ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Highly Conductive, Mechanically Robust, and Electrochemically Inactive TiC/C Nanofiber Scaffold for High-Performance Silicon Anode Batteries

View Author Information
Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
Department of Chemistry, Stanford University, Stanford, California 94305, United States
§ Department of Physics and Materials Science, City University of Hong Kong, Hong Kong, China
Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States.
Address correspondence to [email protected]
Cite this: ACS Nano 2011, 5, 10, 8346–8351
Publication Date (Web):October 5, 2011
https://doi.org/10.1021/nn2033693
Copyright © 2011 American Chemical Society

    Article Views

    3565

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    Abstract Image

    Silicon has a high specific capacity of 4200 mAh/g as lithium-ion battery anodes, but its rapid capacity fading due to >300% volume expansion and pulverization presents a significant challenge for practical applications. Here we report a core–shell TiC/C/Si inactive/active nanocomposite for Si anodes demonstrating high specific capacity and excellent electrochemical cycling. The amorphous silicon layer serves as the active material to store Li+, while the inactive TiC/C nanofibers act as a conductive and mechanically robust scaffold for electron transport during the Li–Si alloying process. The core–shell TiC/C/Si nanocomposite anode shows ∼3000 mAh g–1 discharge capacity and 92% capacity retention after 100 charge/discharge cycles. The excellent cycling stability and high rate performance could be attributed to the tapering of the nanofibers and the open structure that allows facile Li ion transport and the high conductivity and mechanical stability of the TiC/C scaffold.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Cited By

    This article is cited by 118 publications.

    1. Haneol Kang, Hoon Kim, Chuleun Yeom, Moon Jeong Park. Designing Hybrid Artificial Interphases with Dilithium Vinylphosphonate for Lithium Batteries with Si–Graphite Anodes. ACS Applied Energy Materials 2022, 5 (4) , 4673-4683. https://doi.org/10.1021/acsaem.2c00103
    2. Guangmin Zhou, Lin Xu, Guangwu Hu, Liqiang Mai, Yi Cui. Nanowires for Electrochemical Energy Storage. Chemical Reviews 2019, 119 (20) , 11042-11109. https://doi.org/10.1021/acs.chemrev.9b00326
    3. Thanh-Dinh Nguyen, Erlantz Lizundia, Markus Niederberger, Wadood Y. Hamad, Mark J. MacLachlan. Self-Assembly Route to TiO2 and TiC with a Liquid Crystalline Order. Chemistry of Materials 2019, 31 (6) , 2174-2181. https://doi.org/10.1021/acs.chemmater.9b00462
    4. Huawei Song, Jian Su, Chengxin Wang. Vacancies Revitalized Ni3ZnC0.7 Bimetallic Carbide Hybrid Electrodes with Multiplied Charge-Storage Capability for High-Capacity and Stable-Cyclability Lithium-Ion Storage. ACS Applied Energy Materials 2018, 1 (9) , 5008-5015. https://doi.org/10.1021/acsaem.8b00992
    5. Zhe Qiang, Xinye Liu, Feng Zou, Kevin A. Cavicchi, Yu Zhu, and Bryan D. Vogt . Bimodal Porous Carbon-Silica Nanocomposites for Li-Ion Batteries. The Journal of Physical Chemistry C 2017, 121 (31) , 16702-16709. https://doi.org/10.1021/acs.jpcc.7b03795
    6. Sang-Ok Kim and Arumugam Manthiram . High-Performance Zn–TiC–C Nanocomposite Alloy Anode with Exceptional Cycle Life for Lithium-Ion Batteries. ACS Applied Materials & Interfaces 2015, 7 (27) , 14801-14807. https://doi.org/10.1021/acsami.5b03110
    7. Hui Huang, Tong Feng, Yongping Gan, Mingyu Fang, Yang Xia, Chu Liang, Xinyong Tao, and Wenkui Zhang . TiC/NiO Core/Shell Nanoarchitecture with Battery-Capacitive Synchronous Lithium Storage for High-Performance Lithium-Ion Battery. ACS Applied Materials & Interfaces 2015, 7 (22) , 11842-11848. https://doi.org/10.1021/acsami.5b01372
    8. Marco Agostini, Jusef Hassoun, Jun Liu, Moongook Jeong, Hiroki Nara, Toshiyuki Momma, Tetsuya Osaka, Yang-Kook Sun, and Bruno Scrosati . A Lithium-Ion Sulfur Battery Based on a Carbon-Coated Lithium-Sulfide Cathode and an Electrodeposited Silicon-Based Anode. ACS Applied Materials & Interfaces 2014, 6 (14) , 10924-10928. https://doi.org/10.1021/am4057166
    9. Xi Wang, Qunhong Weng, Xizheng Liu, Xuebin Wang, Dai-Ming Tang, Wei Tian, Chao Zhang, Wei Yi, Dequan Liu, Yoshio Bando, and Dmitri Golberg . Atomistic Origins of High Rate Capability and Capacity of N-Doped Graphene for Lithium Storage. Nano Letters 2014, 14 (3) , 1164-1171. https://doi.org/10.1021/nl4038592
    10. Yalan Xing, Yanjie Wang, Chungen Zhou, Shichao Zhang, and Baizeng Fang . Simple Synthesis of Mesoporous Carbon Nanofibers with Hierarchical Nanostructure for Ultrahigh Lithium Storage. ACS Applied Materials & Interfaces 2014, 6 (4) , 2561-2567. https://doi.org/10.1021/am404988b
    11. Fang-Wei Yuan, Hong-Jie Yang, and Hsing-Yu Tuan . Alkanethiol-Passivated Ge Nanowires as High-Performance Anode Materials for Lithium-Ion Batteries: The Role of Chemical Surface Functionalization. ACS Nano 2012, 6 (11) , 9932-9942. https://doi.org/10.1021/nn303519g
    12. Xilin Chen, Xiaolin Li, Fei Ding, Wu Xu, Jie Xiao, Yuliang Cao, Praveen Meduri, Jun Liu, Gordon L. Graff, and Ji-Guang Zhang . Conductive Rigid Skeleton Supported Silicon as High-Performance Li-Ion Battery Anodes. Nano Letters 2012, 12 (8) , 4124-4130. https://doi.org/10.1021/nl301657y
    13. Ehsan Poorshakoor, Mahdi Darab. Advancements in the development of nanomaterials for lithium-ion batteries: A scientometric review. Journal of Energy Storage 2024, 75 , 109638. https://doi.org/10.1016/j.est.2023.109638
    14. Qian Zhang, Jianhua Zhu, Yanyan Nie, Shiquan Li, Dandan Wang, Yongxiang Han, Haolin Wang, Yapeng Tian, Yanli Han, Xinwei Cui, Qun Xu. Hierarchical carbon nanofibers-based ternary conductive network built for improving electrochemical performance of SiO @C anodes. Materials Chemistry and Physics 2023, 309 , 128431. https://doi.org/10.1016/j.matchemphys.2023.128431
    15. Md. Helal Hossain, Mohammad Asaduzzaman Chowdhury, Nayem Hossain, Md. Aminul Islam, Md Hosne Mobarak. Advances of lithium-ion batteries anode materials—A review. Chemical Engineering Journal Advances 2023, 16 , 100569. https://doi.org/10.1016/j.ceja.2023.100569
    16. Wonseok Jang, Sangwook Kim, Yumi Kang, Taeeun Yim, Tae-Hyun Kim. A high-performance self-healing polymer binder for Si anodes based on dynamic carbon radicals in cross-linked poly(acrylic acid). Chemical Engineering Journal 2023, 469 , 143949. https://doi.org/10.1016/j.cej.2023.143949
    17. Ke Xu, Xiaohan Li, Xuefeng Liu, Yingjie Yu, Xin Zhang, Wen Lei, Zhengwei Xie, Shaowei Zhang, Quanli Jia, Haijun Zhang. In-situ synthesis of Si@G@TiC double protective layer structure for enhancing cycling stability of lithium-ion batteries. Sustainable Materials and Technologies 2023, 36 , e00583. https://doi.org/10.1016/j.susmat.2023.e00583
    18. Minho Kim, Hwichan Ahn, Junil Choi, Won Bae Kim. A Rational Design of Silicon‐Based Anode for All‐Solid‐State Lithium‐Ion Batteries: A Review. Energy Technology 2023, 11 (6) https://doi.org/10.1002/ente.202201321
    19. Navinchandra G. Shimpi, Jolina Rodrigues, Shilpa Jain. Photocatalytic nanoscale polymer-based coatings. 2023, 585-611. https://doi.org/10.1016/B978-0-32-390778-1.00032-3
    20. Vo Pham Hoang Huy, Il Tae Kim, Jaehyun Hur. Gallium-Telluride-Based Composite as Promising Lithium Storage Material. Nanomaterials 2022, 12 (19) , 3362. https://doi.org/10.3390/nano12193362
    21. Ying Ren, Qi Shi, Guifeng Zhang. Lithium Storage Properties of TiC‐Modified SnS 2 Nanosheets. ChemElectroChem 2022, 9 (6) https://doi.org/10.1002/celc.202101567
    22. Xingshuang Zhang, Lei Xie, Xungai Wang, Zhengzhong Shao, Biao Kong. Electrospinning super-assembly of ultrathin fibers from single- to multi-Taylor cone sites. Applied Materials Today 2022, 26 , 101272. https://doi.org/10.1016/j.apmt.2021.101272
    23. Xiaolong Xiong, Shupeng Jiao, Haiying Ma. Improving the electrochemical performance of Si anode by using N-doped carbon materials in lithium-ion batteries. Ionics 2022, 28 (2) , 683-687. https://doi.org/10.1007/s11581-021-04362-w
    24. Anuradha Samadhiya, Pukhrambam Dipak, Ritu Dubey, Dinesh Chandra Tiwari, Udai Pratap Vermac. Fabrication of polyaniline functionalized titanium carbide nanocomposite supercapacitor for high specific capacitance and high energy density applications. Journal of Polymer Research 2021, 28 (11) https://doi.org/10.1007/s10965-021-02766-w
    25. Huijuan Wang, Sha Bai, Pu Zhao, Ling Tan, Chenjun Ning, Guihao Liu, Jikang Wang, Tianyang Shen, Yufei Zhao, Yu-Fei Song. Green light (550 nm) driven tunable syngas synthesis from CO 2 photoreduction using heterostructured layered double hydroxide/TiC photocatalysts. Catalysis Science & Technology 2021, 11 (21) , 7091-7097. https://doi.org/10.1039/D1CY01366A
    26. Wenhao Pan, Xiaolan Cai, Changjiang Yang, Lei Zhou. Amorphous Si/TiC/Graphite Composite Fabricated by High-Energy Ball-Milling as an Anode for Lithium-Ion Batteries. Journal of Electronic Materials 2021, 50 (5) , 2584-2593. https://doi.org/10.1007/s11664-021-08767-1
    27. Minglei Sun, Udo Schwingenschlögl. Structure Prototype Outperforming MXenes in Stability and Performance in Metal‐Ion Batteries: A High Throughput Study. Advanced Energy Materials 2021, 11 (14) https://doi.org/10.1002/aenm.202003633
    28. Qiushi Wang, Hao Yang, Tao Meng, Jindong Yang, Binbin Huang, Feng Long Gu, Shanqing Zhang, Changgong Meng, Yexiang Tong. Boosting Electron Transfer with Heterointerface Effect for High-Performance Lithium-Ion Storage. Energy Storage Materials 2021, 36 , 365-375. https://doi.org/10.1016/j.ensm.2021.01.003
    29. S. Saha, B.M. Rajbongshi, V. Ramani, A. Verma. Titanium carbide: An emerging electrocatalyst for fuel cell and electrolyser. International Journal of Hydrogen Energy 2021, 46 (24) , 12801-12821. https://doi.org/10.1016/j.ijhydene.2021.01.116
    30. Lena Spitthoff, Paul R. Shearing, Odne Stokke Burheim. Temperature, Ageing and Thermal Management of Lithium-Ion Batteries. Energies 2021, 14 (5) , 1248. https://doi.org/10.3390/en14051248
    31. Ayman Yousef, R.M. Abdel Hameed, Shoyebmohamad F. Shaikh, Ahmed Abutaleb, M.M. El-Halwany, Abdullah M. Al-Enizi. Enhanced electro-adsorption desalination performance of graphene by TiC. Separation and Purification Technology 2021, 254 , 117602. https://doi.org/10.1016/j.seppur.2020.117602
    32. Lei Chen, Shuaishuai Liu, Hongjia Guo, Jinfeng Li, Beibei Chen, Hongwei Kang, Quanzhen Huang. Xanthan Gum as a Carbon Source for Preparation of Carbon-Silicon/Graphite Composite as Anode Materials for Lithium Ion Batteries. International Journal of Electrochemical Science 2020, 15 (12) , 12622-12632. https://doi.org/10.20964/2020.12.47
    33. Lei Yu, Wangjin Ji, Shiwen Zhang, Yun Song, Hui Liu, Zhefei Wang, Quan Liu, Xuhong Wang. Design and preparation of continuous titanium carbide fibers via simple precursor route. Ceramics International 2020, 46 (16) , 25485-25492. https://doi.org/10.1016/j.ceramint.2020.07.019
    34. Zhenbin Guo, Haimin Yao. Thickness gradient promotes the performance of Si-based anode material for lithium-ion battery. Materials & Design 2020, 195 , 108993. https://doi.org/10.1016/j.matdes.2020.108993
    35. Zimo Lou, Zheni Wang, Jiasheng Zhou, Chuchen Zhou, Jiang Xu, Xinhua Xu. Pd/TiC/Ti electrode with enhanced atomic H* generation, atomic H* adsorption and 2,4-DCBA adsorption for facilitating electrocatalytic hydrodechlorination. Environmental Science: Nano 2020, 7 (5) , 1566-1581. https://doi.org/10.1039/D0EN00182A
    36. Hua Zhang, Shuwu Liu, Xiaofang Yu, Shuiliang Chen. Improving rate capacity and cycling stability of Si-anode lithium ion battery by using copper nanowire as conductive additive. Journal of Alloys and Compounds 2020, 822 , 153664. https://doi.org/10.1016/j.jallcom.2020.153664
    37. Zhujun Yao, Xinhui Xia, Shengzhao Zhang, Cheng-ao Zhou, Guoxiang Pan, Qinqin Xiong, Yadong Wang, Xiuli Wang, Jiangping Tu. Oxygen defect boosted N-doped Ti2Nb10O29 anchored on core-branch carbon skeleton for both high-rate liquid & solid-state lithium ion batteries. Energy Storage Materials 2020, 25 , 555-562. https://doi.org/10.1016/j.ensm.2019.09.027
    38. Lena Spitthoff, Jacob J. Lamb, Bruno G. Pollet, Odne S. Burheim. Lifetime Expectancy of Lithium-Ion Batteries. 2020, 157-180. https://doi.org/10.1007/978-3-030-43676-6_11
    39. Zheng-Yang Huo, Hai Liu, Cecilia Yu, Yin-Hu Wu, Hong-Ying Hu, Xing Xie. Elevating the stability of nanowire electrodes by thin polydopamine coating for low-voltage electroporation-disinfection of pathogens in water. Chemical Engineering Journal 2019, 369 , 1005-1013. https://doi.org/10.1016/j.cej.2019.03.146
    40. Jing Xu, Nianjun Yang, Steffen Heuser, Siyu Yu, Anna Schulte, Holger Schönherr, Xin Jiang. Achieving Ultrahigh Energy Densities of Supercapacitors with Porous Titanium Carbide/Boron‐Doped Diamond Composite Electrodes. Advanced Energy Materials 2019, 9 (17) https://doi.org/10.1002/aenm.201803623
    41. Ling Sui, Tingting Wu, Lijuan Liu, Honghong Wang, Qingqing Wang, Haoqing Hou, Qiaohui Guo. A Sensitive Pyrimethanil Sensor Based on Electrospun TiC/C Film. Sensors 2019, 19 (7) , 1531. https://doi.org/10.3390/s19071531
    42. Zheng-Yang Huo, Hai Liu, Wen-Long Wang, Yun-Hong Wang, Yin-Hu Wu, Xing Xie, Hong-Ying Hu. Low-voltage alternating current powered polydopamine-protected copper phosphide nanowire for electroporation-disinfection in water. Journal of Materials Chemistry A 2019, 7 (13) , 7347-7354. https://doi.org/10.1039/C8TA10942G
    43. Yuanliang Zhou, Javid Muhammad, Tianhong Zhou, Dongxing Wang, Xin Wang, Yuping Duan, Xuefeng Zhang, Xinglong Dong, Zhidong Zhang. Incorporation of magnetic component to construct (TiC/Ni)@C ternary composite with heterogeneous interface for enhanced microwave absorption. Journal of Alloys and Compounds 2019, 778 , 779-786. https://doi.org/10.1016/j.jallcom.2018.11.237
    44. Byoung-Sun Lee, Ho-Sung Yang, Kang Hee Lee, Sungsoo Han, Woong-Ryeol Yu. Rational design of a Si–Sn–C ternary anode having exceptional rate performance. Energy Storage Materials 2019, 17 , 62-69. https://doi.org/10.1016/j.ensm.2018.08.001
    45. Krzysztof Jan Siczek. Negative Electrode (Anode) Materials. 2019, 117-131. https://doi.org/10.1016/B978-0-12-816392-4.00008-6
    46. Hyeongi Kim, MinJung Kim, Young Hoon Yoon, Quoc Hai Nguyen, Il Tae Kim, Jaehyun Hur, Seung Geol Lee. Sb2Te3-TiC-C nanocomposites for the high-performance anode in lithium-ion batteries. Electrochimica Acta 2019, 293 , 8-18. https://doi.org/10.1016/j.electacta.2018.10.002
    47. Zhiming Zheng, Hong-Hui Wu, Huixin Chen, Yong Cheng, Qiaobao Zhang, Qingshui Xie, Laisen Wang, Kaili Zhang, Ming-Sheng Wang, Dong-Liang Peng, Xiao Cheng Zeng. Fabrication and understanding of Cu 3 Si-Si@carbon@graphene nanocomposites as high-performance anodes for lithium-ion batteries. Nanoscale 2018, 10 (47) , 22203-22214. https://doi.org/10.1039/C8NR07207H
    48. Zhujun Yao, Xinhui Xia, Yan Zhang, Dong Xie, Changzhi Ai, Shiwei Lin, Yadong Wang, Shengjue Deng, Shenghui Shen, Xiuli Wang, Yan Yu, Jiangping Tu. Superior high-rate lithium-ion storage on Ti2Nb10O29 arrays via synergistic TiC/C skeleton and N-doped carbon shell. Nano Energy 2018, 54 , 304-312. https://doi.org/10.1016/j.nanoen.2018.10.024
    49. Tao Meng, Minhua Cao. Transition Metal Carbide Complex Architectures for Energy‐Related Applications. Chemistry – A European Journal 2018, 24 (63) , 16716-16736. https://doi.org/10.1002/chem.201801912
    50. Zheng-Yang Huo, Jian-Feng Zhou, Yutong Wu, Yin-Hu Wu, Hai Liu, Nian Liu, Hong-Ying Hu, Xing Xie. A Cu 3 P nanowire enabling high-efficiency, reliable, and energy-efficient low-voltage electroporation-inactivation of pathogens in water. Journal of Materials Chemistry A 2018, 6 (39) , 18813-18820. https://doi.org/10.1039/C8TA06304D
    51. Xiguang Han, Liming Sun, Fan Wang, Di Sun. MOF-derived honeycomb-like N-doped carbon structures assembled from mesoporous nanosheets with superior performance in lithium-ion batteries. Journal of Materials Chemistry A 2018, 6 (39) , 18891-18897. https://doi.org/10.1039/C8TA07682K
    52. Zhujun Yao, Xinhui Xia, Dong Xie, Yadong Wang, Cheng‐ao Zhou, Sufu Liu, Shengjue Deng, Xiuli Wang, Jiangping Tu. Enhancing Ultrafast Lithium Ion Storage of Li 4 Ti 5 O 12 by Tailored TiC/C Core/Shell Skeleton Plus Nitrogen Doping. Advanced Functional Materials 2018, 28 (31) https://doi.org/10.1002/adfm.201802756
    53. Shengjue Deng, Fan Yang, Qinghua Zhang, Yu Zhong, Yinxiang Zeng, Shiwei Lin, Xiuli Wang, Xihong Lu, Cai‐Zhuang Wang, Lin Gu, Xinhui Xia, Jiangping Tu. Phase Modulation of (1T‐2H)‐MoSe2/TiC‐C Shell/Core Arrays via Nitrogen Doping for Highly Efficient Hydrogen Evolution Reaction. Advanced Materials 2018, 30 (34) https://doi.org/10.1002/adma.201802223
    54. Qiaohui Guo, Lijuan Liu, Tingting Wu, Qingqing Wang, Honghong Wang, Jianyu Liang, Shuiliang Chen. Flexible and conductive titanium carbide–carbon nanofibers for high-performance glucose biosensing. Electrochimica Acta 2018, 281 , 517-524. https://doi.org/10.1016/j.electacta.2018.05.181
    55. Wei Zhang, Lianhai Zu, Biao Kong, Bingjie Chen, Haili He, Kun Lan, Yang Liu, Jinhu Yang, Dongyuan Zhao. Mesoporous TiO2/TiC@C Composite Membranes with Stable TiO2-C Interface for Robust Lithium Storage. iScience 2018, 3 , 149-160. https://doi.org/10.1016/j.isci.2018.04.009
    56. Jun Lu, Zhongwei Chen, Feng Pan, Yi Cui, Khalil Amine. High-Performance Anode Materials for Rechargeable Lithium-Ion Batteries. Electrochemical Energy Reviews 2018, 1 (1) , 35-53. https://doi.org/10.1007/s41918-018-0001-4
    57. Lei Wang, Tiefeng Liu, Xiang Peng, Wenwu Zeng, Zhenzhen Jin, Weifeng Tian, Biao Gao, Yinhua Zhou, Paul K. Chu, Kaifu Huo. Highly Stretchable Conductive Glue for High‐Performance Silicon Anodes in Advanced Lithium‐Ion Batteries. Advanced Functional Materials 2018, 28 (3) https://doi.org/10.1002/adfm.201704858
    58. Nguyen Thanh Hung, Joonwon Bae, Ji Hyeon Kim, Hyung Bin Son, Il Tae Kim, Jaehyun Hur. Facile preparation of a zinc-based alloy composite as a novel anode material for rechargeable lithium-ion batteries. Applied Surface Science 2018, 429 , 210-217. https://doi.org/10.1016/j.apsusc.2017.06.095
    59. Xiguang Han, Xiao Han, Wenwen Zhan, Rong Li, Fan Wang, Zhaoxiong Xie. Preparation of 3D hierarchical porous Co 3 O 4 nanostructures with enhanced performance in lithium-ion batteries. RSC Advances 2018, 8 (6) , 3218-3224. https://doi.org/10.1039/C7RA11701A
    60. Huaping Zhao, Long Liu, Ranjith Vellacheri, Yong Lei. Recent Advances in Designing and Fabricating Self‐Supported Nanoelectrodes for Supercapacitors. Advanced Science 2017, 4 (10) https://doi.org/10.1002/advs.201700188
    61. Ying Liu, Jingyuan Liu, Hao Qin, Qi Liu, Zhanshuang Li, Rongrong Chen, Rumin Li, Hongquan Zhang, Jun Wang. Impact of addition sheet-like cobalt in ionic liquids mixture to detect oxygen. Talanta 2017, 172 , 182-185. https://doi.org/10.1016/j.talanta.2017.05.029
    62. Jian Gao, Jieyi Yu, Shanshan Lu, Jingshuang Liang, Wenfei Yang, Ziming Wang, Xinglong Dong. Synthesis of functional ceramic nanocrystals (SiC, TiC, TiN) by arc-discharge plasma process. 2017, 995-998. https://doi.org/10.1109/NANO.2017.8117328
    63. Ayman Yousef, Robert M. Brooks, Mohamed H. El-Newehy, Salem S. Al-Deyab, Hak Yong Kim. Electrospun Co-TiC nanoparticles embedded on carbon nanofibers: Active and chemically stable counter electrode for methanol fuel cells and dye-sensitized solar cells. International Journal of Hydrogen Energy 2017, 42 (15) , 10407-10415. https://doi.org/10.1016/j.ijhydene.2017.01.171
    64. I. Nirmal Sivagami, K. Prasanna, P. Santhoshkumar, Yong Nam Jo, Ga Young Seo, Chang Woo Lee. Agar templated electrodeposition of binary zinc-cobalt alloy and formation of zinc-cobalt-carbon nanocomposite for application in secondary lithium batteries. Journal of Alloys and Compounds 2017, 697 , 450-460. https://doi.org/10.1016/j.jallcom.2016.08.177
    65. Dong Xie, Xinhui Xia, Yu Zhong, Yadong Wang, Donghuang Wang, Xiuli Wang, Jiangping Tu. Exploring Advanced Sandwiched Arrays by Vertical Graphene and N‐Doped Carbon for Enhanced Sodium Storage. Advanced Energy Materials 2017, 7 (3) https://doi.org/10.1002/aenm.201601804
    66. Xinhui Xia, Jiye Zhan, Yu Zhong, Xiuli Wang, Jiangping Tu, Hong Jin Fan. Single‐Crystalline, Metallic TiC Nanowires for Highly Robust and Wide‐Temperature Electrochemical Energy Storage. Small 2017, 13 (5) https://doi.org/10.1002/smll.201602742
    67. Kui Cheng, Jietao Jiang, Shuying Kong, Yinyi Gao, Ke Ye, Guiling Wang, Wenping Zhang, Dianxue Cao. Pd nanoparticles support on rGO-C@TiC coaxial nanowires as a novel 3D electrode for NaBH4 electrooxidation. International Journal of Hydrogen Energy 2017, 42 (5) , 2943-2951. https://doi.org/10.1016/j.ijhydene.2016.11.156
    68. Chihyun Hwang, Kangmin Lee, Han-Don Um, Yeongdae Lee, Kwanyong Seo, Hyun-Kon Song. Conductive and Porous Silicon Nanowire Anodes for Lithium Ion Batteries. Journal of The Electrochemical Society 2017, 164 (7) , A1564-A1568. https://doi.org/10.1149/2.1241707jes
    69. Jiyun Wang, Xianhua Hou, Yana Li, Qiang Ru, Haiqing Qin, Shejun Hu. Facile Sol–Gel/Spray-Drying Synthesis of Interweaved Si@TiO2&CNTs Hybrid Microsphere as Superior Anode Materials for Li-Ion Batteries. Journal of Electronic Materials 2016, 45 (11) , 5773-5780. https://doi.org/10.1007/s11664-016-4785-x
    70. Xueqiang Zhang, Xinbing Cheng, Qiang Zhang. Nanostructured energy materials for electrochemical energy conversion and storage: A review. Journal of Energy Chemistry 2016, 25 (6) , 967-984. https://doi.org/10.1016/j.jechem.2016.11.003
    71. Kezhen Lu, Ning Wang, Jianyu Ren, Ning Wu, Xiongyi Huang. High-efficiency preparation of continuous three-dimensional curly C1−XNXTi-C composite nanofibers mat by airspinning. Composites Communications 2016, 1 , 44-47. https://doi.org/10.1016/j.coco.2016.09.005
    72. Jong-Keun Ha, Ghanshyam S. Chauhan, Jou-Hyeon Ahn, Hyo-Jun Ahn, Kwon-Koo Cho. Electrochemical properties of enclosed silicon nanopowder electrode inserted in integrated TiO 2 nanotubes grown on titanium for Li-ion battery. Electrochimica Acta 2016, 215 , 674-681. https://doi.org/10.1016/j.electacta.2016.08.114
    73. Yu Zhong, Xinhui Xia, Fan Shi, Jiye Zhan, Jiangping Tu, Hong Jin Fan. Transition Metal Carbides and Nitrides in Energy Storage and Conversion. Advanced Science 2016, 3 (5) https://doi.org/10.1002/advs.201500286
    74. Shuying Kong, Kui Cheng, Yinyi Gao, Tian Ouyang, Ke Ye, Guiling Wang, Dianxue Cao. A novel three-dimensional manganese dioxide electrode for high performance supercapacitors. Journal of Power Sources 2016, 308 , 141-148. https://doi.org/10.1016/j.jpowsour.2016.01.076
    75. Anqi Zhang, Gengfeng Zheng, Charles M. Lieber. Nanowire-Enabled Energy Storage. 2016, 203-225. https://doi.org/10.1007/978-3-319-41981-7_8
    76. Xin Wang, Ke Ye, Yinyi Gao, Hongyu Zhang, Kui Cheng, Xue Xiao, Guiling Wang, Dianxue Cao. Preparation of porous palladium nanowire arrays and their catalytic performance for hydrogen peroxide electroreduction in acid medium. Journal of Power Sources 2016, 303 , 278-286. https://doi.org/10.1016/j.jpowsour.2015.11.007
    77. Ying Xiao, Jang-Yeon Hwang, Yang-Kook Sun. Transition metal carbide-based materials: synthesis and applications in electrochemical energy storage. Journal of Materials Chemistry A 2016, 4 (27) , 10379-10393. https://doi.org/10.1039/C6TA03832H
    78. Xiao Han, Wen-Miao Chen, Xiguang Han, Yuan-Zhi Tan, Di Sun. Nitrogen-rich MOF derived porous Co 3 O 4 /N–C composites with superior performance in lithium-ion batteries. Journal of Materials Chemistry A 2016, 4 (34) , 13040-13045. https://doi.org/10.1039/C6TA05096D
    79. Yu Zhong, Xinhui Xia, Jiye Zhan, Yadong Wang, Xiuli Wang, Jiangping Tu. Monolayer titanium carbide hollow sphere arrays formed via an atomic layer deposition assisted method and their excellent high-temperature supercapacitor performance. Journal of Materials Chemistry A 2016, 4 (48) , 18717-18722. https://doi.org/10.1039/C6TA08179G
    80. Ning Wang, Tao Hang, Wenjing Zhang, Ming Li. Highly Conductive Cu Nanoneedle-Array Supported Silicon Film for High-Performance Lithium Ion Battery Anodes. Journal of The Electrochemical Society 2016, 163 (3) , A380-A384. https://doi.org/10.1149/2.0041603jes
    81. Shuying Kong, Kui Cheng, Tian Ouyang, Ke Ye, Yinyi Gao, Guiling Wang, Dianxue Cao. Freestanding one-dimensional manganese dioxide nanoflakes-titanium cabide/carbon core/double shell arrays as ultra-high performance supercapacitor electrode. Journal of Power Sources 2015, 293 , 519-526. https://doi.org/10.1016/j.jpowsour.2015.05.062
    82. Nian Liu, Guangyuan Zheng, Yi Cui. Nanocarbon Hybrids with Silicon, Sulfur, or Paper/Textile for High‐Energy Lithium Ion Batteries. 2015, 35-57. https://doi.org/10.1002/9783527680054.ch2
    83. Xuming Zhang, Xiang Peng, Wan Li, Limin Li, Biao Gao, Guosong Wu, Kaifu Huo, Paul K. Chu. Robust Electrodes Based on Coaxial TiC/C-MnO 2 Core/Shell Nanofiber Arrays with Excellent Cycling Stability for High-Performance Supercapacitors. Small 2015, 11 (15) , 1847-1856. https://doi.org/10.1002/smll.201402519
    84. Bin Wang, Tengfei Qiu, Xianglong Li, Bin Luo, Long Hao, Yunbo Zhang, Linjie Zhi. Synergistically engineered self-standing silicon/carbon composite arrays as high performance lithium battery anodes. Journal of Materials Chemistry A 2015, 3 (2) , 494-498. https://doi.org/10.1039/C4TA06088A
    85. Xinhui Xia, Yongqi Zhang, Dongliang Chao, Qinqin Xiong, Zhanxi Fan, Xili Tong, Jiangping Tu, Hua Zhang, Hong Jin Fan. Tubular TiC fibre nanostructures as supercapacitor electrode materials with stable cycling life and wide-temperature performance. Energy & Environmental Science 2015, 8 (5) , 1559-1568. https://doi.org/10.1039/C5EE00339C
    86. Dingchang Lin, Zhenda Lu, Po-Chun Hsu, Hye Ryoung Lee, Nian Liu, Jie Zhao, Haotian Wang, Chong Liu, Yi Cui. A high tap density secondary silicon particle anode fabricated by scalable mechanical pressing for lithium-ion batteries. Energy & Environmental Science 2015, 8 (8) , 2371-2376. https://doi.org/10.1039/C5EE01363A
    87. Matthew T. McDowell, Yi Cui. Nanowires for High-Performance Li-Ion Battery Electrodes. 2014, 363-399. https://doi.org/10.1039/9781782625209-00363
    88. Subrahmanyam Goriparti, Ermanno Miele, Francesco De Angelis, Enzo Di Fabrizio, Remo Proietti Zaccaria, Claudio Capiglia. Review on recent progress of nanostructured anode materials for Li-ion batteries. Journal of Power Sources 2014, 257 , 421-443. https://doi.org/10.1016/j.jpowsour.2013.11.103
    89. Kui Cheng, Fan Yang, Ke Ye, Ying Zhang, Xue Jiang, Jinling Yin, Guiling Wang, Dianxue Cao. Highly porous Fe3O4–Fe nanowires grown on C/TiC nanofiber arrays as the high performance anode of lithium-ion batteries. Journal of Power Sources 2014, 258 , 260-265. https://doi.org/10.1016/j.jpowsour.2014.02.038
    90. Nian Liu, Weiyang Li, Mauro Pasta, Yi Cui. Nanomaterials for electrochemical energy storage. Frontiers of Physics 2014, 9 (3) , 323-350. https://doi.org/10.1007/s11467-013-0408-7
    91. Tao Hang, Daikichi Mukoyama, Hiroki Nara, Tokihiko Yokoshima, Toshiyuki Momma, Ming Li, Tetsuya Osaka. Electrochemical impedance analysis of electrodeposited Si–O–C composite thick film on Cu microcones-arrayed current collector for lithium ion battery anode. Journal of Power Sources 2014, 256 , 226-232. https://doi.org/10.1016/j.jpowsour.2014.01.065
    92. Xiuyun Zhao, Dingguo Xia, Lin Gu, Juncheng Yue, Biao Li, Hang Wei, Huijun Yan, Ruqiang Zou, Yingxia Wang, Xiayan Wang, Ze Zhang, Jixue Li. High-performance self-organized Si nanocomposite anode for lithium-ion batteries. Journal of Energy Chemistry 2014, 23 (3) , 291-300. https://doi.org/10.1016/S2095-4956(14)60150-9
    93. Jie Zhong, Yong Peng, Manyuan Zhou, Juan Zhao, Shuquan Liang, Huanting Wang, Yi-Bing Cheng. Facile synthesis of nanoporous TiC–SiC–C composites as a novel counter-electrode for dye sensitized solar cells. Microporous and Mesoporous Materials 2014, 190 , 309-315. https://doi.org/10.1016/j.micromeso.2014.02.029
    94. Jian Lin, Abdul‐Rahman O. Raji, Kewang Nan, Zhiwei Peng, Zheng Yan, Errol L. G. Samuel, Douglas Natelson, James M. Tour. Iron Oxide Nanoparticle and Graphene Nanoribbon Composite as an Anode Material for High‐Performance Li‐Ion Batteries. Advanced Functional Materials 2014, 24 (14) , 2044-2048. https://doi.org/10.1002/adfm.201303023
    95. Sakineh Chabi, Chuang Peng, Di Hu, Yanqiu Zhu. Ideal Three‐Dimensional Electrode Structures for Electrochemical Energy Storage. Advanced Materials 2014, 26 (15) , 2440-2445. https://doi.org/10.1002/adma.201305095
    96. Yong Li, Jijiang Fu, Rongsheng Chen, Meng Huang, Biao Gao, Kaifu Huo, Lei Wang, Paul K. Chu. Core–shell TiC/C nanofiber arrays decorated with copper nanoparticles for high performance non-enzymatic glucose sensing. Sensors and Actuators B: Chemical 2014, 192 , 474-479. https://doi.org/10.1016/j.snb.2013.11.014
    97. Kyung Jae Lee, Seung-Ho Yu, Jung-Joon Kim, Dae-Hyeok Lee, Jungjin Park, Soon Sung Suh, Jong Soo Cho, Yung-Eun Sung. Si7Ti4Ni4 as a buffer material for Si and its electrochemical study for lithium ion batteries. Journal of Power Sources 2014, 246 , 729-735. https://doi.org/10.1016/j.jpowsour.2013.08.033
    98. Do Youb Kim, Jungdon Suk, Dong Wook Kim, Yongku Kang, Sang Hyuk Im, Youngjo Yang, O Ok Park. An electrochemically grown three-dimensional porous Si@Ni inverse opal structure for high-performance Li ion battery anodes. J. Mater. Chem. A 2014, 2 (18) , 6396-6401. https://doi.org/10.1039/C4TA00147H
    99. Bin Liu, Xianfu Wang, Haitian Chen, Zhuoran Wang, Di Chen, Yi-Bing Cheng, Chongwu Zhou, Guozhen Shen. Hierarchical silicon nanowires-carbon textiles matrix as a binder-free anode for high-performance advanced lithium-ion batteries. Scientific Reports 2013, 3 (1) https://doi.org/10.1038/srep01622
    100. Candace Chan, Matthew McDowell, Yi Cui. Silicon Nanowire Electrodes for Lithium-Ion Battery Negative Electrodes. 2013, 1-68. https://doi.org/10.1201/b15488-2
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect