ACS Publications. Most Trusted. Most Cited. Most Read
Laser Patterning of Epitaxial Graphene for Schottky Junction Photodetectors
My Activity
    Article

    Laser Patterning of Epitaxial Graphene for Schottky Junction Photodetectors
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Physics, National University of Singapore, Singapore 117542, Singapore.
    Address correspondence to [email protected], [email protected]
    Other Access OptionsSupporting Information (2)

    ACS Nano

    Cite this: ACS Nano 2011, 5, 7, 5969–5975
    Click to copy citationCitation copied!
    https://doi.org/10.1021/nn201757j
    Published June 24, 2011
    Copyright © 2011 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Large-area patterning of epitaxial graphene for Schottky junction photodetectors has been demonstrated with a simple laser irradiation method. In this method, semimetal–semiconductor Schottky junctions are created in a controllable pattern between epitaxial graphene (EG) and laser-modified epitaxial graphene (LEG). The zero-biased EG-LEG-EG photodetector exhibits a nanosecond and wavelength-independent photoresponse in a broad-band spectrum from ultraviolet (200 nm) through visible to infrared light (1064 nm), distinctively different from conventional photon detectors. An efficient external photoresponsivity (or efficiency) of ∼0.1 A·W–1 is achieved with a biased interdigitated EG-LEG-EG photodetector. The fabrication method presented here opens a viable route to carbon optoelectronics for a fast and highly efficient photoconductive detector.

    Copyright © 2011 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    In situ photocurrent monitoring during the fabrication of single-line EG-LEG-EG junction device (video), detected signals of laser pulses over one second, pulse-energy-dependent photocurrent temporal profiles, Raman spectra of modified HOPG at different pulse energies, detailed analyses on the Raman spectra of LEG, IV characteristics of the single-line EG-LEG-EG junction device, AFM images of EG before and after modification with laser beams and optical absorption spectra of EG and LEG. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 62 publications.

    1. Uzodinma Okoroanyanwu, Ayush Bhardwaj, James J. Watkins. Large Area Millisecond Preparation of High-Quality, Few-Layer Graphene Films on Arbitrary Substrates via Xenon Flash Lamp Photothermal Pyrolysis and Their Application for High-Performance Micro-supercapacitors. ACS Applied Materials & Interfaces 2023, 15 (10) , 13495-13507. https://doi.org/10.1021/acsami.2c19894
    2. Håkon I. Røst, Benjamen P. Reed, Frode S. Strand, Joseph A. Durk, D. Andrew Evans, Antonija Grubišić-Čabo, Gary Wan, Mattia Cattelan, Mauricio J. Prieto, Daniel M. Gottlob, Liviu C. Tănase, Lucas de Souza Caldas, Thomas Schmidt, Anton Tadich, Bruce C. C. Cowie, Rajesh Kumar Chellappan, Justin W. Wells, Simon P. Cooil. A Simplified Method for Patterning Graphene on Dielectric Layers. ACS Applied Materials & Interfaces 2021, 13 (31) , 37510-37516. https://doi.org/10.1021/acsami.1c09987
    3. Viktoryia Shautsova, Sapna Sinha, Linlin Hou, Qianyang Zhang, Martin Tweedie, Yang Lu, Yuewen Sheng, Benjamin F. Porter, Harish Bhaskaran, Jamie H. Warner. Direct Laser Patterning and Phase Transformation of 2D PdSe2 Films for On-Demand Device Fabrication. ACS Nano 2019, 13 (12) , 14162-14171. https://doi.org/10.1021/acsnano.9b06892
    4. Aleksei V. Emelianov, Dmitry Kireev, Andreas Offenhäusser, Nerea Otero, Pablo M. Romero, Ivan I. Bobrinetskiy. Thermoelectrically Driven Photocurrent Generation in Femtosecond Laser Patterned Graphene Junctions. ACS Photonics 2018, 5 (8) , 3107-3115. https://doi.org/10.1021/acsphotonics.8b00350
    5. Jiao Yang Lu, Xin Xing Zhang, Qiu Yan Zhu, Fu Rui Zhang, Wei Tao Huang, Xue Zhi Ding, Li Qiu Xia, Hong Qun Luo, Nian Bing Li. Highly Tunable and Scalable Fabrication of 3D Flexible Graphene Micropatterns for Directing Cell Alignment. ACS Applied Materials & Interfaces 2018, 10 (21) , 17704-17713. https://doi.org/10.1021/acsami.8b04416
    6. Maher F. El-Kady and Richard B. Kaner . Direct Laser Writing of Graphene Electronics. ACS Nano 2014, 8 (9) , 8725-8729. https://doi.org/10.1021/nn504946k
    7. Dhiraj Sinha and Ji Ung Lee . Ideal Graphene/Silicon Schottky Junction Diodes. Nano Letters 2014, 14 (8) , 4660-4664. https://doi.org/10.1021/nl501735k
    8. Kui Zhou, Ziqi Jia, Xin-Qi Ma, Wenbiao Niu, Yao Zhou, Ning Huang, Guanglong Ding, Yan Yan, Su-Ting Han, Vellaisamy A L Roy, Ye Zhou. Manufacturing of graphene based synaptic devices for optoelectronic applications. International Journal of Extreme Manufacturing 2023, 5 (4) , 042006. https://doi.org/10.1088/2631-7990/acee2e
    9. Anand Kumar Singh, Shaista Andleeb, Arun Kumar Singh. Tuning of electrical properties of CVD grown graphene by surface doping with organic molecules. AIP Advances 2023, 13 (9) https://doi.org/10.1063/5.0164903
    10. Jing-Kai Qin, Hai-Lin Sun, Pei-Yu Huang, Yang Li, Liang Zhen, Cheng-Yan Xu. Synaptic plasticity realized by selective oxidation of TiS 3 nanosheet for neuromorphic devices. RSC Advances 2023, 13 (22) , 14849-14854. https://doi.org/10.1039/D3RA00782K
    11. I.B. Khadka, N.R. Alluri, M.M. Alsardia, N.P.M. Joseph Raj, A.P.S. Prasanna, Bakhtiar Ul Haq, S.J. Kim, Se-Hun Kim. Ultra-low-power photodetector based on a high-photoresponse, plasmonic-effect-induced gateless quasi-freestanding graphene device. Applied Surface Science 2023, 610 , 155275. https://doi.org/10.1016/j.apsusc.2022.155275
    12. Anand Kumar Singh, Ram Sevak Singh, Arun Kumar Singh. Recent Developments in Chemical Doping of Graphene using Experimental Approaches and Its Applications. Advanced Engineering Materials 2022, 24 (11) https://doi.org/10.1002/adem.202200259
    13. Ying Wang, Yang Zhao, Xin Li, Lan Jiang, Liangti Qu. Laser‐Based Growth and Treatment of Graphene for Advanced Photo‐ and Electro‐Related Device Applications. Advanced Functional Materials 2022, 32 (42) https://doi.org/10.1002/adfm.202203164
    14. Xingmo Zhang, Rui Tang, Feng Li, Rongkun Zheng, Jun Huang. Tailoring Inorganic Halide Perovskite Photocatalysts toward Carbon Dioxide Reduction. Solar RRL 2022, 6 (6) https://doi.org/10.1002/solr.202101058
    15. Ram Sevak Singh, Maurice Jansen, Dipsikha Ganguly, Giridhar U. Kulkarni, Sundara Ramaprabhu, Shyam Kumar Choudhary, Chandrani Pramanik. Shellac derived graphene films on solid, flexible, and porous substrates for high performance bipolar plates and supercapacitor electrodes. Renewable Energy 2022, 181 , 1008-1022. https://doi.org/10.1016/j.renene.2021.09.091
    16. Tao Wei, Frank Hauke, Andreas Hirsch. Evolution of Graphene Patterning: From Dimension Regulation to Molecular Engineering. Advanced Materials 2021, 33 (45) https://doi.org/10.1002/adma.202104060
    17. Hui Ying Hoh, Yupeng Zhang, Yu Lin Zhong, Qiaoliang Bao. Harnessing the Potential of Graphitic Carbon Nitride for Optoelectronic Applications. Advanced Optical Materials 2021, 9 (16) https://doi.org/10.1002/adom.202100146
    18. Bhuvaneshwari Ezhilmaran, Abhinandan Patra, Stenny Benny, Sreelakshmi M. R., Akshay V. V., S. Venkataprasad Bhat, Chandra Sekhar Rout. Recent developments in the photodetector applications of Schottky diodes based on 2D materials. Journal of Materials Chemistry C 2021, 9 (19) , 6122-6150. https://doi.org/10.1039/D1TC00949D
    19. Rui Tang, Shujie Zhou, Zhenyu Zhang, Rongkun Zheng, Jun Huang. Engineering Nanostructure–Interface of Photoanode Materials Toward Photoelectrochemical Water Oxidation. Advanced Materials 2021, 33 (17) https://doi.org/10.1002/adma.202005389
    20. Sanjay Kumar, Pratibha Kumari. Flexible Nano Smart sensors. 2021, 199-230. https://doi.org/10.1016/B978-0-12-823358-0.00011-3
    21. Ming Xiao, Shuo Zheng, Daozhi Shen, Walter W. Duley, Y. Norman Zhou. Laser-induced Joining of Nanoscale Materials: Processing, Properties, and Applications. Nano Today 2020, 35 , 100959. https://doi.org/10.1016/j.nantod.2020.100959
    22. Fei Huang, Guoying Feng, Jiajia Yin, Sikun Zhou, Li Shen, Shutong Wang, Yun Luo. Direct Laser Writing of Transparent Polyimide Film for Supercapacitor. Nanomaterials 2020, 10 (12) , 2547. https://doi.org/10.3390/nano10122547
    23. Yang Li, Jian Yang, ZhaoYao Zhan, Jumiati Wu, Hai Li, Liang Zhen, QiYuan He, ChengYan Xu. Few-layer WSe2 lateral homo- and hetero-junctions with superior optoelectronic performance by laser manufacturing. Science China Technological Sciences 2020, 63 (8) , 1531-1537. https://doi.org/10.1007/s11431-020-1627-0
    24. Yifan Li, Yating Zhang, Zhiliang Chen, Qingyan Li, Tengteng Li, Mengyao Li, Hongliang Zhao, Quan Sheng, Wei Shi, Jianquan Yao. Self-powered, flexible, and ultrabroadband ultraviolet-terahertz photodetector based on a laser-reduced graphene oxide/CsPbBr 3 composite. Photonics Research 2020, 8 (8) , 1301. https://doi.org/10.1364/PRJ.395090
    25. Junmeng Guo, Gang Cheng, Zuliang Du. The recent progress of triboelectric nanogenerator-assisted photodetectors. Nanotechnology 2020, 31 (29) , 292003. https://doi.org/10.1088/1361-6528/ab841e
    26. Hui Ying Hoh, Qiaoliang Bao. Introduction. 2020, 1-35. https://doi.org/10.1016/B978-0-08-102637-3.00001-2
    27. Ram Sevak Singh, Anurag Gautam, Varun Rai. Graphene-based bipolar plates for polymer electrolyte membrane fuel cells. Frontiers of Materials Science 2019, 13 (3) , 217-241. https://doi.org/10.1007/s11706-019-0465-0
    28. Beiyun Liu, Yongfeng Chen, Congya You, Yawei Liu, Xinyi Kong, Jingfeng Li, Songyu Li, Wenjie Deng, Yufo Li, Hui Yan, Yongzhe Zhang. High performance photodetector based on graphene/MoS2/graphene lateral heterostrurcture with Schottky junctions. Journal of Alloys and Compounds 2019, 779 , 140-146. https://doi.org/10.1016/j.jallcom.2018.11.165
    29. C. Berger, E. H. Conrad, W. A. de Heer. Optical and plasmonic properties of epigraphene. 2018, 741-748. https://doi.org/10.1007/978-3-662-53908-8_171
    30. Kamran Keramatnejad, Yun Shen Zhou, Da Wei Li, Hossein Rabiee Golgir, Xi Huang, Qi Ming Zhou, Jing Feng Song, Stephen Ducharme, Yong Feng Lu. Laser‐Assisted Nanowelding of Graphene to Metals: An Optical Approach toward Ultralow Contact Resistance. Advanced Materials Interfaces 2017, 4 (15) https://doi.org/10.1002/admi.201700294
    31. Shih-Feng Tseng, Wen-Tse Haiso, Pi-Ying Cheng, Yung-Sheng Lin, Tien-Li Chang, Chien-Kai Chung. Laser structuring of parallel electrode array on graphene/glass substrates for rapid inspections of moisturizing efficacy. The International Journal of Advanced Manufacturing Technology 2017, 91 (9-12) , 3663-3671. https://doi.org/10.1007/s00170-017-0045-3
    32. François Léonard, Catalin D. Spataru, Michael Goldflam, David W. Peters, Thomas E. Beechem. Dynamic Wavelength-Tunable Photodetector Using Subwavelength Graphene Field-Effect Transistors. Scientific Reports 2017, 7 (1) https://doi.org/10.1038/srep45873
    33. , , , K. Keramatnejad, Y. S. Zhou, D. W. Li, H. Rabiee Golgir, X. Huang, J. F. Song, S. Ducharme, Y. F. Lu. Reducing graphene-metal contact resistance via laser nano-welding. 2017, 100921X. https://doi.org/10.1117/12.2253752
    34. Prashant Kumar, Barun Das, Basant Chitara, K. S. Subrahmanyam, H.S.S. Ramakrishna Matte, Urmimala Maitra, K. Gopalakrishnan, S. B. Krupanidhi, C. N. R. Rao. Novel Radiation‐Induced Properties of Graphene and Related Materials. 2017, 159-189. https://doi.org/10.1002/9783527648160.ch8
    35. Yang Zhao, Qing Han, Zhihua Cheng, Lan Jiang, Liangti Qu. Integrated graphene systems by laser irradiation for advanced devices. Nano Today 2017, 12 , 14-30. https://doi.org/10.1016/j.nantod.2016.12.010
    36. Lu-Qi Tao, Dan-Yang Wang, He Tian, Zhen-Yi Ju, Ying Liu, Yu Pang, Yuan-Quan Chen, Yi Yang, Tian-Ling Ren. Self-adapted and tunable graphene strain sensors for detecting both subtle and large human motions. Nanoscale 2017, 9 (24) , 8266-8273. https://doi.org/10.1039/C7NR01862B
    37. Ruxia Du, Wenhui Wang, Jianxin Du, Xitao Guo, Er Liu, Dan Bing, Jing Bai. Photoresponse in graphene induced by defect engineering. Applied Physics Express 2016, 9 (11) , 115101. https://doi.org/10.7567/APEX.9.115101
    38. Ram Sevak Singh, Dehui Li, Qihua Xiong, Iman Santoso, Xiaojiang Yu, Wei Chen, Andrivo Rusydi, Andrew Thye Shen Wee. Anomalous photoresponse in the deep-ultraviolet due to resonant excitonic effects in oxygen plasma treated few-layer graphene. Carbon 2016, 106 , 330-335. https://doi.org/10.1016/j.carbon.2016.05.026
    39. Farid Menaa, Sandeep Kumar Vashist, Adnane Abdelghani, Bouzid Menaa. GRAPHENE‐BASED NANOSYSTEMS FOR THE DETECTION OF PROTEINIC BIOMARKERS OF DISEASE. 2016, 377-399. https://doi.org/10.1002/9781118993620.ch13
    40. Paola Zuppella, Francesca Gerlin, Alain Jody Corso, Marco Nardello, Enrico Tessarolo, Davide Bacco, Daniele Scarpa, Alberto Andrighetto, Maria G. Pelizzo. Nd:YAG Laser Damage of Graphene–Nickel Interfaces. Lasers in Manufacturing and Materials Processing 2016, 3 (2) , 131-139. https://doi.org/10.1007/s40516-016-0026-7
    41. Lu-Qi Tao, Ying Liu, Zhen-Yi Ju, He Tian, Qian-Yi Xie, Yi Yang, Tian-Ling Ren. A Flexible 360-Degree Thermal Sound Source Based on Laser Induced Graphene. Nanomaterials 2016, 6 (6) , 112. https://doi.org/10.3390/nano6060112
    42. Girolamo Mincuzzi, Alessandro L. Palma, Aldo Di Carlo, Thomas M. Brown. Laser Processing in the Manufacture of Dye‐Sensitized and Perovskite Solar Cell Technologies. ChemElectroChem 2016, 3 (1) , 9-30. https://doi.org/10.1002/celc.201500389
    43. Sida Luo, Phong Tran Hoang, Tao Liu. Direct laser writing for creating porous graphitic structures and their use for flexible and highly sensitive sensor and sensor arrays. Carbon 2016, 96 , 522-531. https://doi.org/10.1016/j.carbon.2015.09.076
    44. Rajesh Kumar, Raluca Savu, Ednan Joanni, Alfredo R. Vaz, Mara A. Canesqui, Rajesh K. Singh, Ronaldo A. Timm, Lauro T. Kubota, Stanislav A. Moshkalev. Fabrication of interdigitated micro-supercapacitor devices by direct laser writing onto ultra-thin, flexible and free-standing graphite oxide films. RSC Advances 2016, 6 (88) , 84769-84776. https://doi.org/10.1039/C6RA17516C
    45. Farid Menaa, Adnane Abdelghani, Bouzid Menaa. Graphene nanomaterials as biocompatible and conductive scaffolds for stem cells: impact for tissue engineering and regenerative medicine. Journal of Tissue Engineering and Regenerative Medicine 2015, 9 (12) , 1321-1338. https://doi.org/10.1002/term.1910
    46. . References. 2015, 257-276. https://doi.org/10.1002/9781118842577.refs
    47. Tran Quang Trung, Subramaniyan Ramasundaram, Nae‐Eung Lee. Infrared Detection Using Transparent and Flexible Field‐Effect Transistor Array with Solution Processable Nanocomposite Channel of Reduced Graphene Oxide and P(VDF‐TrFE). Advanced Functional Materials 2015, 25 (11) , 1745-1754. https://doi.org/10.1002/adfm.201404582
    48. Wen Hui Wang, Hai Yan Nan, Qi Liu, Zheng Liang, Zhi Hao Yu, Feng Yuan Liu, Wei Da Hu, Wei Zhang, Xin Ran Wang, Zhen Hua Ni. Distinct photoresponse in graphene induced by laser irradiation. Applied Physics Letters 2015, 106 (2) https://doi.org/10.1063/1.4906203
    49. Shichao Song, Long Wen, Qin Chen. Graphene Composites Based Photodetectors. 2015, 193-222. https://doi.org/10.1007/978-3-319-13875-6_8
    50. Preethi Thomas, Cuiying Pei, Basudev Roy, Subhrokoli Ghosh, Santu Das, Ayan Banerjee, Teng Ben, Shilun Qiu, Soumyajit Roy. Site specific supramolecular heterogeneous catalysis by optically patterned soft oxometalate–porous organic framework (SOM–POF) hybrid on a chip. Journal of Materials Chemistry A 2015, 3 (4) , 1431-1441. https://doi.org/10.1039/C4TA01304B
    51. Han Huang, Andrew Thye Shen Wee. Adsorption on epitaxial graphene on SiC(0001). Journal of Materials Research 2014, 29 (3) , 447-458. https://doi.org/10.1557/jmr.2013.236
    52. Farzana A. Chowdhury, Tomoaki Mochida, Joe Otsuki, M. Sahabul Alam. Thermally reduced solution-processed graphene oxide thin film: An efficient infrared photodetector. Chemical Physics Letters 2014, 593 , 198-203. https://doi.org/10.1016/j.cplett.2014.01.012
    53. H. Huang, S. Chen, A.T.S. Wee, W. Chen. Epitaxial growth of graphene on silicon carbide (SiC). 2014, 177-198. https://doi.org/10.1016/B978-0-08-102848-3.00021-9
    54. Xiaoqing Zheng, Miao Feng, Zhongguo Li, Yinglin Song, Hongbing Zhan. Enhanced nonlinear optical properties of nonzero-bandgap graphene materials in glass matrices. J. Mater. Chem. C 2014, 2 (21) , 4121-4125. https://doi.org/10.1039/C3TC32410A
    55. H. Huang, S. Chen, A.T.S. Wee, W. Chen. Epitaxial growth of graphene on silicon carbide (SiC). 2014, 3-26. https://doi.org/10.1533/9780857099334.1.3
    56. Rujie Sun, Ye Zhang, Kang Li, Chao Hui, Ke He, Xucun Ma, Feng Liu. Tunable photoresponse of epitaxial graphene on SiC. Applied Physics Letters 2013, 103 (1) https://doi.org/10.1063/1.4812986
    57. Venkatesh Mamidala, Venkatram Nalla, Pradipta Sankar Maiti, Suresh Valiyaveettil, Wei Ji. Charge transfer assisted nonlinear optical and photoconductive properties of CdS-AgInS2 nanocrystals grown in semiconducting polymers. Journal of Applied Physics 2013, 113 (12) https://doi.org/10.1063/1.4798383
    58. Mario Lanza, Teng Gao, Zixuan Yin, Yanfeng Zhang, Zhongfan Liu, Yuzhen Tong, Ziyong Shen, Huiling Duan. Nanogap based graphene coated AFM tips with high spatial resolution, conductivity and durability. Nanoscale 2013, 5 (22) , 10816. https://doi.org/10.1039/c3nr03720g
    59. W. Zhang, L. Li, Z. B. Wang, A. A. Pena, D. J. Whitehead, M. L. Zhong, Z. Lin, H. W. Zhu. Ti:sapphire femtosecond laser direct micro-cutting and profiling of graphene. Applied Physics A 2012, 109 (2) , 291-297. https://doi.org/10.1007/s00339-012-7044-x
    60. Ram Sevak Singh, Xiao Wang, Wei Chen, Ariando, Andrew T. S. Wee. Large room-temperature quantum linear magnetoresistance in multilayered epitaxial graphene: Evidence for two-dimensional magnetotransport. Applied Physics Letters 2012, 101 (18) https://doi.org/10.1063/1.4765656
    61. Prashant Kumar, Barun Das, Basant Chitara, K. S. Subrahmanyam, K. Gopalakrishnan, S. B. Krupanidhi, C. N. R. Rao. Novel Radiation‐Induced Properties of Graphene and Related Materials. Macromolecular Chemistry and Physics 2012, 213 (10-11) , 1146-1163. https://doi.org/10.1002/macp.201100451
    62. Ram Sevak Singh, Venkatram Nalla, Wei Chen, Wei Ji, Andrew T. S. Wee. Photoresponse in epitaxial graphene with asymmetric metal contacts. Applied Physics Letters 2012, 100 (9) https://doi.org/10.1063/1.3692107

    ACS Nano

    Cite this: ACS Nano 2011, 5, 7, 5969–5975
    Click to copy citationCitation copied!
    https://doi.org/10.1021/nn201757j
    Published June 24, 2011
    Copyright © 2011 American Chemical Society

    Article Views

    2915

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.