ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Interactions between Magnetic Nanowires and Living Cells: Uptake, Toxicity, and Degradation

View Author Information
Matière et Systèmes Complexes, UMR 7057 CNRS Université Denis Diderot Paris-VII, Bâtiment Condorcet 10 rue Alice Domon et Léonie Duquet, 75205 Paris, France
Service de Microscopie Electronique, Institut de Biologie Intégrative, IFR 83 Université P. et M. Curie 9 quai St Bernard 75252 Paris cedex
§ Université Paris Diderot-Paris 7, ImagoSeine Bioimaging Core Facility, Jacques Monod Institute, 75013 Paris, France
Université Paris Diderot-Paris 7, Unit of Functional and Adaptive Biology (BFA) CNRS EAC 4413, Laboratory of Molecular and Cellular Responses to Xenobiotics, Bâtiment Buffon, 5 rue Thomas Mann, 75013 Paris, France
Inserm, U1016, Institut Cochin, Paris, France
# CNRS, UMR 8104, Paris, France
Univ Paris Descartes, Paris, France
Institut Curie-Section de Recherche, Centre Universitaire Paris-Sud, Bâtiment 110 91405 Orsay, France
Address correspondence to [email protected]
Cite this: ACS Nano 2011, 5, 7, 5354–5364
Publication Date (Web):June 23, 2011
https://doi.org/10.1021/nn201121e
Copyright © 2011 American Chemical Society

    Article Views

    2679

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (4 MB)
    Supporting Info (5)»

    Abstract

    Abstract Image

    We report on the uptake, toxicity, and degradation of magnetic nanowires by NIH/3T3 mouse fibroblasts. Magnetic nanowires of diameters 200 nm and lengths between 1 and 40 μm are fabricated by controlled assembly of iron oxide (γ-Fe2O3) nanoparticles. Using optical and electron microscopy, we show that after 24 h incubation the wires are internalized by the cells and located either in membrane-bound compartments or dispersed in the cytosol. Using fluorescence microscopy, the membrane-bound compartments were identified as late endosomal/lysosomal endosomes labeled with lysosomal associated membrane protein (Lamp1). Toxicity assays evaluating the mitochondrial activity, cell proliferation, and production of reactive oxygen species show that the wires do not display acute short-term (<100 h) toxicity toward the cells. Interestingly, the cells are able to degrade the wires and to transform them into smaller aggregates, even in short time periods (days). This degradation is likely to occur as a consequence of the internal structure of the wires, which is that of a noncovalently bound aggregate. We anticipate that this degradation should prevent long-term asbestos-like toxicity effects related to high aspect ratio morphologies and that these wires represent a promising class of nanomaterials for cell manipulation and microrheology.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    How to analyze the Brownian motions of internalized wires in terms of mean square angular displacement and rotational diffusion constant (SI-1). Details of the protocol for measuring the mass of metal internalized/adsorbed by living cells (MILC) (SI-2). Proliferation assays obtained for the fibroblasts incubated with PAA2K–γ-Fe2O3 particles (SI-3) are shown to allow the comparaison with the data of Figure 5. Controls of the oxidative properties of the particles/wires (SI-4) and on the effect of the pH on the nanowire stability (SI-5). Additional TEM materials (SI-6) to prove that isolated nanoparticles or small clusters of particles can be found in the cytosol. 3D reconstruction of the of the immunofluorescence images (SI-7). The release amounts and release rates of ferric ion Fe3+ at neutral and acidic pH for the Massart dispersions used in this work (SI-8). Additional control experiments showing the absence of interaction between the MTT/formazan crystals with the nanomaterials (SI-9) and finally a statistical study of the iron oxide loaded compartments for cells incubated with PAA2K–γ-Fe2O3 particles (SI-10). Four movies: (Movie 1) a nanowire is subjected to a rotating magnetic field (B = 0.01 T) at the frequency of 0.2 Hz; (Movie 2) the Brownian motions of magnetic nanowires inside NIH/3T3 cells; (Movies 3 and 4) Z-stacks of images taken every 0.2 μm for fixed NIH/3T3 cells, in phase contrast and fluorescence respectively. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 104 publications.

    1. Min Kyung Kim, Bong Geun Cha, Jaeyun Kim. Directed Assembly of Magnetic Nanoparticles into Centimeter Scale Wires for a 3D Cell Culture Platform. Chemistry of Materials 2022, 34 (10) , 4437-4445. https://doi.org/10.1021/acs.chemmater.2c00120
    2. Zohreh Nemati, Joseph Um, Mohammad Reza Zamani Kouhpanji, Fang Zhou, Thomas Gage, Daniel Shore, Kelly Makielski, Alicia Donnelly, Javier Alonso. Magnetic Isolation of Cancer-Derived Exosomes Using Fe/Au Magnetic Nanowires. ACS Applied Nano Materials 2020, 3 (2) , 2058-2069. https://doi.org/10.1021/acsanm.0c00263
    3. Aldo Isaac Martínez-Banderas, Antonio Aires, Marta Quintanilla, Jorge A. Holguín-Lerma, Claudia Lozano-Pedraza, Francisco J. Teran, Julián A. Moreno, Jose E. Perez, Boon S. Ooi, Timothy Ravasi, Jasmeen S. Merzaban, Aitziber L. Cortajarena, Jürgen Kosel. Iron-Based Core–Shell Nanowires for Combinatorial Drug Delivery and Photothermal and Magnetic Therapy. ACS Applied Materials & Interfaces 2019, 11 (47) , 43976-43988. https://doi.org/10.1021/acsami.9b17512
    4. Maxim Gongalsky, Georgii Gvindzhiliia, Konstantin Tamarov, Olga Shalygina, Alexander Pavlikov, Valery Solovyev, Andrey Kudryavtsev, Vladimir Sivakov, Liubov A. Osminkina. Radiofrequency Hyperthermia of Cancer Cells Enhanced by Silicic Acid Ions Released During the Biodegradation of Porous Silicon Nanowires. ACS Omega 2019, 4 (6) , 10662-10669. https://doi.org/10.1021/acsomega.9b01030
    5. Giovanni Luongo, Paola Campagnolo, Jose E. Perez, Jürgen Kosel, Theoni K. Georgiou, Anna Regoutz, David J. Payne, Molly M. Stevens, Mary P. Ryan, Alexandra E. Porter, and Iain E. Dunlop . Scalable High-Affinity Stabilization of Magnetic Iron Oxide Nanostructures by a Biocompatible Antifouling Homopolymer. ACS Applied Materials & Interfaces 2017, 9 (46) , 40059-40069. https://doi.org/10.1021/acsami.7b12290
    6. Belén Cortés-Llanos, Aída Serrano, Alvaro Muñoz-Noval, Esteban Urones-Garrote, Adolfo del Campo, José F. Marco, Angel Ayuso-Sacido, and Lucas Pérez . Thermal Route for the Synthesis of Maghemite/Hematite Core/Shell Nanowires. The Journal of Physical Chemistry C 2017, 121 (41) , 23158-23165. https://doi.org/10.1021/acs.jpcc.7b02625
    7. Yurii P. Ivanov, Andrey Chuvilin, Sergei Lopatin, and Jurgen Kosel . Modulated Magnetic Nanowires for Controlling Domain Wall Motion: Toward 3D Magnetic Memories. ACS Nano 2016, 10 (5) , 5326-5332. https://doi.org/10.1021/acsnano.6b01337
    8. Hui Wang, Anton Mararenko, Guixin Cao, Zheng Gai, Kunlun Hong, Probal Banerjee, and Shuiqin Zhou . Multifunctional 1D Magnetic and Fluorescent Nanoparticle Chains for Enhanced MRI, fluorescent Cell Imaging, And Combined Photothermal/Chemotherapy. ACS Applied Materials & Interfaces 2014, 6 (17) , 15309-15317. https://doi.org/10.1021/am503777k
    9. A. Cacchioli, F. Ravanetti, R. Alinovi, S. Pinelli, F. Rossi, M. Negri, E. Bedogni, M. Campanini, M. Galetti, M. Goldoni, P. Lagonegro, R. Alfieri, F. Bigi, and G. Salviati . Cytocompatibility and Cellular Internalization Mechanisms of SiC/SiO2 Nanowires. Nano Letters 2014, 14 (8) , 4368-4375. https://doi.org/10.1021/nl501255m
    10. Leona D. Scanlan, Robert B. Reed, Alexandre V. Loguinov, Philipp Antczak, Abderrahmane Tagmount, Shaul Aloni, Daniel Thomas Nowinski, Pauline Luong, Christine Tran, Nadeeka Karunaratne, Don Pham, Xin Xin Lin, Francesco Falciani, Christopher P. Higgins, James F. Ranville, Chris D. Vulpe, and Benjamin Gilbert . Silver Nanowire Exposure Results in Internalization and Toxicity to Daphnia magna. ACS Nano 2013, 7 (12) , 10681-10694. https://doi.org/10.1021/nn4034103
    11. Chun Xian Guo, Shu Rui Ng, Si Yun Khoo, Xinting Zheng, Peng Chen, and Chang Ming Li . RGD-Peptide Functionalized Graphene Biomimetic Live-Cell Sensor for Real-Time Detection of Nitric Oxide Molecules. ACS Nano 2012, 6 (8) , 6944-6951. https://doi.org/10.1021/nn301974u
    12. Weixia Zhang, Ling Tong, and Chen Yang . Cellular Binding and Internalization of Functionalized Silicon Nanowires. Nano Letters 2012, 12 (2) , 1002-1006. https://doi.org/10.1021/nl204131n
    13. Ehsan Rahimi, Donghoon Kim, Ruben Offoiach, Roger Sanchis‐Gual, Xiang‐Zhong Chen, Peyman Taheri, Yaiza Gonzalez‐Garcia, Johannes M. C. Mol, Lorenzo Fedrizzi, Salvador Pané, Maria Lekka. Biodegradation of Oxide Nanoparticles in Apoferritin Protein Media: A Systematic Electrochemical Approach. Advanced Materials Interfaces 2023, 9 https://doi.org/10.1002/admi.202300558
    14. Ehsan Rahimi, Roger Sanchis‐Gual, Xiangzhong Chen, Amin Imani, Yaiza Gonzalez‐Garcia, Edouard Asselin, Arjan Mol, Lorenzo Fedrizzi, Salvador Pané, Maria Lekka. Challenges and Strategies for Optimizing Corrosion and Biodegradation Stability of Biomedical Micro‐ and Nanoswimmers: A Review. Advanced Functional Materials 2023, 2 https://doi.org/10.1002/adfm.202210345
    15. Abu Bakr Nana, Thashree Marimuthu, Daniel Wamwangi, Pierre P. D. Kondiah, Yahya E. Choonara. Design and Evaluation of Composite Magnetic Iron–Platinum Nanowires for Targeted Cancer Nanomedicine. Biomedicines 2023, 11 (7) , 1857. https://doi.org/10.3390/biomedicines11071857
    16. Yanzhuo Ma, Aijie Ma, Tao Luo, Siyu Xiao, Hongwei Zhou. Fabrication of anisotropic nanocomposite hydrogels by magnetic field‐induced orientation for mimicking cardiac tissue. Journal of Applied Polymer Science 2023, 140 (1) https://doi.org/10.1002/app.53248
    17. Weixia Zhang, Yimin Huang, Chen Yang. Functional silicon nanowires for cellular binding and internalization. 2022, 111-136. https://doi.org/10.1016/B978-0-12-821351-3.00010-0
    18. Ozge Inal, Ulya Badilli, A. Sibel Ozkan, Fariba Mollarasouli. Bioactive hybrid nanowires for drug delivery. 2022, 269-301. https://doi.org/10.1016/B978-0-323-85754-3.00012-5
    19. Yiling Li, Wen-Xiong Wang. Uptake, intracellular dissolution, and cytotoxicity of silver nanowires in cell models. Chemosphere 2021, 281 , 130762. https://doi.org/10.1016/j.chemosphere.2021.130762
    20. Ehsan Rahimi, Ruben Offoiach, Siyu Deng, Xiangzhong Chen, Salvador Pané, Lorenzo Fedrizzi, Maria Lekka. Corrosion mechanisms of magnetic microrobotic platforms in protein media. Applied Materials Today 2021, 24 , 101135. https://doi.org/10.1016/j.apmt.2021.101135
    21. Shikha Awasthi. A Review on Hydrogels and Ferrogels for Biomedical Applications. JOM 2021, 73 (8) , 2440-2451. https://doi.org/10.1007/s11837-021-04734-7
    22. Mohamed Alaraby, Alba Hernández, Ricard Marcos. Novel insights into biodegradation, interaction, internalization and impacts of high-aspect-ratio TiO2 nanomaterials: A systematic in vivo study using Drosophila melanogaster. Journal of Hazardous Materials 2021, 409 , 124474. https://doi.org/10.1016/j.jhazmat.2020.124474
    23. Julian A. Moreno, Cristina Bran, Manuel Vazquez, Jurgen Kosel. Cylindrical Magnetic Nanowires Applications. IEEE Transactions on Magnetics 2021, 57 (4) , 1-17. https://doi.org/10.1109/TMAG.2021.3055338
    24. E.Yu. Kaniukov, A.E. Shumskaya, A.L. Kozlovskiy, M.V. Zdorovets, A.V. Trukhanov, T.I. Zubar, D.I. Tishkevich, D.A. Vinnik, D.R. Khairetdinova, S.A. Evstigneeva, V.S. Rusakov, B.Z. Rameev, L.V. Panina. Structure and magnetic properties of FeCo nanotubes obtained in pores of ion track templates. Nano-Structures & Nano-Objects 2021, 26 , 100691. https://doi.org/10.1016/j.nanoso.2021.100691
    25. Mohammad Reza Zamani Kouhpanji, Bethanie Stadler. Magnetic Nanowires toward Authentication. Particle & Particle Systems Characterization 2021, 38 (2) , 2000227. https://doi.org/10.1002/ppsc.202000227
    26. Eşref Demir. A review on nanotoxicity and nanogenotoxicity of different shapes of nanomaterials. Journal of Applied Toxicology 2021, 41 (1) , 118-147. https://doi.org/10.1002/jat.4061
    27. Juan Wu, Qi Yu, Thijs Bosker, Martina G. Vijver, Willie J. G. M. Peijnenburg. Quantifying the relative contribution of particulate versus dissolved silver to toxicity and uptake kinetics of silver nanowires in lettuce: impact of size and coating. Nanotoxicology 2020, 14 (10) , 1399-1414. https://doi.org/10.1080/17435390.2020.1831639
    28. Ksenija Božinović, Davor Nestić, Urška Gradišar Centa, Andreja Ambriović-Ristov, Ana Dekanić, Lenn de Bisschop, Maja Remškar, Dragomira Majhen. In-vitro toxicity of molybdenum trioxide nanoparticles on human keratinocytes. Toxicology 2020, 444 , 152564. https://doi.org/10.1016/j.tox.2020.152564
    29. J. Alam, C. Bran, H. Chiriac, N. Lupu, T.A. Óvári, L.V. Panina, V. Rodionova, R. Varga, M. Vazquez, A. Zhukov. Cylindrical micro and nanowires: Fabrication, properties and applications. Journal of Magnetism and Magnetic Materials 2020, 513 , 167074. https://doi.org/10.1016/j.jmmm.2020.167074
    30. Aiman Mukhtar, Kaiming Wu, Xiaoming Cao, liyuan Gu. Magnetic nanowires in biomedical applications. Nanotechnology 2020, 31 (43) , 433001. https://doi.org/10.1088/1361-6528/aba1ba
    31. Zohreh Nemati, Mohammad Reza Zamani Kouhpanji, Fang Zhou, Raja Das, Kelly Makielski, Joseph Um, Manh-Huong Phan, Alicia Muela, Mᵃ Luisa Fdez-Gubieda, Rhonda R. Franklin, Bethanie J. H. Stadler, Jaime F. Modiano, Javier Alonso. Isolation of Cancer-Derived Exosomes Using a Variety of Magnetic Nanostructures: From Fe3O4 Nanoparticles to Ni Nanowires. Nanomaterials 2020, 10 (9) , 1662. https://doi.org/10.3390/nano10091662
    32. Claude L. Bostoen, Jean-François Berret. A mathematical finance approach to the stochastic and intermittent viscosity fluctuations in living cells. Soft Matter 2020, 16 (25) , 5959-5969. https://doi.org/10.1039/C9SM02534K
    33. Daryn.B. Borgekov, Mukhtar Balaubayev, Maxim.V. Zdorovets, Alena E. Shumskaya, Artem.L. Kozlovskiy. Study of the rate of degradation of permalloy nanowires. Surface and Coatings Technology 2020, 389 , 125621. https://doi.org/10.1016/j.surfcoat.2020.125621
    34. Mohammad Reza Zamani Kouhpanji, Bethanie J. H. Stadler. Projection method as a probe for multiplexing/demultiplexing of magnetically enriched biological tissues. RSC Advances 2020, 10 (22) , 13286-13292. https://doi.org/10.1039/D0RA01574A
    35. Yan Gao, Ying Liu, Yadong Zhao, Shulan Xu, Chunhua Lai, Xianglong Ding, Zehong Guo, Wangxi Wu, Lei Zhou. RETRACTED ARTICLE: The structure and biological properties of clustered anatase/rutile nanowire array–modified titanium surface. Journal of Nanoparticle Research 2020, 22 (4) https://doi.org/10.1007/s11051-020-04794-x
    36. Stuart G. Higgins, Michele Becce, Alexis Belessiotis‐Richards, Hyejeong Seong, Julia E. Sero, Molly M. Stevens. High‐Aspect‐Ratio Nanostructured Surfaces as Biological Metamaterials. Advanced Materials 2020, 32 (9) https://doi.org/10.1002/adma.201903862
    37. Egor Kaniukov, Alena Shumskaya, Artem Kozlovskiy, Maxim Fadeev, Vyacheslav Rusakov, Maksim Zdorovets. Structural and Magnetic Characteristics of Ferrum Nanotubes Obtained at Different Potentials of Electrodeposition. physica status solidi (b) 2020, 257 (3) https://doi.org/10.1002/pssb.201900319
    38. Jose E. Perez, Jürgen Kosel. Nanowire transducers for biomedical applications. 2020, 697-713. https://doi.org/10.1016/B978-0-08-102832-2.00023-2
    39. Arpita Pandey Tiwari, Sonali S. Rohiwal. Current development in toxicity, clinical trials guidelines for regulatory aspects of breast cancer nanomedicines. 2020, 351-369. https://doi.org/10.1016/B978-0-12-820016-2.00015-X
    40. M.V. Zdorovets, A.L. Kozlovskiy. Study of phase transformations in Co/CoCo2O4 nanowires. Journal of Alloys and Compounds 2020, 815 , 152450. https://doi.org/10.1016/j.jallcom.2019.152450
    41. Abu Bakr A. Nana, Thashree Marimuthu, Pierre P. D. Kondiah, Yahya E. Choonara, Lisa C. Du Toit, Viness Pillay. Multifunctional Magnetic Nanowires: Design, Fabrication, and Future Prospects as Cancer Therapeutics. Cancers 2019, 11 (12) , 1956. https://doi.org/10.3390/cancers11121956
    42. F. Ahmadi, M. J. Donahue, Y. Sozer, I. Tsukerman. Micromagnetic study of soft magnetic nanowires. AIP Advances 2019, 9 (12) https://doi.org/10.1063/1.5130157
    43. Bin Wang, Olivier Sandre, Kunzhou Wang, Haishan Shi, Kun Xiong, Yu-bin Huang, Tingting Wu, Minhao Yan, Jérémie Courtois. Auto-degradable and biocompatible superparamagnetic iron oxide nanoparticles/polypeptides colloidal polyion complexes with high density of magnetic material. Materials Science and Engineering: C 2019, 104 , 109920. https://doi.org/10.1016/j.msec.2019.109920
    44. Alexander P. Safronov, Bethanie J. H. Stadler, Joseph Um, Mohammad Reza Zamani Kouhpanji, Javier Alonso Masa, Andrey G. Galyas, Galina V. Kurlyandskaya. Polyacrylamide Ferrogels with Ni Nanowires. Materials 2019, 12 (16) , 2582. https://doi.org/10.3390/ma12162582
    45. Egor Kaniukov, Alena Shumskaya, Dzmitry Yakimchuk, Artem Kozlovskiy, Ilya Korolkov, Milana Ibragimova, Maxim Zdorovets, Kairat Kadyrzhanov, Vyacheslav Rusakov, Maxim Fadeev, Eugenia Lobko, Кristina Saunina, Larisa Nikolaevich. FeNi nanotubes: perspective tool for targeted delivery. Applied Nanoscience 2019, 9 (5) , 835-844. https://doi.org/10.1007/s13204-018-0762-4
    46. Artem Kozlovskiy, Maxim Zdorovets, Kairat Kadyrzhanov, Ilya Korolkov, Vyacheslav Rusakov, Larisa Nikolaevich, Olena Fesenko, Oksana Budnyk, Dzmitry Yakimchuk, Alena Shumskaya, Egor Kaniukov. FeCo nanotubes: possible tool for targeted delivery of drugs and proteins. Applied Nanoscience 2019, 9 (5) , 1091-1099. https://doi.org/10.1007/s13204-018-0889-3
    47. Laura Abariute, Mercy Lard, Elke Hebisch, Christelle N. Prinz, . Uptake of nanowires by human lung adenocarcinoma cells. PLOS ONE 2019, 14 (6) , e0218122. https://doi.org/10.1371/journal.pone.0218122
    48. S. V. Komogortsev, L. A. Chekanova, E. A. Denisova, A. A. Bukaemskiy, R. S. Iskhakov, S. V. Mel’nikova. Macro- and Nanoscale Magnetic Anisotropy of FeNi(P) Micropillars in Polycarbonate Membrane. Journal of Superconductivity and Novel Magnetism 2019, 32 (4) , 911-916. https://doi.org/10.1007/s10948-018-4772-y
    49. Guifang Wang, Jing Wang, Linlin Zhao, Qiang Zhang, Yan Lu. Facile Fabrication of Fluorescent Inorganic Nanoparticles with Diverse Shapes for Cell Imaging. Nanomaterials 2019, 9 (2) , 154. https://doi.org/10.3390/nano9020154
    50. D. B. Borgekov, M. V. Zdorovets, A. L. Kozlovskiy, M. D. Kutuzau, E. E. Shumskaya, E. Yu. Kaniukov. Effect of Acidity on the Morphology, Structure, and Composition of Ni Nanotubes. Russian Journal of Physical Chemistry A 2019, 93 (1) , 125-128. https://doi.org/10.1134/S0036024418120063
    51. D. Zh. Tulebayeva, A. Y. Yermekova, A. L. Kozlovskiy, M. V. Zdorovets. Studying the Corrosion Resistance of Fe3O4 Nanoparticles. Bulletin of the Russian Academy of Sciences: Physics 2018, 82 (10) , 1342-1347. https://doi.org/10.3103/S1062873818100246
    52. Jose Efrain Perez, Nouf Alsharif, Aldo Isaac Martínez Banderas, Basmah Othman, Jasmeen Merzaban, Timothy Ravasi, Jürgen Kosel. Review of In vitro Toxicity of Nanoparticles and Nanorods: Part 1. 2018https://doi.org/10.5772/intechopen.76365
    53. A. L. Kozlovskiy, I. V. Korolkov, M. A. Ibragimova, M. V. Zdorovets, M. D. Kutuzau, L. N. Nikolaevich, E. E. Shumskaya, E. Yu. Kaniukov. Magnetic Nanostructured System for Biomedical Applications Based on FeNi Nanotubes. Nanotechnologies in Russia 2018, 13 (5-6) , 331-336. https://doi.org/10.1134/S1995078018030084
    54. Michał Chudy, Katarzyna Tokarska, Elżbieta Jastrzębska, Magdalena Bułka, Sławomir Drozdek, Łukasz Lamch, Kazimiera A. Wilk, Zbigniew Brzózka. Lab-on-a-chip systems for photodynamic therapy investigations. Biosensors and Bioelectronics 2018, 101 , 37-51. https://doi.org/10.1016/j.bios.2017.10.013
    55. Jean-François Berret, , , . Magnetic wire as stress controlled micro-rheometer for cytoplasm viscosity measurements. 2018, 16. https://doi.org/10.1117/12.2289015
    56. Kelly McNear, Yimin Huang, Chen Yang. Understanding cellular internalization pathways of silicon nanowires. Journal of Nanobiotechnology 2017, 15 (1) https://doi.org/10.1186/s12951-017-0250-0
    57. Jean-Baptiste Lugagne, Gwennhaël Brackx, Emek Seyrek, Sophie Nowak, Yann Sivry, Leticia Vitorazi, Jean-François Berret, Pascal Hersen, Gaëlle Charron. Assembly and Characterizations of Bifunctional Fluorescent and Magnetic Microneedles With One Decade Length Tunability. Advanced Functional Materials 2017, 27 (31) , 1700362. https://doi.org/10.1002/adfm.201700362
    58. Seyyed Salili, Matthew Worden, Ahlam Nemati, Donald Miller, Torsten Hegmann. Synthesis of Distinct Iron Oxide Nanomaterial Shapes Using Lyotropic Liquid Crystal Solvents. Nanomaterials 2017, 7 (8) , 211. https://doi.org/10.3390/nano7080211
    59. A. E. Shumskaya, E. Yu. Kaniukov, A. L. Kozlovskiy, M. V. Zdorovets, V. S. Rusakov, K. K. Kadyrzhanov. Structure and physical properties of iron nanotubes obtained by template synthesis. Physics of the Solid State 2017, 59 (4) , 784-790. https://doi.org/10.1134/S1063783417040266
    60. Andrés Ochoa, J Mejía-López, E A Velásquez, J Mazo-Zuluaga. Finite-length Fe nanowire arrays: the effects of magnetic anisotropy energy, dipolar interaction and system size on their magnetic properties. Journal of Physics D: Applied Physics 2017, 50 (9) , 095003. https://doi.org/10.1088/1361-6463/aa5763
    61. Chinmaya Mahapatra, Rajendra K. Singh, Jung-Hwan Lee, Jieun Jung, Jung Keun Hyun, Hae-Won Kim. Nano-shape varied cerium oxide nanomaterials rescue human dental stem cells from oxidative insult through intracellular or extracellular actions. Acta Biomaterialia 2017, 50 , 142-153. https://doi.org/10.1016/j.actbio.2016.12.014
    62. Ikram Ziti, M. R. Britel, Chumin Wang. Atomic-Orbital and Plane-Wave Approaches to Ferromagnetic Properties of NixFe1-x Nanowires. MRS Advances 2017, 2 (9) , 507-512. https://doi.org/10.1557/adv.2017.159
    63. Leila Sadeghi, Farzeen Tanwir, Vahid Yousefi Babadi. Antioxidant effects of alfalfa can improve iron oxide nanoparticle damage: Invivo and invitro studies. Regulatory Toxicology and Pharmacology 2016, 81 , 39-46. https://doi.org/10.1016/j.yrtph.2016.07.010
    64. Jose E. Perez, Maria F. Contreras, Enrique Vilanova, Laura P. Felix, Michael B. Margineanu, Giovanni Luongo, Alexandra E. Porter, Iain E. Dunlop, Timothy Ravasi, Jürgen Kosel. Cytotoxicity and intracellular dissolution of nickel nanowires. Nanotoxicology 2016, 10 (7) , 871-880. https://doi.org/10.3109/17435390.2015.1132343
    65. A. Kozlovskiy, A. Zhanbotin, M. Zdorovets, I. Manakova, A. Ozernoy, T. Kiseleva, K. Kadyrzhanov, V. Rusakov, E. Kanyukov. Mossbauer research of Fe/Co nanotubes based on track membranes. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 2016, 381 , 103-109. https://doi.org/10.1016/j.nimb.2016.05.026
    66. J.-F. Berret. Local viscoelasticity of living cells measured by rotational magnetic spectroscopy. Nature Communications 2016, 7 (1) https://doi.org/10.1038/ncomms10134
    67. Sergei Lopatin, Yurii P. Ivanov, Jurgen Kosel, Andrey Chuvilin. Multiscale differential phase contrast analysis with a unitary detector. Ultramicroscopy 2016, 162 , 74-81. https://doi.org/10.1016/j.ultramic.2015.12.008
    68. Masanori Hashimoto, Jun-Ichi Sasaki, Satoshi Imazato. Investigation of the cytotoxicity of aluminum oxide nanoparticles and nanowires and their localization in L929 fibroblasts and RAW264 macrophages. Journal of Biomedical Materials Research Part B: Applied Biomaterials 2016, 104 (2) , 241-252. https://doi.org/10.1002/jbm.b.33377
    69. Laura P. Felix, Jose E. Perez, Maria F. Contreras, Timothy Ravasi, Jürgen Kosel. Cytotoxic effects of nickel nanowires in human fibroblasts. Toxicology Reports 2016, 3 , 373-380. https://doi.org/10.1016/j.toxrep.2016.03.004
    70. Oren Cooper, Bei Wang, Christopher L. Brown, Joe Tiralongo, Francesca Iacopi. Toward Label-Free Biosensing With Silicon Carbide: A Review. IEEE Access 2016, 4 , 477-497. https://doi.org/10.1109/ACCESS.2016.2518190
    71. Óscar Iglesias-Freire, Cristina Bran, Eider Berganza, Ignacio Mínguez-Bacho, César Magén, Manuel Vázquez, Agustina Asenjo. Spin configuration in isolated FeCoCu nanowires modulated in diameter. Nanotechnology 2015, 26 (39) , 395702. https://doi.org/10.1088/0957-4484/26/39/395702
    72. Christelle N Prinz. Interactions between semiconductor nanowires and living cells. Journal of Physics: Condensed Matter 2015, 27 (23) , 233103. https://doi.org/10.1088/0953-8984/27/23/233103
    73. Changqiang Wu, Ye Xu, Li Yang, Jun Wu, Wencheng Zhu, Danyang Li, Zhuzhong Cheng, Chunchao Xia, Yingkun Guo, Qiyong Gong, Bin Song, Hua Ai. Negatively Charged Magnetite Nanoparticle Clusters as Efficient MRI Probes for Dendritic Cell Labeling and In Vivo Tracking. Advanced Functional Materials 2015, 25 (23) , 3581-3591. https://doi.org/10.1002/adfm.201501031
    74. J. I. Kwak, Y.-J. An. A review of the ecotoxicological effects of nanowires. International Journal of Environmental Science and Technology 2015, 12 (3) , 1163-1172. https://doi.org/10.1007/s13762-014-0727-4
    75. Y.P. Ivanov, O. Chubykalo-Fesenko. Micromagnetic simulations of cylindrical magnetic nanowires. 2015, 423-448. https://doi.org/10.1016/B978-0-08-100164-6.00014-X
    76. K. Žužek Rožman. Functionalization of magnetic nanowires for biomedical applications. 2015, 589-627. https://doi.org/10.1016/B978-0-08-100164-6.00020-5
    77. Qijun Du, Zhongbing Huang, Zhi Wu, Xianwei Meng, Guangfu Yin, Fabao Gao, Lei Wang. Facile preparation and bifunctional imaging of Eu-doped GdPO 4 nanorods with MRI and cellular luminescence. Dalton Transactions 2015, 44 (9) , 3934-3940. https://doi.org/10.1039/C4DT03444A
    78. Shangyuan Yang, Jian Hao, Xihong Guo, Huan Huang, Rongli Cui, Guoming Lin, Cheng Li, Jinquan Dong, Baoyun Sun. Eu 3+ :Y 2 O 3 @CNTs—a rare earth filled carbon nanotube nanomaterial with low toxicity and good photoluminescence properties. RSC Advances 2015, 5 (28) , 21634-21639. https://doi.org/10.1039/C4RA14456B
    79. Raluca M. Fratila, Sara Rivera-Fernández, Jesús M. de la Fuente. Shape matters: synthesis and biomedical applications of high aspect ratio magnetic nanomaterials. Nanoscale 2015, 7 (18) , 8233-8260. https://doi.org/10.1039/C5NR01100K
    80. Ye Wang, Abel Santos, Andreas Evdokiou, Dusan Losic. An overview of nanotoxicity and nanomedicine research: principles, progress and implications for cancer therapy. Journal of Materials Chemistry B 2015, 3 (36) , 7153-7172. https://doi.org/10.1039/C5TB00956A
    81. Yu P Ivanov, D G Trabada, A Chuvilin, J Kosel, O Chubykalo-Fesenko, M Vázquez. Crystallographically driven magnetic behaviour of arrays of monocrystalline Co nanowires. Nanotechnology 2014, 25 (47) , 475702. https://doi.org/10.1088/0957-4484/25/47/475702
    82. Zeinab Jahed, Sara Molladavoodi, Brandon B. Seo, Maud Gorbet, Ting Y. Tsui, Mohammad R.K. Mofrad. Cell responses to metallic nanostructure arrays with complex geometries. Biomaterials 2014, 35 (34) , 9363-9371. https://doi.org/10.1016/j.biomaterials.2014.07.022
    83. C. T. Sousa, D. C. Leitao, M. P. Proenca, J. Ventura, A. M. Pereira, J. P. Araujo. Nanoporous alumina as templates for multifunctional applications. Applied Physics Reviews 2014, 1 (3) , 031102. https://doi.org/10.1063/1.4893546
    84. Huixin Wang, Baofu Hu, Lide Zhang, Ming Li, Erguang Ja, Zhenshen Liu. Enhanced structural ordering and coercivity in FePt nanowire arrays by addition of Zn. Journal of Magnetism and Magnetic Materials 2014, 362 , 47-51. https://doi.org/10.1016/j.jmmm.2014.02.085
    85. Wei Wang, Sixing Li, Lamar Mair, Suzanne Ahmed, Tony Jun Huang, Thomas E. Mallouk. Acoustic Propulsion of Nanorod Motors Inside Living Cells. Angewandte Chemie 2014, 126 (12) , 3265-3268. https://doi.org/10.1002/ange.201309629
    86. Wei Wang, Sixing Li, Lamar Mair, Suzanne Ahmed, Tony Jun Huang, Thomas E. Mallouk. Acoustic Propulsion of Nanorod Motors Inside Living Cells. Angewandte Chemie International Edition 2014, 53 (12) , 3201-3204. https://doi.org/10.1002/anie.201309629
    87. Mritunjoy Maity, Sumit Kumar Pramanik, Uttam Pal, Biswadip Banerji, Nakul Chandra Maiti. Copper(I) oxide nanoparticle and tryptophan as its biological conjugate: a modulation of cytotoxic effects. Journal of Nanoparticle Research 2014, 16 (1) https://doi.org/10.1007/s11051-013-2179-z
    88. W. Zhang, C. Yang. Functional semiconducting silicon nanowires for cellular binding and internalization. 2014, 89-103. https://doi.org/10.1533/9780857097712.2.89
    89. M P Proenca, K J Merazzo, L G Vivas, D C Leitao, C T Sousa, J Ventura, J P Araujo, M Vazquez. Co nanostructures in ordered templates: comparative FORC analysis. Nanotechnology 2013, 24 (47) , 475703. https://doi.org/10.1088/0957-4484/24/47/475703
    90. Yuanwen Zou, Zhongbing Huang, Min Deng, Guangfu Yin, Xianchun Chen, Juan Liu, Yan Wang, Li Yan, Jianwen Gu. Synthesis and neuro-cytocompatibility of magnetic Zn-ferrite nanorods via peptide-assisted process. Journal of Colloid and Interface Science 2013, 408 , 6-12. https://doi.org/10.1016/j.jcis.2013.07.017
    91. Loudjy Chevry, Rémy Colin, Bérengère Abou, Jean-François Berret. Intracellular micro-rheology probed by micron-sized wires. Biomaterials 2013, 34 (27) , 6299-6305. https://doi.org/10.1016/j.biomaterials.2013.05.002
    92. Karl Adolfsson, Martina Schneider, Greger Hammarin, Udo Häcker, Christelle N Prinz. Ingestion of gallium phosphide nanowires has no adverse effect on Drosophila tissue function. Nanotechnology 2013, 24 (28) , 285101. https://doi.org/10.1088/0957-4484/24/28/285101
    93. Peiwei Yi, Guangcun Chen, Hailu Zhang, Fei Tian, Bo Tan, Jianwu Dai, Qiangbin Wang, Zongwu Deng. Magnetic resonance imaging of Fe3O4@SiO2-labeled human mesenchymal stem cells in mice at 11.7 T. Biomaterials 2013, 34 (12) , 3010-3019. https://doi.org/10.1016/j.biomaterials.2013.01.022
    94. Muhammad A. Zeeshan, Salvador Pané, Seul Ki Youn, Eva Pellicer, Simone Schuerle, Jordi Sort, Stefano Fusco, André M. Lindo, Hyung Gyu Park, Bradley J. Nelson. Graphite Coating of Iron Nanowires for Nanorobotic Applications: Synthesis, Characterization and Magnetic Wireless Manipulation. Advanced Functional Materials 2013, 23 (7) , 823-831. https://doi.org/10.1002/adfm.201202046
    95. Florian Mumm, Kai M. Beckwith, Sara Bonde, Karen L. Martinez, Pawel Sikorski. A Transparent Nanowire-Based Cell Impalement Device Suitable for Detailed Cell-Nanowire Interaction Studies. Small 2013, 9 (2) , 263-272. https://doi.org/10.1002/smll.201201314
    96. Rafał Wierzbicki, Carsten Købler, Mikkel R. B. Jensen, Joanna Łopacińska, Michael S. Schmidt, Maciej Skolimowski, Fabien Abeille, Klaus Qvortrup, Kristian Mølhave, . Mapping the Complex Morphology of Cell Interactions with Nanowire Substrates Using FIB-SEM. PLoS ONE 2013, 8 (1) , e53307. https://doi.org/10.1371/journal.pone.0053307
    97. Gaëlle Piret, Maria-Thereza Perez, Christelle N. Prinz. Neurite outgrowth and synaptophysin expression of postnatal CNS neurons on GaP nanowire arrays in long-term retinal cell culture. Biomaterials 2013, 34 (4) , 875-887. https://doi.org/10.1016/j.biomaterials.2012.10.042
    98. Kirsten M. Pondman, A. Wouter Maijenburg, F. Burcu Celikkol, Ansar A. Pathan, Uday Kishore, Bennie ten Haken, Johan E. ten Elshof. Au coated Ni nanowires with tuneable dimensions for biomedical applications. Journal of Materials Chemistry B 2013, 1 (44) , 6129. https://doi.org/10.1039/c3tb20808g
    99. Armelle Baeza-Squiban, Sandra Vranic, Sonja Boland. Fate and Health Impact of Inorganic Manufactured Nanoparticles. 2013, 245-267. https://doi.org/10.1007/978-1-4471-4213-3_9
    100. L. Cattaneo, S. Franz, F. Albertini, P. Ranzieri, A. Vicenzo, M. Bestetti, P.L. Cavallotti. Electrodeposition of hexagonal Co nanowires with large magnetocrystalline anisotropy. Electrochimica Acta 2012, 85 , 57-65. https://doi.org/10.1016/j.electacta.2012.08.065
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect