ACS Publications. Most Trusted. Most Cited. Most Read
Experimental and Theoretical Studies of the Colloidal Stability of Nanoparticles−A General Interpretation Based on Stability Maps
My Activity
    Article

    Experimental and Theoretical Studies of the Colloidal Stability of Nanoparticles−A General Interpretation Based on Stability Maps
    Click to copy article linkArticle link copied!

    View Author Information
    Institute of Particle Technology, Friedrich-Alexander-University Erlangen-Nuremberg, Cauerstrasse 4, 91058 Erlangen, Germany
    Department of Chemistry and Pharmacy & Interdisciplinary Center of Molecular Materials (ICMM), Friedrich-Alexander-University Erlangen-Nuremberg, Henkestrasse 42, 91054 Erlangen, Germany
    Address correspondence to [email protected]
    Other Access OptionsSupporting Information (1)

    ACS Nano

    Cite this: ACS Nano 2011, 5, 6, 4658–4669
    Click to copy citationCitation copied!
    https://doi.org/10.1021/nn200465b
    Published May 5, 2011
    Copyright © 2011 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    The current work addresses the understanding of the stabilization of nanoparticles in suspension. Specifically, we study ZnO in ethanol for which the influence of particle size and reactant ratio as well as surface coverage on colloidal stability in dependence of the purification progress was investigated. The results revealed that the well-known ζ-potential determines not only the colloidal stability but also the surface coverage of acetate groups bound to the particle surface. The acetate groups act as molecular spacers between the nanoparticles and prevent agglomeration. Next to DLVO calculations based on the theory of Derjaguin, Landau, Verwey and Overbeek using a core–shell model we find that the stability is better understood in terms of dimensionless numbers which represent attractive forces as well as electrostatic repulsion, steric effects, transport properties, and particle concentration. Evaluating the colloidal stability in dependence of time by means of UV–vis absorption measurements a stability map for ZnO is derived. From this map it becomes clear that the dimensionless steric contribution to colloidal stability scales with a stability parameter including dimensionless repulsion and attraction as well as particle concentration and diffusivity of the particles according to a power law with an exponent of −0.5. Finally, we show that our approach is valid for other stabilizing molecules like cationic dendrons and is generally applicable for a wide range of other material systems within the limitations of vanishing van der Waals forces in refractive index matched situations, vanishing ζ-potential and systems without a stabilizing shell around the particle surface.

    Copyright © 2011 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Growth data of ZnO nanoparticles, surface charge and ζ-potential of the nanoparticles, primary minima and stability ratios, data of colloidal stability and data used for the stability maps. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 105 publications.

    1. Peng Xu, Simei Zhong, Yunfei Wei, Xinxin Duan, Meng Zhang, Wei Shen, Yan Ma, Yu-Hui Zhang. Surface-Functionalized Halo-Tag Gold Nanoprobes for Live-Cell Long-Term Super-Resolution Imaging of Endoplasmic Reticulum Dynamics. ACS Nano 2024, 18 (32) , 21433-21446. https://doi.org/10.1021/acsnano.4c06138
    2. Md. Shahiduzzaman, Boyang Chen, Md. Akhtaruzzaman, LiangLe Wang, Hiroki Fukuhara, Koji Tomita, Satoru Iwamori, Jean-Michel Nunzi, Tetsuya Taima, Shinjiro Umezu. Paste Aging Spontaneously Tunes TiO2 Nanoparticles into Reproducible Electrosprayed Photoelectrodes. ACS Applied Materials & Interfaces 2021, 13 (45) , 53758-53766. https://doi.org/10.1021/acsami.1c13793
    3. Daniel José Pochapski, Caio Carvalho dos Santos, Gabriel Wosiak Leite, Sandra Helena Pulcinelli, Celso Valentim Santilli. Zeta Potential and Colloidal Stability Predictions for Inorganic Nanoparticle Dispersions: Effects of Experimental Conditions and Electrokinetic Models on the Interpretation of Results. Langmuir 2021, 37 (45) , 13379-13389. https://doi.org/10.1021/acs.langmuir.1c02056
    4. Masafumi Harada, Miho Yamamoto, Hiroki Iwase. Combined Small-Angle Neutron Scattering/Small-Angle X-ray Scattering Analysis for the Characterization of Silver Nanoparticles Prepared via Photoreduction in Water-in-Oil Microemulsions. Langmuir 2021, 37 (44) , 13085-13098. https://doi.org/10.1021/acs.langmuir.1c02235
    5. Stephanie Hwu, Yves Blickenstorfer, Stephan J. Ihle, Manon Garzuel, Csaba Forró, Lukas Schmidheini, László Demkó, János Vörös. Theoretical and Experimental Investigation of Ligand-Induced Particle–Particle Interactions. The Journal of Physical Chemistry C 2020, 124 (2) , 1566-1574. https://doi.org/10.1021/acs.jpcc.9b09145
    6. Morteza Hasanzadeh Kafshgari, Anca Mazare, Monica Distaso, Wolfgang H. Goldmann, Wolfgang Peukert, Ben Fabry, Patrik Schmuki. Intracellular Drug Delivery with Anodic Titanium Dioxide Nanotubes and Nanocylinders. ACS Applied Materials & Interfaces 2019, 11 (16) , 14980-14985. https://doi.org/10.1021/acsami.9b01211
    7. Martin Thoma, Wei Lin, Eva Hoffmann, Maria-Melanie Sattes, Doris Segets, Cornelia Damm, Wolfgang Peukert. Simple and Reliable Method for Studying the Adsorption Behavior of Aquivion Ionomers on Carbon Black Surfaces. Langmuir 2018, 34 (41) , 12324-12334. https://doi.org/10.1021/acs.langmuir.8b02726
    8. Na Kyung Kwon, Chang Seo Park, Chae Han Lee, Yung Sam Kim, Charles F. Zukoski, and So Youn Kim . Tunable Nanoparticle Stability in Concentrated Polymer Solutions On the Basis of the Temperature Dependent Solvent Quality. Macromolecules 2016, 49 (6) , 2307-2317. https://doi.org/10.1021/acs.macromol.5b02798
    9. Torben Schindler, Johannes Walter, Wolfgang Peukert, Doris Segets, and Tobias Unruh . In Situ Study on the Evolution of Multimodal Particle Size Distributions of ZnO Quantum Dots: Some General Rules for the Occurrence of Multimodalities. The Journal of Physical Chemistry B 2015, 119 (49) , 15370-15380. https://doi.org/10.1021/acs.jpcb.5b08005
    10. T. Schindler, M. Schmiele, T. Schmutzler, T. Kassar, D. Segets, W. Peukert, A. Radulescu, A. Kriele, R. Gilles, and T. Unruh . A Combined SAXS/SANS Study for the in Situ Characterization of Ligand Shells on Small Nanoparticles: The Case of ZnO. Langmuir 2015, 31 (37) , 10130-10136. https://doi.org/10.1021/acs.langmuir.5b02198
    11. Alice Sandmann, Alexander Kompch, Viktor Mackert, Christian H. Liebscher, and Markus Winterer . Interaction of l-Cysteine with ZnO: Structure, Surface Chemistry, and Optical Properties. Langmuir 2015, 31 (21) , 5701-5711. https://doi.org/10.1021/la504968m
    12. Lahiru A. Wijenayaka, Michael R. Ivanov, Christopher M. Cheatum, and Amanda J. Haes . Improved Parametrization for Extended Derjaguin, Landau, Verwey, and Overbeek Predictions of Functionalized Gold Nanosphere Stability. The Journal of Physical Chemistry C 2015, 119 (18) , 10064-10075. https://doi.org/10.1021/acs.jpcc.5b00483
    13. Doris Segets, Christian Lutz, Kyoko Yamamoto, So Komada, Sebastian Süß, Yasushige Mori, and Wolfgang Peukert . Classification of Zinc Sulfide Quantum Dots by Size: Insights into the Particle Surface–Solvent Interaction of Colloids. The Journal of Physical Chemistry C 2015, 119 (8) , 4009-4022. https://doi.org/10.1021/jp508746s
    14. Wei Lin, Johannes Walter, Alexandra Burger, Harald Maid, Andreas Hirsch, Wolfgang Peukert, and Doris Segets . A General Approach To Study the Thermodynamics of Ligand Adsorption to Colloidal Surfaces Demonstrated by Means of Catechols Binding to Zinc Oxide Quantum Dots. Chemistry of Materials 2015, 27 (1) , 358-369. https://doi.org/10.1021/cm504080d
    15. Doris Segets, J. Matthew Lucas, Robin N. Klupp Taylor, Marcus Scheele, Haimei Zheng, A. Paul Alivisatos, and Wolfgang Peukert . Determination of the Quantum Dot Band Gap Dependence on Particle Size from Optical Absorbance and Transmission Electron Microscopy Measurements. ACS Nano 2012, 6 (10) , 9021-9032. https://doi.org/10.1021/nn303130d
    16. C. Grote, T. A. Cheema, and G. Garnweitner . Comparative Study of Ligand Binding during the Postsynthetic Stabilization of Metal Oxide Nanoparticles. Langmuir 2012, 28 (40) , 14395-14404. https://doi.org/10.1021/la301822r
    17. Seyed Mohammad Majedi, Hian Kee Lee, and Barry C. Kelly . Chemometric Analytical Approach for the Cloud Point Extraction and Inductively Coupled Plasma Mass Spectrometric Determination of Zinc Oxide Nanoparticles in Water Samples. Analytical Chemistry 2012, 84 (15) , 6546-6552. https://doi.org/10.1021/ac300833t
    18. Julia S. Gebauer, Marcelina Malissek, Sonja Simon, Shirley K. Knauer, Michael Maskos, Roland H. Stauber, Wolfgang Peukert, and Lennart Treuel . Impact of the Nanoparticle–Protein Corona on Colloidal Stability and Protein Structure. Langmuir 2012, 28 (25) , 9673-9679. https://doi.org/10.1021/la301104a
    19. Boris Nikolaev, Ludmila Yakovleva, Viacheslav Fedorov, Natalia Yudintceva, Daria Tarasova, Elizaveta Perepelitsa, Anastasia Dmitrieva, Maksim Sulatsky, Sivaprakash Srinivasan, Shirish H. Sonawane, Anusha Srivastava, Sharad Gupta, Avinash Sonawane, Stephanie E. Combs, Maxim Shevtsov. A New Method for Accelerated Aging of Nanoparticles to Assess the Colloidal Stability of Albumin-Coated Magnetic Nanoparticles. Nanomaterials 2025, 15 (7) , 475. https://doi.org/10.3390/nano15070475
    20. Azita Rezvani, Alexander Kichigin, Benjamin Apeleo Zubiri, Erdmann Spiecker, Doris Segets. Insights into Stability and Selective Agglomeration in Binary Mixtures of Colloids: A Study on Gold Nanoparticles and Ultra-Small Quantum Dots. Powders 2025, 4 (1) , 9. https://doi.org/10.3390/powders4010009
    21. Ze Yuan, Xiaoji Xie. Composites Based on Lanthanide‐Doped Upconversion Nanomaterials and Metal‐Organic Frameworks: Fabrication and Bioapplications. 2025, 147-179. https://doi.org/10.1002/9783527845347.ch4
    22. Jianyang Wang, Xiangyu Li, Zhiqun Yu, Runqing Zhang, Meng Li, Mingxing Zhang, Dake Xu, Fuhui Wang, Ying Zheng. Supramolecular-assisted nanocomposite coatings with sustainable and robust resistance to microbially mediated biofouling and corrosion. Journal of Materials Science & Technology 2025, 205 , 286-298. https://doi.org/10.1016/j.jmst.2024.05.002
    23. Haidan Lin, Lijie Xu, Qunying Yu, Jiachang Guo, Dan Liu, Daiyong Yang, Jingyao Luan, Junbo Liu, Feilong Yi. . AIP Advances 2025, 15 (5) https://doi.org/10.1063/5.0269819
    24. Nisha Yadav, Annu Rathee, Shreya Sachdeva, Bharat Kumar, Jahangeer Ahmed, Monu Verma, Gyandshwar Kumar Rao. Anthracene and pyrene appended Schiff bases having a ( N , N ) donor for the synthesis of highly stable colloidal silver nano-particles: application in selective sensing and nitroarene reduction. New Journal of Chemistry 2025, 111 https://doi.org/10.1039/D5NJ00754B
    25. Anastasia O. Dikovskaya, Alexander V. Simakin, Ilya V. Baimler, Sergey V. Gudkov. The concentration limit of stability for individual gold nanoparticles in aqueous colloid during water evaporation. Chemical Physics 2024, 586 , 112399. https://doi.org/10.1016/j.chemphys.2024.112399
    26. Vidya Chaparala, Ravi Kiran Sastry Gadepalli, Phani Prasanthi Parvathaneni. A molecular dynamics approach for a parametric study of colloidal suspension aggregation kinetics. International Journal on Interactive Design and Manufacturing (IJIDeM) 2024, 18 (5) , 2743-2753. https://doi.org/10.1007/s12008-023-01309-5
    27. Xiaohua Chang, Qunli Yu, Dan Ji, Yutian Zhu. Controlled Synthesis of Metal‐Nanoparticles Decorated Block Copolymer Hybrid Particles via Emulsion Confined Self‐assembly and Their Catalytic Applications. Chinese Journal of Chemistry 2024, 42 (8) , 835-840. https://doi.org/10.1002/cjoc.202300596
    28. Azita Rezvani, Yao Li, Stefan Neumann, Osama Anwar, David Rafaja, Sven Reichenberger, Doris Segets. Stability of binary colloidal mixtures of Au noble metal and ZnS semiconductor nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2024, 682 , 132832. https://doi.org/10.1016/j.colsurfa.2023.132832
    29. Kinran Lau, Brian Giera, Stephan Barcikowski, Sven Reichenberger. The multivariate interaction between Au and TiO 2 colloids: the role of surface potential, concentration, and defects. Nanoscale 2024, 16 (5) , 2552-2564. https://doi.org/10.1039/D3NR06205H
    30. Ju-Seong Kim, Jonghyun Choi, Won Kook Choi. Size-Controlled ZnO Nanoparticles Synthesized with Thioacetamide and Formation of ZnS Quantum Dots. Electronic Materials 2023, 4 (4) , 139-147. https://doi.org/10.3390/electronicmat4040012
    31. Amina Ben Mihoub, Kamil Elkhoury, Janske Nel, Samir Acherar, Emilie Velot, Catherine Malaplate, Michel Linder, Shahrzad Latifi, Cyril Kahn, Marion Huguet, Frances T. Yen, Elmira Arab-Tehrany. Neuroprotective Effect of Curcumin-Loaded RGD Peptide-PEGylated Nanoliposomes. Pharmaceutics 2023, 15 (12) , 2665. https://doi.org/10.3390/pharmaceutics15122665
    32. Maria Dąbkowska, Alicja Kosiorowska, Bogusław Machaliński. The Impact of Serum Protein Adsorption on PEGylated NT3–BDNF Nanoparticles—Distribution, Protein Release, and Cytotoxicity in a Human Retinal Pigmented Epithelial Cell Model. Pharmaceutics 2023, 15 (9) , 2236. https://doi.org/10.3390/pharmaceutics15092236
    33. Miao Zhao, Anton Uzunoff, Mark Green, Aliaksandra Rakovich. The Role of Stabilizing Copolymer in Determining the Physicochemical Properties of Conjugated Polymer Nanoparticles and Their Nanomedical Applications. Nanomaterials 2023, 13 (9) , 1543. https://doi.org/10.3390/nano13091543
    34. Antonio Carone, Samuel Emilsson, Pablo Mariani, Anthony Désert, Stephane Parola. Gold nanoparticle shape dependence of colloidal stability domains. Nanoscale Advances 2023, 5 (7) , 2017-2026. https://doi.org/10.1039/D2NA00809B
    35. Małgorzata Wolska-Pietkiewicz, Maria Jędrzejewska, Katarzyna Tokarska, Julia Wielgórska, Michał Chudy, Justyna Grzonka, Janusz Lewiński. Towards bio-safe and easily redispersible bare ZnO quantum dots engineered via organometallic wet-chemical processing. Chemical Engineering Journal 2023, 455 , 140497. https://doi.org/10.1016/j.cej.2022.140497
    36. Rohit D. Chavan, Małgorzata Wolska‐Pietkiewicz, Daniel Prochowicz, Maria Jędrzejewska, Mohammad Mahdi Tavakoli, Pankaj Yadav, Chang Kook Hong, Janusz Lewiński. Organic Ligand‐Free ZnO Quantum Dots for Efficient and Stable Perovskite Solar Cells. Advanced Functional Materials 2022, 32 (49) https://doi.org/10.1002/adfm.202205909
    37. Ilaria Ottonelli, Jason Thomas Duskey, Filippo Genovese, Francesca Pederzoli, Riccardo Caraffi, Marta Valenza, Giovanni Tosi, Maria Angela Vandelli, Barbara Ruozi. Quantitative comparison of the protein corona of nanoparticles with different matrices. International Journal of Pharmaceutics: X 2022, 4 , 100136. https://doi.org/10.1016/j.ijpx.2022.100136
    38. Biben Wang, Xiaoxia Zhong, Haiyan Xu, Yongcai Zhang, Uros Cvelbar, Kostya (Ken) Ostrikov. Structure and Photoluminescence of WO3-x Aggregates Tuned by Surfactants. Micromachines 2022, 13 (12) , 2075. https://doi.org/10.3390/mi13122075
    39. Sugam Kumar, Debasish Saha, Joachim Kohlbrecher, Vinod K. Aswal. Interplay of interactions for different pathways of the fractal aggregation of nanoparticles. Chemical Physics Letters 2022, 803 , 139808. https://doi.org/10.1016/j.cplett.2022.139808
    40. Monica Distaso, Vanessa Lautenbach, Maximilian J. Uttinger, Johannes Walter, Christian Lübbert, Thaseem Thajudeen, Wolfgang Peukert. A widely applicable method to stabilize nanoparticles comprising oxygen-rich functional groups. Powder Technology 2022, 407 , 117633. https://doi.org/10.1016/j.powtec.2022.117633
    41. Argyrios Anagnostopoulos, M. Elena Navarro, Yulong Ding. Microstructural improvement of solar salt based MgO composites through surface tension/wettability modification with SiO2 nanoparticles. Solar Energy Materials and Solar Cells 2022, 238 , 111577. https://doi.org/10.1016/j.solmat.2022.111577
    42. Shaidatul Najihah Matussin, Ashmalina Rahman, Mohammad Mansoob Khan. Role of Anions in the Synthesis and Crystal Growth of Selected Semiconductors. Frontiers in Chemistry 2022, 10 https://doi.org/10.3389/fchem.2022.881518
    43. Jiayi Zhu, Ai Ouyang, Zhuanglin Shen, Zhihao Pan, Samya Banerjee, Qianling Zhang, Yantao Chen, Pingyu Zhang. Sonodynamic cancer therapy by novel iridium-gold nanoassemblies. Chinese Chemical Letters 2022, 33 (4) , 1907-1912. https://doi.org/10.1016/j.cclet.2021.11.017
    44. Wolfgang Peukert, Malte Kaspereit, Thorsten Hofe, Lukas Gromotka. Size exclusion chromatography (SEC). 2022, 409-447. https://doi.org/10.1016/B978-0-323-85486-3.00003-2
    45. Cornelia Damm, Wolfgang Peukert. Particle dispersions in liquid media. 2022, 27-62. https://doi.org/10.1016/B978-0-323-85486-3.00011-1
    46. Hengyu Kengsley Lin, Tian-Hao Yan, Sajid Bashir, Jingbo Louise Liu. Synthesis of nanomaterials using bottom-up methods. 2022, 61-110. https://doi.org/10.1016/B978-0-323-99877-2.00003-5
    47. Małgorzata Wolska-Pietkiewicz, Maria Jędrzejewska, Katarzyna Tokarska, Julia Wielgórska, Michał Chudy, Justyna Grzonka, Janusz Lewinski. Towards Bio-Safe and Easily Redispersible Bare ZnO Quantum Dots Engineered Via Organometallic Wet-Chemical Processing. SSRN Electronic Journal 2022, 100 https://doi.org/10.2139/ssrn.4138994
    48. Robert J. Rauschendorfer, Kyle M. Whitham, Star Summer, Samantha A. Patrick, Aliandra E. Pierce, Haley Sefi-Cyr, Soheyl Tadjiki, Michael D. Kraft, Steven R. Emory, David A. Rider, Manuel D. Montaño. Development and Application of Nanoparticle-Nanopolymer Composite Spheres for the Study of Environmental Processes. Frontiers in Toxicology 2021, 3 https://doi.org/10.3389/ftox.2021.752296
    49. Thomas Berger. Colloidal Processing. 2021, 185-228. https://doi.org/10.1002/9781119436782.ch6
    50. Shalmali Bapat, Stefan O. Kilian, Hartmut Wiggers, Doris Segets. Towards a framework for evaluating and reporting Hansen solubility parameters: applications to particle dispersions. Nanoscale Advances 2021, 3 (15) , 4400-4410. https://doi.org/10.1039/D1NA00405K
    51. Guillermo González-Rubio, Holger Hilbert, Rose Rosenberg, Bing Ni, Lisa Fuhrer, Helmut Cölfen. Simple Determination of Gold Nanocrystal Dimensions by Analytical Ultracentrifugation via Surface Ligand-Solvent Density Matching. Nanomaterials 2021, 11 (6) , 1427. https://doi.org/10.3390/nano11061427
    52. Karthikeyan Sekar, Chitiphon Chuaicham, Umamahesh Balijapalli, Wei Li, Karen Wilson, Adam F. Lee, Keiko Sasaki. Surfactant- and template-free hydrothermal assembly of Cu2O visible light photocatalysts for trimethoprim degradation. Applied Catalysis B: Environmental 2021, 284 , 119741. https://doi.org/10.1016/j.apcatb.2020.119741
    53. María Martínez-Negro, Guillermo González-Rubio, Emilio Aicart, Katharina Landfester, Andrés Guerrero-Martínez, Elena Junquera. Insights into colloidal nanoparticle-protein corona interactions for nanomedicine applications. Advances in Colloid and Interface Science 2021, 289 , 102366. https://doi.org/10.1016/j.cis.2021.102366
    54. Yuan Yang, Xin Liu, Lin Luo, Wenjing Wei, Qiang Wang, Jiachao Zhang, . Quantitative Detection of Zinc Oxide Nanoparticle in Environmental Water by Cloud Point Extraction Combined ICP-MS. Adsorption Science & Technology 2021, 2021 https://doi.org/10.1155/2021/9958422
    55. George Opletal, Shery L. Chang, Amanda S. Barnard. Simulating facet-dependent aggregation and assembly of distributions of polyhedral nanoparticles. Nanoscale 2020, 12 (38) , 19870-19879. https://doi.org/10.1039/D0NR03470C
    56. Naiyin Zhang, Changlu Xu, Andro Azer, Huinan Liu. Dispersibility and characterization of polyvinyl alcohol–coated magnetic nanoparticles in poly(glycerol sebacate) for biomedical applications. Journal of Nanoparticle Research 2019, 21 (12) https://doi.org/10.1007/s11051-019-4725-9
    57. Zahra Alirezvani, Mohammad G. Dekamin, Ehsan Valiey. Cu(II) and magnetite nanoparticles decorated melamine-functionalized chitosan: A synergistic multifunctional catalyst for sustainable cascade oxidation of benzyl alcohols/Knoevenagel condensation. Scientific Reports 2019, 9 (1) https://doi.org/10.1038/s41598-019-53765-3
    58. Daniel Lee, Małgorzata Wolska‐Pietkiewicz, Saumya Badoni, Agnieszka Grala, Janusz Lewiński, Gaël De Paëpe. Disclosing Interfaces of ZnO Nanocrystals Using Dynamic Nuclear Polarization: Sol‐Gel versus Organometallic Approach. Angewandte Chemie 2019, 131 (48) , 17323-17328. https://doi.org/10.1002/ange.201906726
    59. Daniel Lee, Małgorzata Wolska‐Pietkiewicz, Saumya Badoni, Agnieszka Grala, Janusz Lewiński, Gaël De Paëpe. Disclosing Interfaces of ZnO Nanocrystals Using Dynamic Nuclear Polarization: Sol‐Gel versus Organometallic Approach. Angewandte Chemie International Edition 2019, 58 (48) , 17163-17168. https://doi.org/10.1002/anie.201906726
    60. Raju Saka, Priyadarshini Sathe, Wahid Khan, Sachin Dubey. Preclinical Formulation Assessment of NCEs. 2019, 119-153. https://doi.org/10.1002/9783527812172.ch4
    61. Diego Coglitore, Jean-Marc Janot, Sebastien Balme. Protein at liquid solid interfaces: Toward a new paradigm to change the approach to design hybrid protein/solid-state materials. Advances in Colloid and Interface Science 2019, 270 , 278-292. https://doi.org/10.1016/j.cis.2019.07.004
    62. Sebastian Süß, Wei Lin, Olga Getmanenko, Lukas Pflug, Titus Sobisch, Wolfgang Peukert, Dietmar Lerche, Doris Segets. Suspension- and powder-based derivation of Hansen dispersibility parameters for zinc oxide quantum dots. Particuology 2019, 44 , 71-79. https://doi.org/10.1016/j.partic.2018.05.010
    63. Zhe Wang, LingZhong Du. Stabilization of a novel mixed solution precursor used for preparing YSZ abradable sealing coatings. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2019, 562 , 354-360. https://doi.org/10.1016/j.colsurfa.2018.11.053
    64. Armin Azadkhah Shalmani, Pouria Sarihi, Mohammad Raoufi. Nanoparticles and Biological Environment Interactions. 2019, 1-17. https://doi.org/10.1007/978-3-030-10834-2_1
    65. Kateryna Loza, Matthias Epple, Michael Maskos. Stability of Nanoparticle Dispersions and Particle Agglomeration. 2019, 85-100. https://doi.org/10.1007/978-3-030-12461-8_4
    66. Carsten Schilde, Jan Henrik Finke, Sandra Breitung-Faes, Frederik Flach, Arno Kwade. Production of Nanocosmetics. 2019, 267-295. https://doi.org/10.1007/978-3-030-16573-4_13
    67. Alessandro Presentato, Raymond J. Turner, Claudio C. Vásquez, Vladimir Yurkov, Davide Zannoni. Tellurite-dependent blackening of bacteria emerges from the dark ages. Environmental Chemistry 2019, 16 (4) , 266. https://doi.org/10.1071/EN18238
    68. Elena Piacenza, Alessandro Presentato, Emmanuele Ambrosi, Adolfo Speghini, Raymond J. Turner, Giovanni Vallini, Silvia Lampis. Physical–Chemical Properties of Biogenic Selenium Nanostructures Produced by Stenotrophomonas maltophilia SeITE02 and Ochrobactrum sp. MPV1. Frontiers in Microbiology 2018, 9 https://doi.org/10.3389/fmicb.2018.03178
    69. Handol Lee, Doris Segets, Sebastian Süß, Wolfgang Peukert, Sheng-Chieh Chen, David Y.H. Pui. Retention mechanisms of 1.7 nm ZnS quantum dots and sub-20 nm Au nanoparticles in ultrafiltration membranes. Journal of Membrane Science 2018, 567 , 58-67. https://doi.org/10.1016/j.memsci.2018.09.033
    70. Elena Piacenza, Alessandro Presentato, Raymond J. Turner. Stability of biogenic metal(loid) nanomaterials related to the colloidal stabilization theory of chemical nanostructures. Critical Reviews in Biotechnology 2018, 38 (8) , 1137-1156. https://doi.org/10.1080/07388551.2018.1440525
    71. Lukas Zeininger, Lisa M. S. Stiegler, Luis Portilla, Marcus Halik, Andreas Hirsch. Manufacturing Nanoparticles with Orthogonally Adjustable Dispersibility in Hydrocarbons, Fluorocarbons, and Water. ChemistryOpen 2018, 7 (4) , 282-287. https://doi.org/10.1002/open.201800011
    72. Torben Schindler, Tilo Schmutzler, Martin Schmiele, Wei Lin, Doris Segets, Wolfgang Peukert, Marie-Sousia Appavou, Armin Kriele, Ralph Gilles, Tobias Unruh. Changes within the stabilizing layer of ZnO nanoparticles upon washing. Journal of Colloid and Interface Science 2017, 504 , 356-362. https://doi.org/10.1016/j.jcis.2017.05.059
    73. Mario Marcia, Chau Vinh, Christian Dolle, Gonzalo Abellán, Jörg Schönamsgruber, Torsten Schunk, Benjamin Butz, Erdmann Spiecker, Frank Hauke, Andreas Hirsch. Highly Integrated Organic–Inorganic Hybrid Architectures by Noncovalent Exfoliation of Graphite and Assembly with Zinc Oxide Nanoparticles. Advanced Materials Interfaces 2016, 3 (20) https://doi.org/10.1002/admi.201600365
    74. Chor Yong Tay, Madaswamy S. Muthu, Sing Ling Chia, Kim Truc Nguyen, Si‐Shen Feng, David Tai Leong. Reality Check for Nanomaterial‐Mediated Therapy with 3D Biomimetic Culture Systems. Advanced Functional Materials 2016, 26 (23) , 4046-4065. https://doi.org/10.1002/adfm.201600476
    75. Lukas Zeininger, Fabian Lodermeyer, Ruben D. Costa, Dirk M. Guldi, Andreas Hirsch. Hydrogen bonding mediated orthogonal and reversible self-assembly of porphyrin sensitizers onto TiO 2 nanoparticles. Chemical Communications 2016, 52 (57) , 8842-8845. https://doi.org/10.1039/C6CC03452G
    76. Darija Domazet Jurašin, Marija Ćurlin, Ivona Capjak, Tea Crnković, Marija Lovrić, Michal Babič, Daniel Horák, Ivana Vinković Vrček, Srećko Gajović. Surface coating affects behavior of metallic nanoparticles in a biological environment. Beilstein Journal of Nanotechnology 2016, 7 , 246-262. https://doi.org/10.3762/bjnano.7.23
    77. Jennifer Galanis, Aakriti Sood, Ron Gill, Daniel Harries. The contribution of capping layer dielectric properties to nanoparticle stability. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2015, 483 , 239-247. https://doi.org/10.1016/j.colsurfa.2015.05.015
    78. Jianzhuo Dai, Ming Dong, Fuxin Wen, Li Wang, Ming Ren. The molecular dynamic simulation investigation of the dispersion stability of nano-modified transformer oil. 2015, 475-478. https://doi.org/10.1109/CEIDP.2015.7352021
    79. Lukas Zeininger, Stefanie Petzi, Jörg Schönamsgruber, Luis Portilla, Marcus Halik, Andreas Hirsch. Very Facile Polarity Umpolung and Noncovalent Functionalization of Inorganic Nanoparticles: A Tool Kit for Supramolecular Materials Chemistry. Chemistry – A European Journal 2015, 21 (40) , 14030-14035. https://doi.org/10.1002/chem.201501682
    80. Renata Behra, Bettina Wagner, Linn Sgier, David Kistler. Colloidal Stability and Toxicity of Gold Nanoparticles and Gold Chloride on Chlamydomonas reinhardtii. Aquatic Geochemistry 2015, 21 (2-4) , 331-342. https://doi.org/10.1007/s10498-015-9255-1
    81. Wenyi Huang, Dawei Bai, Lijun Li, Huidan Wei, Zhipeng Shi, Hao Cheng, Yanqing Li. The synthesis of ultrasmall ZnO@PEG nanoparticles and its fluorescence properties. Journal of Sol-Gel Science and Technology 2015, 74 (3) , 718-725. https://doi.org/10.1007/s10971-015-3653-0
    82. Agnieszka Gajewicz, Nicole Schaeublin, Bakhtiyor Rasulev, Saber Hussain, Danuta Leszczynska, Tomasz Puzyn, Jerzy Leszczynski. Towards understanding mechanisms governing cytotoxicity of metal oxides nanoparticles: Hints from nano-QSAR studies. Nanotoxicology 2015, 9 (3) , 313-325. https://doi.org/10.3109/17435390.2014.930195
    83. Lukas Zeininger, Martin Klaumünzer, Wolfgang Peukert, Andreas Hirsch. Surface Modification of ZnO Nanorods with Hamilton Receptors. International Journal of Molecular Sciences 2015, 16 (4) , 8186-8200. https://doi.org/10.3390/ijms16048186
    84. Doris Segets, Wolfgang Peukert. Process Engineering of Nanoparticles Below 20 nm—A Fundamental Discussion of Characterization, Particle Formation, Stability and Post Processing. 2015, 279-305. https://doi.org/10.1007/978-3-319-15129-8_12
    85. S. Zellmer, C. Grote, T. A. Cheema, G. Garnweitner. Small-Molecule Stabilization Mechanisms of Metal Oxide Nanoparticles. 2015, 73-91. https://doi.org/10.1007/978-3-319-15129-8_4
    86. Sajid Bashir, Jingbo Liu. Overviews of Synthesis of Nanomaterials. 2015, 51-115. https://doi.org/10.1016/B978-0-12-801528-5.00002-6
    87. Wolfgang Peukert, Doris Segets, Lukas Pflug, Günter Leugering. Unified Design Strategies for Particulate Products. 2015, 1-81. https://doi.org/10.1016/bs.ache.2015.10.004
    88. Doris Segets, Wolfgang Peukert. From In Situ Characterization to Process Control of Quantum Dot Systems. Procedia Engineering 2015, 102 , 575-581. https://doi.org/10.1016/j.proeng.2015.01.129
    89. Jian Luo, Suqing Zhao, Panpan Wu, Kun Zhang, Chao Peng, Shengwu Zheng. Synthesis and characterization of new Cd-doped ZnO/ZnS core–shell quantum dots with tunable and highly visible photoluminescence. Journal of Materials Chemistry C 2015, 3 (14) , 3391-3398. https://doi.org/10.1039/C4TC02376E
    90. A. M. Pourrahimi, D. Liu, V. Ström, M. S. Hedenqvist, R. T. Olsson, U. W. Gedde. Heat treatment of ZnO nanoparticles: new methods to achieve high-purity nanoparticles for high-voltage applications. Journal of Materials Chemistry A 2015, 3 (33) , 17190-17200. https://doi.org/10.1039/C5TA03120F
    91. Lennart Treuel, Dominic Docter, Michael Maskos, Roland H Stauber. Protein corona – from molecular adsorption to physiological complexity. Beilstein Journal of Nanotechnology 2015, 6 , 857-873. https://doi.org/10.3762/bjnano.6.88
    92. Andrew C. Johannes, Joseph C. Farmer, Luke N. Brewer, Sebastian Osswald. Letting Corrosion Work for You: Novel Pathways to Additive Manufacturing and Nanomaterial Synthesis Using Electrochemically‐Driven Powder Consolidation. Advanced Engineering Materials 2014, 16 (9) , 1147-1159. https://doi.org/10.1002/adem.201300562
    93. Gyeongwon Yun, Zahid Hassan, Jiyeong Lee, Jeehong Kim, Nam‐Suk Lee, Nam Hoon Kim, Kangkyun Baek, Ilha Hwang, Chan Gyung Park, Kimoon Kim. Highly Stable, Water‐Dispersible Metal‐Nanoparticle‐Decorated Polymer Nanocapsules and Their Catalytic Applications. Angewandte Chemie 2014, 126 (25) , 6532-6536. https://doi.org/10.1002/ange.201403438
    94. Gyeongwon Yun, Zahid Hassan, Jiyeong Lee, Jeehong Kim, Nam‐Suk Lee, Nam Hoon Kim, Kangkyun Baek, Ilha Hwang, Chan Gyung Park, Kimoon Kim. Highly Stable, Water‐Dispersible Metal‐Nanoparticle‐Decorated Polymer Nanocapsules and Their Catalytic Applications. Angewandte Chemie International Edition 2014, 53 (25) , 6414-6418. https://doi.org/10.1002/anie.201403438
    95. Jörg Schönamsgruber, Lukas Zeininger, Andreas Hirsch. Grafting Perylenes to ZnO Nanoparticles. Chemistry – A European Journal 2014, 20 (9) , 2529-2536. https://doi.org/10.1002/chem.201303416
    96. A. M. Pourrahimi, D. Liu, L. K. H. Pallon, R. L. Andersson, A. Martínez Abad, J.-M. Lagarón, M. S. Hedenqvist, V. Ström, U. W. Gedde, R. T. Olsson. Water-based synthesis and cleaning methods for high purity ZnO nanoparticles – comparing acetate, chloride, sulphate and nitrate zinc salt precursors. RSC Adv. 2014, 4 (67) , 35568-35577. https://doi.org/10.1039/C4RA06651K
    97. Nan Wang, Chien Hsu, Lihua Zhu, Shiojenn Tseng, Jyh-Ping Hsu. Influence of metal oxide nanoparticles concentration on their zeta potential. Journal of Colloid and Interface Science 2013, 407 , 22-28. https://doi.org/10.1016/j.jcis.2013.05.058
    98. Chengbo Zhang, Keyan Li, Shuyan Song, Dongfeng Xue. Reversible Phase Transfer of Luminescent ZnO Quantum Dots between Polar and Nonpolar Media. Chemistry – A European Journal 2013, 19 (20) , 6329-6333. https://doi.org/10.1002/chem.201203236
    99. Tennyson Doane, Clemens Burda. Nanoparticle mediated non-covalent drug delivery. Advanced Drug Delivery Reviews 2013, 65 (5) , 607-621. https://doi.org/10.1016/j.addr.2012.05.012
    100. Doris Segets, So Komada, Benjamin Butz, Erdmann Spiecker, Yasushige Mori, Wolfgang Peukert. Quantitative evaluation of size selective precipitation of Mn-doped ZnS quantum dots by size distributions calculated from UV/Vis absorbance spectra. Journal of Nanoparticle Research 2013, 15 (4) https://doi.org/10.1007/s11051-013-1486-8
    Load all citations

    ACS Nano

    Cite this: ACS Nano 2011, 5, 6, 4658–4669
    Click to copy citationCitation copied!
    https://doi.org/10.1021/nn200465b
    Published May 5, 2011
    Copyright © 2011 American Chemical Society

    Article Views

    3610

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.