnikov, Alexander Högele, Jana Zaumseil. Synthetic control over the binding configuration of luminescent sp3-defects in single-walled carbon nanotubes. Nature Communications 2021, 12 (1) https://doi.org/10.1038/s41467-021-22307-9
    95. Sang-Hyun Oh, Hatice Altug, Xiaojia Jin, Tony Low, Steven J. Koester, Aleksandar P. Ivanov, Joshua B. Edel, Phaedon Avouris, Michael S. Strano. Nanophotonic biosensors harnessing van der Waals materials. Nature Communications 2021, 12 (1) https://doi.org/10.1038/s41467-021-23564-4
    96. Maciej R. Molas, Łukasz Macewicz, Aleksandra Wieloszyńska, Paweł Jakóbczyk, Andrzej Wysmołek, Robert Bogdanowicz, Jacek B. Jasinski. Photoluminescence as a probe of phosphorene properties. npj 2D Materials and Applications 2021, 5 (1) https://doi.org/10.1038/s41699-021-00263-8
    97. Nicolas F. Zorn, Jana Zaumseil. Charge transport in semiconducting carbon nanotube networks. Applied Physics Reviews 2021, 8 (4) https://doi.org/10.1063/5.0065730
    98. Ting Zheng, Xianghong Niu, Hui Zhao, Jinlan Wang, Weiwei Zhao, Junpeng Lu, Zhenhua Ni. Photoluminescence enhancement at a high generation rate induced by exciton localization. Optics Letters 2021, 46 (11) , 2774. https://doi.org/10.1364/OL.420709
    99. Zhentao Hou, Trevor M. Tumiel, Todd D. Krauss. Spatially resolved photoluminescence brightening in individual single-walled carbon nanotubes. Journal of Applied Physics 2021, 129 (1) https://doi.org/10.1063/5.0030951
    100. V. S. Abhisha, Ranimol Stephen. Optical Properties of Carbon Nanotubes. 2021, 1-18. https://doi.org/10.1007/978-3-319-70614-6_57-1
    Load all citations

    ACS Nano

    Cite this: ACS Nano 2010, 4, 12, 7161–7168
    Click to copy citationCitation copied!
    https://doi.org/10.1021/nn101612b
    Published November 24, 2010
    Copyright © 2010 American Chemical Society

    Article Views

    3437

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.