Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Stability of Graphene Edges under Electron Beam: Equilibrium Energetics versus Dynamic Effects

View Author Information
Department of Physics, University of Helsinki, P.O. Box 43, 00014 Helsinki, Finland
Department of Physics, University of Vienna, Boltzmanngasse 5, 1090 Wien, Austria
Department of Applied Physics, Aalto University, P.O. Box 1100, 00076 Aalto, Finland
*Address correspondence to [email protected]
Cite this: ACS Nano 2012, 6, 1, 671–676
Publication Date (Web):December 22, 2011
https://doi.org/10.1021/nn204148h
Copyright © 2011 American Chemical Society

    Article Views

    2613

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    Abstract Image

    Electron beam of a transmission electron microscope can be used to alter the morphology of graphene nanoribbons and create atomically sharp edges required for applications of graphene in nanoelectronics. Using density-functional-theory-based simulations, we study the radiation hardness of graphene edges and show that the response of the ribbons to irradiation is not determined by the equilibrium energetics as assumed in previous experiments, but by kinetic effects associated with the dynamics of the edge atoms after impacts of energetic electrons. We report an unexpectedly high stability of armchair edges, comparable to that of pristine graphene, and demonstrate that the electron energy should be below ∼50 keV to minimize the knock-on damage.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Cited By

    This article is cited by 117 publications.

    1. Yulia G. Polynskaya, Irina V. Lebedeva, Andrey A. Knizhnik, Andrey M. Popov. Reconstruction of Zigzag Graphene Edges: Energetics, Kinetics, and Residual Defects. The Journal of Physical Chemistry Letters 2022, 13 (44) , 10326-10330. https://doi.org/10.1021/acs.jpclett.2c02706
    2. Ovidiu Cretu, Akimitsu Ishizuka, Keiichi Yanagisawa, Kazuo Ishizuka, Koji Kimoto. Atomic-Scale Electrical Field Mapping of Hexagonal Boron Nitride Defects. ACS Nano 2021, 15 (3) , 5316-5321. https://doi.org/10.1021/acsnano.0c10849
    3. Xinyi Gong, Karthikeyan Gnanasekaran, Zhijie Chen, Lee Robison, Megan C. Wasson, Kyle C. Bentz, Seth M. Cohen, Omar K. Farha, Nathan C. Gianneschi. Insights into the Structure and Dynamics of Metal–Organic Frameworks via Transmission Electron Microscopy. Journal of the American Chemical Society 2020, 142 (41) , 17224-17235. https://doi.org/10.1021/jacs.0c08773
    4. Sota Hirokawa, Hideaki Teshima, Pablo Solís-Fernández, Hiroki Ago, Yoko Tomo, Qin-Yi Li, Koji Takahashi. Nanoscale Bubble Dynamics Induced by Damage of Graphene Liquid Cells. ACS Omega 2020, 5 (19) , 11180-11185. https://doi.org/10.1021/acsomega.0c01207
    5. Da Li, Yanchao Wang, Tian Cui, Yanming Ma, Feng Ding. Local Carbon Concentration Determines the Graphene Edge Structure. The Journal of Physical Chemistry Letters 2020, 11 (9) , 3451-3457. https://doi.org/10.1021/acs.jpclett.0c00525
    6. David B. Lingerfelt, Panchapakesan Ganesh, Jacek Jakowski, Bobby G. Sumpter. Understanding Beam-Induced Electronic Excitations in Materials. Journal of Chemical Theory and Computation 2020, 16 (2) , 1200-1214. https://doi.org/10.1021/acs.jctc.9b00792
    7. Ja Kyung Lee, Gun-Do Lee, Sungwoo Lee, Euijoon Yoon, Harry L. Anderson, G. Andrew D. Briggs, Jamie H. Warner. Atomic Scale Imaging of Reversible Ring Cyclization in Graphene Nanoconstrictions. ACS Nano 2019, 13 (2) , 2379-2388. https://doi.org/10.1021/acsnano.8b09211
    8. Thang Pham, Ashley L. Gibb, Zhenglu Li, S. Matt Gilbert, Chengyu Song, Steven G. Louie, and Alex Zettl . Formation and Dynamics of Electron-Irradiation-Induced Defects in Hexagonal Boron Nitride at Elevated Temperatures. Nano Letters 2016, 16 (11) , 7142-7147. https://doi.org/10.1021/acs.nanolett.6b03442
    9. Huy Q. Ta, Alicja Bachmatiuk, Jamie H. Warner, Liang Zhao, Yinghui Sun, Jiong Zhao, Thomas Gemming, Barbara Trzebicka, Zhongfan Liu, Didier Pribat, and Mark H. Rümmeli . Electron-Driven Metal Oxide Effusion and Graphene Gasification at Room Temperature. ACS Nano 2016, 10 (6) , 6323-6330. https://doi.org/10.1021/acsnano.6b02625
    10. Qingming Deng and Jiong Zhao . Triggering One-Dimensional Phase Transition with Defects at the Graphene Zigzag Edge. Nano Letters 2016, 16 (2) , 1244-1249. https://doi.org/10.1021/acs.nanolett.5b04557
    11. Judy S. Kim, Jamie H. Warner, Alex W. Robertson, and Angus I. Kirkland . Formation of Klein Edge Doublets from Graphene Monolayers. ACS Nano 2015, 9 (9) , 8916-8922. https://doi.org/10.1021/acsnano.5b02730
    12. Kuang He, Alex W. Robertson, Ye Fan, Christopher S. Allen, Yung-Chang Lin, Kazu Suenaga, Angus I. Kirkland, and Jamie H. Warner . Temperature Dependence of the Reconstruction of Zigzag Edges in Graphene. ACS Nano 2015, 9 (5) , 4786-4795. https://doi.org/10.1021/acsnano.5b01130
    13. Changbae Hyun, Jeonghun Yun, Woo Jong Cho, Chang Woo Myung, Jaesung Park, Geunsik Lee, Zonghoon Lee, Kwanpyo Kim, and Kwang S. Kim . Graphene Edges and Beyond: Temperature-Driven Structures and Electromagnetic Properties. ACS Nano 2015, 9 (5) , 4669-4674. https://doi.org/10.1021/acsnano.5b02617
    14. Leonardo Vicarelli, Stephanie J. Heerema, Cees Dekker, and Henny W. Zandbergen . Controlling Defects in Graphene for Optimizing the Electrical Properties of Graphene Nanodevices. ACS Nano 2015, 9 (4) , 3428-3435. https://doi.org/10.1021/acsnano.5b01762
    15. Kuang He, Alex. W. Robertson, Sungwoo Lee, Euijoon Yoon, Gun-Do Lee, and Jamie H. Warner . Extended Klein Edges in Graphene. ACS Nano 2014, 8 (12) , 12272-12279. https://doi.org/10.1021/nn504471m
    16. Youmin Rong and Jamie H. Warner . Wired Up: Interconnecting Two-Dimensional Materials with One-Dimensional Atomic Chains. ACS Nano 2014, 8 (12) , 11907-11912. https://doi.org/10.1021/nn5065524
    17. Toma Susi, Jani Kotakoski, Raul Arenal, Simon Kurasch, Hua Jiang, Viera Skakalova, Odile Stephan, Arkady V. Krasheninnikov, Esko I. Kauppinen, Ute Kaiser, and Jannik C. Meyer. Correction to Atomistic Description of Electron Beam Damage in Nitrogen-Doped Graphene and Single-Walled Carbon Nanotubes. ACS Nano 2013, 7 (8) , 7436-7436. https://doi.org/10.1021/nn4034629
    18. Ovidiu Cretu, Andrés R. Botello-Mendez, Izabela Janowska, Cuong Pham-Huu, Jean-Christophe Charlier, and Florian Banhart . Electrical Transport Measured in Atomic Carbon Chains. Nano Letters 2013, 13 (8) , 3487-3493. https://doi.org/10.1021/nl4018918
    19. Felix Börrnert, Lei Fu, Sandeep Gorantla, Martin Knupfer, Bernd Büchner, and Mark H. Rümmeli . Programmable Sub-nanometer Sculpting of Graphene with Electron Beams. ACS Nano 2012, 6 (11) , 10327-10334. https://doi.org/10.1021/nn304256a
    20. Toma Susi, Jani Kotakoski, Raul Arenal, Simon Kurasch, Hua Jiang, Viera Skakalova, Odile Stephan, Arkady V. Krasheninnikov, Esko I. Kauppinen, Ute Kaiser, and Jannik C. Meyer . Atomistic Description of Electron Beam Damage in Nitrogen-Doped Graphene and Single-Walled Carbon Nanotubes. ACS Nano 2012, 6 (10) , 8837-8846. https://doi.org/10.1021/nn303944f
    21. Simon Kurasch, Jani Kotakoski, Ossi Lehtinen, Viera Skákalová, Jurgen Smet, Carl E. Krill, III, Arkady V. Krasheninnikov, and Ute Kaiser . Atom-by-Atom Observation of Grain Boundary Migration in Graphene. Nano Letters 2012, 12 (6) , 3168-3173. https://doi.org/10.1021/nl301141g
    22. Florian Banhart. The Formation and Transformation of Low‐Dimensional Carbon Nanomaterials by Electron Irradiation. Small 2024, 4 https://doi.org/10.1002/smll.202310462
    23. Jaewoo Lee, Seunguk Cheon, Jun Heo, Jaeyoung Im, Sung Oh Cho. Nitrogen-ion-irradiated defective tin oxyhydroxide nanoparticle anode for ultrafast and highly stable lithium-ion storage. Chemical Engineering Journal 2024, 486 , 150454. https://doi.org/10.1016/j.cej.2024.150454
    24. Teng-Chin Hsu, Bi-Xian Wu, Rong-Teng Lin, Chia-Jen Chien, Chien-Yu Yeh, Tzu-Hsuan Chang. Electron–phonon interaction toward engineering carrier mobility of periodic edge structured graphene nanoribbons. Scientific Reports 2023, 13 (1) https://doi.org/10.1038/s41598-023-32655-9
    25. Yingchao Liu, Jinlong Ren, Decheng Kong, Guangcun Shan, Kunpeng Dou. Edge-pinning effect of graphene nanoflakes sliding atop graphene. Materials Today Physics 2023, 38 , 101266. https://doi.org/10.1016/j.mtphys.2023.101266
    26. Marco Laurenti, Marco Fontana, Federico Raffone, Alberta Pellegrino, Stefano Bianco, Elena Tresso, Candido F Pirri, Giancarlo Cicero. High rejection stacked single-layer graphene membranes for water treatment. 2D Materials 2023, 10 (4) , 045002. https://doi.org/10.1088/2053-1583/ace45b
    27. Luc Bondaz, Shiqi Huang, Mojtaba Rezaei, Shaoxian Li, Kumar Varoon Agrawal. Nanoporous Single‐Layer Graphene Membranes for Gas Separation. 2022, 35-81. https://doi.org/10.1002/9783527829859.ch3
    28. Yue Liu, Xiaoxue Shang, Jie Zhuang, Da Li, Tian Cui. Recent progress in the edge reconstruction of two-dimensional materials. Journal of Physics D: Applied Physics 2022, 55 (41) , 414003. https://doi.org/10.1088/1361-6463/ac855f
    29. Ondrej Dyck, Feng Bao, Maxim Ziatdinov, Ali Yousefzadi Nobakht, Kody Law, Artem Maksov, Bobby G. Sumpter, Richard Archibald, Stephen Jesse, Sergei V. Kalinin, David B. Lingerfelt. Strain-Induced asymmetry and on-site dynamics of silicon defects in graphene. Carbon Trends 2022, 9 , 100189. https://doi.org/10.1016/j.cartre.2022.100189
    30. Qianqian Yin, Linhui Si, Ruikun Wang, Zhenghui Zhao, Heping Li. Influence of the defect of carbonaceous surface on ammonium adsorption: A DFT study. Fuel 2022, 325 , 124873. https://doi.org/10.1016/j.fuel.2022.124873
    31. Yulia G. Polynskaya, Irina V. Lebedeva, Andrey A. Knizhnik, Andrey M. Popov. Optimal model of semi-infinite graphene for ab initio calculations of reactions at graphene edges by the example of zigzag edge reconstruction. Computational and Theoretical Chemistry 2022, 1214 , 113755. https://doi.org/10.1016/j.comptc.2022.113755
    32. Mahesh Datt Bhatt, Heeju Kim, Gunn Kim. Various defects in graphene: a review. RSC Advances 2022, 12 (33) , 21520-21547. https://doi.org/10.1039/D2RA01436J
    33. Fuhui Shao, Steffi Y. Woo, Nianjheng Wu, Robert Schneider, Andrew J. Mayne, Steffen Michaelis de Vasconcellos, Ashish Arora, Benjamin J. Carey, Johann A. Preuß, Noémie Bonnet, Mauro Och, Cecilia Mattevi, Kenji Watanabe, Takashi Taniguchi, Zhichuan Niu, Rudolf Bratschitsch, Luiz H. G. Tizei. Substrate influence on transition metal dichalcogenide monolayer exciton absorption linewidth broadening. Physical Review Materials 2022, 6 (7) https://doi.org/10.1103/PhysRevMaterials.6.074005
    34. Xiaohui Zhang, Tianyi Wang, Congyun Zhang, Yihui Zou, Jun Ren, Pengcheng Cai, Chenghua Sun, Dongjiang Yang. Effect of local coordination on catalytic activities and selectivities of Fe-based catalysts for N 2 reduction. Physical Chemistry Chemical Physics 2022, 24 (23) , 14517-14524. https://doi.org/10.1039/D1CP05140G
    35. Yuri Tanuma, Paul Dunk, Toru Maekawa, Chris P. Ewels. Chain Formation during Hydrogen Loss and Reconstruction in Carbon Nanobelts. Nanomaterials 2022, 12 (12) , 2073. https://doi.org/10.3390/nano12122073
    36. Dexian Yan, Yi Wang, Yu Qiu, Qinyin Feng, Xiangjun Li, Jining Li, Guohua Qiu, Jiusheng Li. A Review: The Functional Materials-Assisted Terahertz Metamaterial Absorbers and Polarization Converters. Photonics 2022, 9 (5) , 335. https://doi.org/10.3390/photonics9050335
    37. David Lingerfelt, Panchapakesan Ganesh, Bobby G. Sumpter, Jacek Jakowski. From ground to excited electronic state dynamics of electron and ion irradiated graphene nanomaterials. 2022, 87-107. https://doi.org/10.1016/B978-0-12-819514-7.00003-8
    38. Gregor T Leuthner, Toma Susi, Clemens Mangler, Jannik C Meyer, Jani Kotakoski. Chemistry at graphene edges in the electron microscope. 2D Materials 2021, 8 (3) , 035023. https://doi.org/10.1088/2053-1583/abf624
    39. Bozhong Zhuang, Shiyun Li, Siyang Li, Jun Yin. Ways to eliminate PMMA residues on graphene —— superclean graphene. Carbon 2021, 173 , 609-636. https://doi.org/10.1016/j.carbon.2020.11.047
    40. Xiaoxu Zhao, Kian Ping Loh, Stephen J Pennycook. Electron beam triggered single-atom dynamics in two-dimensional materials. Journal of Physics: Condensed Matter 2021, 33 (6) , 063001. https://doi.org/10.1088/1361-648X/abbdb9
    41. Anmin Liu, Yanan Yang, Dezhen Kong, Xuefeng Ren, Mengfan Gao, Xingyou Liang, Qiyue Yang, Jiale Zhang, Liguo Gao, Tingli Ma. DFT study of the defective carbon materials with vacancy and heteroatom as catalyst for NRR. Applied Surface Science 2021, 536 , 147851. https://doi.org/10.1016/j.apsusc.2020.147851
    42. Milad Nourbakhsh, Ehsan Zareian-Jahromi, Raheleh Basiri, Valiollah Mashayekhi. An Ultra-Wideband Terahertz Metamaterial Absorber Utilizing Sinusoidal-Patterned Dielectric Loaded Graphene. Plasmonics 2020, 15 (6) , 1835-1843. https://doi.org/10.1007/s11468-020-01203-w
    43. Hirotsugu Sugiura, Hiroki Kondo, Kimitaka Higuchi, Shigeo Arai, Ryo Hamaji, Takayoshi Tsutsumi, Kenji Ishikawa, Masaru Hori. Reaction science of layer-by-layer thinning of graphene with oxygen neutrals at room temperature. Carbon 2020, 170 , 93-99. https://doi.org/10.1016/j.carbon.2020.07.052
    44. Qiaoli Chen, Christian Dwyer, Guan Sheng, Chongzhi Zhu, Xiaonian Li, Changlin Zheng, Yihan Zhu. Imaging Beam‐Sensitive Materials by Electron Microscopy. Advanced Materials 2020, 32 (16) https://doi.org/10.1002/adma.201907619
    45. Ali Soleymani, Roya Ebrahimi Meymand, Nosrat Granpayeh. Broadband near-perfect terahertz absorber in single-layered and non-structured graphene loaded with dielectrics. Applied Optics 2020, 59 (9) , 2839. https://doi.org/10.1364/AO.383637
    46. P. Vinchon, X. Glad, G. Robert-Bigras, R. Martel, A. Sarkissian, L. Stafford. A combination of plasma diagnostics and Raman spectroscopy to examine plasma-graphene interactions in low-pressure argon radiofrequency plasmas. Journal of Applied Physics 2019, 126 (23) https://doi.org/10.1063/1.5125143
    47. Artem Maksov, Ondrej Dyck, Kai Wang, Kai Xiao, David B. Geohegan, Bobby G. Sumpter, Rama K. Vasudevan, Stephen Jesse, Sergei V. Kalinin, Maxim Ziatdinov. Deep learning analysis of defect and phase evolution during electron beam-induced transformations in WS2. npj Computational Materials 2019, 5 (1) https://doi.org/10.1038/s41524-019-0152-9
    48. Alexandru Ionut Chirita Mihaila, Toma Susi, Jani Kotakoski. Influence of temperature on the displacement threshold energy in graphene. Scientific Reports 2019, 9 (1) https://doi.org/10.1038/s41598-019-49565-4
    49. Kimmo Mustonen, Alexander Markevich, Mukesh Tripathi, Heena Inani, Er‐Xiong Ding, Aqeel Hussain, Clemens Mangler, Esko I. Kauppinen, Jani Kotakoski, Toma Susi. Electron‐Beam Manipulation of Silicon Impurities in Single‐Walled Carbon Nanotubes. Advanced Functional Materials 2019, 29 (52) https://doi.org/10.1002/adfm.201901327
    50. Limei Qi, Chang Liu, Syed Mohsin Ali Shah. A broad dual-band switchable graphene-based terahertz metamaterial absorber. Carbon 2019, 153 , 179-188. https://doi.org/10.1016/j.carbon.2019.07.011
    51. Gregor T Leuthner, Clemens Mangler, Jannik C Meyer, Toma Susi, Jani Kotakoski. Atomic-scale Chemical Manipulation of Materials in the Scanning Transmission Electron Microscope under Controlled Atmospheres. Microscopy and Microanalysis 2019, 25 (S2) , 1398-1399. https://doi.org/10.1017/S1431927619007724
    52. Mark H. Rummeli, Huy Q. Ta, Rafael G. Mendes, Ignacio G. Gonzalez‐Martinez, Liang Zhao, Jing Gao, Lei Fu, Thomas Gemming, Alicja Bachmatiuk, Zhongfan Liu. New Frontiers in Electron Beam–Driven Chemistry in and around Graphene. Advanced Materials 2019, 31 (9) https://doi.org/10.1002/adma.201800715
    53. Kang Xia, Haifei Zhan, Aimin Ji, Jianli Shao, Yuantong Gu, Zhiyong Li. Graphynes: an alternative lightweight solution for shock protection. Beilstein Journal of Nanotechnology 2019, 10 , 1588-1595. https://doi.org/10.3762/bjnano.10.154
    54. Mir Hamid Rezaei, Abbas Zarifkar. Dielectric-loaded graphene-based plasmonic multilogic gate using a multimode interference splitter. Applied Optics 2018, 57 (35) , 10109. https://doi.org/10.1364/AO.57.010109
    55. Ondrej Dyck, Songkil Kim, Sergei V. Kalinin, Stephen Jesse. E-beam manipulation of Si atoms on graphene edges with an aberration-corrected scanning transmission electron microscope. Nano Research 2018, 11 (12) , 6217-6226. https://doi.org/10.1007/s12274-018-2141-6
    56. Alexander S. Sinitsa, Irina V. Lebedeva, Andrey M. Popov, Andrey A. Knizhnik. Long triple carbon chains formation by heat treatment of graphene nanoribbon: Molecular dynamics study with revised Brenner potential. Carbon 2018, 140 , 543-556. https://doi.org/10.1016/j.carbon.2018.08.022
    57. Kai Nordlund, Steven J. Zinkle, Andrea E. Sand, Fredric Granberg, Robert S. Averback, Roger E. Stoller, Tomoaki Suzudo, Lorenzo Malerba, Florian Banhart, William J. Weber, Francois Willaime, Sergei L. Dudarev, David Simeone. Primary radiation damage: A review of current understanding and models. Journal of Nuclear Materials 2018, 512 , 450-479. https://doi.org/10.1016/j.jnucmat.2018.10.027
    58. Jiawen Yang, Zhihong Zhu, Jianfa Zhang, Chucai Guo, Wei Xu, Ken Liu, Xiaodong Yuan, Shiqiao Qin. Broadband terahertz absorber based on multi-band continuous plasmon resonances in geometrically gradient dielectric-loaded graphene plasmon structure. Scientific Reports 2018, 8 (1) https://doi.org/10.1038/s41598-018-21705-2
    59. Ondrej Dyck, Songkil Kim, Elisa Jimenez‐Izal, Anastassia N. Alexandrova, Sergei V. Kalinin, Stephen Jesse. Building Structures Atom by Atom via Electron Beam Manipulation. Small 2018, 14 (38) https://doi.org/10.1002/smll.201801771
    60. Qilin Hong, Feng Xiong, Wei Xu, Zhihong Zhu, Ken Liu, Xiaodong Yuan, Jianfa Zhang, Shiqiao Qin. Towards high performance hybrid two-dimensional material plasmonic devices: strong and highly anisotropic plasmonic resonances in nanostructured graphene-black phosphorus bilayer. Optics Express 2018, 26 (17) , 22528. https://doi.org/10.1364/OE.26.022528
    61. Jiawen Yang, Zhihong Zhu, Jianfa Zhang, Wei Xu, Chucai Guo, Ken Liu, Mengjian Zhu, Haitao Chen, Renyan Zhang, Xiaodong Yuan, Shiqiao Qin. Mie resonance induced broadband near-perfect absorption in nonstructured graphene loaded with periodical dielectric wires. Optics Express 2018, 26 (16) , 20174. https://doi.org/10.1364/OE.26.020174
    62. Qilin Hong, Feng Xiong, Wei Xu, Zhihong Zhu, Jianfa Zhang, Shiqiao Qin. Strong and Anisotropic Plasmonic Resonances in Nanostructured Graphene-Black Phosphorus Bilayer. 2018, OT4A.44. https://doi.org/10.1364/OEDI.2018.OT4A.44
    63. Toma Susi, Viera Skákalová, Andreas Mittelberger, Peter Kotrusz, Martin Hulman, Timothy J. Pennycook, Clemens Mangler, Jani Kotakoski, Jannik C. Meyer. Computational insights and the observation of SiC nanograin assembly: towards 2D silicon carbide. Scientific Reports 2017, 7 (1) https://doi.org/10.1038/s41598-017-04683-9
    64. Toma Susi, Jannik C. Meyer, Jani Kotakoski. Manipulating low-dimensional materials down to the level of single atoms with electron irradiation. Ultramicroscopy 2017, 180 , 163-172. https://doi.org/10.1016/j.ultramic.2017.03.005
    65. Baptiste Farbos, Helen Freeman, Trevor Hardcastle, Jean-Pierre Da Costa, Rik Brydson, Andrew J. Scott, Patrick Weisbecker, Christian Germain, Gérard L. Vignoles, Jean-Marc Leyssale. A time-dependent atomistic reconstruction of severe irradiation damage and associated property changes in nuclear graphite. Carbon 2017, 120 , 111-120. https://doi.org/10.1016/j.carbon.2017.05.009
    66. Florian Banhart, Alessandro La Torre, Ferdaous Ben Romdhane, Ovidiu Cretu, , . The potentials and challenges of electron microscopy in the study of atomic chains. The European Physical Journal Applied Physics 2017, 78 (2) , 20701. https://doi.org/10.1051/epjap/2017160318
    67. Fei Gao, Zhihong Zhu, Wei. Xu, Jianfa Zhang, Chucai Guo, Ken Liu, Xiaodong Yuan, Shiqiao Qin. Broadband wave absorption in single-layered and nonstructured graphene based on far-field interaction effect. Optics Express 2017, 25 (9) , 9579. https://doi.org/10.1364/OE.25.009579
    68. Yan Liu, Renbin Zhong, Hong Ding, Shenggang Liu. Graphene loaded double ridge plasmon Terahertz waveguide. The European Physical Journal D 2017, 71 (4) https://doi.org/10.1140/epjd/e2017-70223-y
    69. Emi Kano, Ayako Hashimoto, Masaki Takeguchi. Opposite effects of Cu and Pt atoms on graphene edges. Applied Physics Express 2017, 10 (2) , 025104. https://doi.org/10.7567/APEX.10.025104
    70. Toma Susi, Christoph Hofer, Giacomo Argentero, Gregor T. Leuthner, Timothy J. Pennycook, Clemens Mangler, Jannik C. Meyer, Jani Kotakoski. Isotope analysis in the transmission electron microscope. Nature Communications 2016, 7 (1) https://doi.org/10.1038/ncomms13040
    71. Yixiao Gao, Ilya V. Shadrivov. Nonlinear coupling in graphene-coated nanowires. Scientific Reports 2016, 6 (1) https://doi.org/10.1038/srep38924
    72. R. C. Walker, T. Shi, E. C. Silva, I. Jovanovic, J. A. Robinson. Radiation effects on two-dimensional materials. physica status solidi (a) 2016, 213 (12) , 3065-3077. https://doi.org/10.1002/pssa.201600395
    73. Yan Liu, Renbin Zhong, Hong Ding, Shenggang Liu. Tunable graphene surface plasmon waveguides with efficient interference suppression. 2016, 1-2. https://doi.org/10.1109/IRMMW-THz.2016.7758481
    74. Zongyang Qiu, Li Song, Jin Zhao, Zhenyu Li, Jinlong Yang. The Nanoparticle Size Effect in Graphene Cutting: A “Pac‐Man” Mechanism. Angewandte Chemie 2016, 128 (34) , 10072-10075. https://doi.org/10.1002/ange.201602541
    75. Zongyang Qiu, Li Song, Jin Zhao, Zhenyu Li, Jinlong Yang. The Nanoparticle Size Effect in Graphene Cutting: A “Pac‐Man” Mechanism. Angewandte Chemie International Edition 2016, 55 (34) , 9918-9921. https://doi.org/10.1002/anie.201602541
    76. Martin Linck, Peter Hartel, Stephan Uhlemann, Frank Kahl, Heiko Müller, Joachim Zach, Max. Haider, Marcel Niestadt, Maarten Bischoff, Johannes Biskupek, Zhongbo Lee, Tibor Lehnert, Felix Börrnert, Harald Rose, Ute Kaiser. Chromatic Aberration Correction for Atomic Resolution TEM Imaging from 20 to 80 kV. Physical Review Letters 2016, 117 (7) https://doi.org/10.1103/PhysRevLett.117.076101
    77. Ki Seok Kim, Hyo-Ki Hong, Hanearl Jung, Il-Kwon Oh, Zonghoon Lee, Hyungjun Kim, Geun Young Yeom, Kyong Nam Kim. Surface treatment process applicable to next generation graphene-based electronics. Carbon 2016, 104 , 119-124. https://doi.org/10.1016/j.carbon.2016.03.054
    78. Wei‐Wei Wang, Jing‐Shuang Dang, Xiang Zhao, Shigeru Nagase. Regioselective multistep reconstructions of half‐saturated zigzag carbon nanotubes. Journal of Computational Chemistry 2016, 37 (15) , 1363-1366. https://doi.org/10.1002/jcc.24343
    79. W. X. Chen, J. S. Yu, W. Hu, Z. L. Chen, H. Memon, G. L. Chen. Titanate nanowire/NiO nanoflake core/shell heterostructured nanonanocomposite catalyst for methylene blue photodegradation. RSC Advances 2016, 6 (72) , 67827-67832. https://doi.org/10.1039/C6RA13744J
    80. Markus Morgenstern, Nils Freitag, Aviral Vaid, Marco Pratzer, Marcus Liebmann. Graphene quantum dots: wave function mapping by scanning tunneling spectroscopy and transport spectroscopy of quantum dots prepared by local anodic oxidation. physica status solidi (RRL) – Rapid Research Letters 2016, 10 (1) , 24-38. https://doi.org/10.1002/pssr.201510164
    81. Zheng Liu, Yung-Chang Lin, Jamie H. Warner, Po-Yuan Teng, Chao-Hui Yeh, Po-Wen Chiu, Sumio Iijima, Kazu Suenga. Characterization of Graphene and Transition Metal Dichalcogenide at the Atomic Scale. Journal of the Physical Society of Japan 2015, 84 (12) , 121005. https://doi.org/10.7566/JPSJ.84.121005
    82. Caiyan Ye, Zhihong Zhu, Wei Xu, Xiaodong Yuan, Shiqiao Qin. Electrically tunable absorber based on nonstructured graphene. Journal of Optics 2015, 17 (12) , 125009. https://doi.org/10.1088/2040-8978/17/12/125009
    83. Yuting Shen, Litao Sun. Setting up a nanolab inside a transmission electron microscope for two-dimensional materials research. Journal of Materials Research 2015, 30 (21) , 3153-3176. https://doi.org/10.1557/jmr.2015.304
    84. Qi Zhang, Dongfeng Diao, Momoji Kubo. Nanoscratching of multi-layer graphene by molecular dynamics simulations. Tribology International 2015, 88 , 85-88. https://doi.org/10.1016/j.triboint.2015.03.004
    85. Andrew Merrill, Cory D. Cress, Jamie E. Rossi, Nathanael D. Cox, Brian J. Landi. Threshold displacement energies in graphene and single-walled carbon nanotubes. Physical Review B 2015, 92 (7) https://doi.org/10.1103/PhysRevB.92.075404
    86. Ovidiu Cretu, Yung-Chang Lin, Kazutomo Suenaga. Inelastic electron irradiation damage in hexagonal boron nitride. Micron 2015, 72 , 21-27. https://doi.org/10.1016/j.micron.2015.02.002
    87. W. Xu, Z. H. Zhu, K. Liu, J. F. Zhang, X. D. Yuan, Q. S. Lu, S. Q. Qin. Toward integrated electrically controllable directional coupling based on dielectric loaded graphene plasmonic waveguide. Optics Letters 2015, 40 (7) , 1603. https://doi.org/10.1364/OL.40.001603
    88. W. Xu, Z. H. Zhu, K. Liu, J. F. Zhang, X. D. Yuan, Q. S. Lu, S. Q. Qin. Dielectric loaded graphene plasmon waveguide. Optics Express 2015, 23 (4) , 5147. https://doi.org/10.1364/OE.23.005147
    89. Y Liu, M Weinert, L Li. Determining charge state of graphene vacancy by noncontact atomic force microscopy and first-principles calculations. Nanotechnology 2015, 26 (3) , 035702. https://doi.org/10.1088/0957-4484/26/3/035702
    90. Stephen T. Skowron, Irina V. Lebedeva, Andrey M. Popov, Elena Bichoutskaia. Energetics of atomic scale structure changes in graphene. Chemical Society Reviews 2015, 44 (10) , 3143-3176. https://doi.org/10.1039/C4CS00499J
    91. Xiaoxing Ke, Carla Bittencourt, Gustaaf Van Tendeloo. Possibilities and limitations of advanced transmission electron microscopy for carbon-based nanomaterials. Beilstein Journal of Nanotechnology 2015, 6 , 1541-1557. https://doi.org/10.3762/bjnano.6.158
    92. Florian Banhart. Chains of carbon atoms: A vision or a new nanomaterial?. Beilstein Journal of Nanotechnology 2015, 6 , 559-569. https://doi.org/10.3762/bjnano.6.58
    93. Jacob S. Vestergaard, Jens Kling, Anders B. Dahl, Thomas W. Hansen, Jakob B. Wagner, Rasmus Larsen. Structure Identification in High-Resolution Transmission Electron Microscopic Images: An Example on Graphene. Microscopy and Microanalysis 2014, 20 (6) , 1772-1781. https://doi.org/10.1017/S1431927614013464
    94. M Manoharan, Hiroshi Mizuta. Edge irregularities in extremely down-scaled graphene nanoribbon devices: role of channel width. Materials Research Express 2014, 1 (4) , 045605. https://doi.org/10.1088/2053-1591/1/4/045605
    95. Yixiao Gao, Guobin Ren, Bofeng Zhu, Jing Wang, Shuisheng Jian. Single-mode graphene-coated nanowire plasmonic waveguide. Optics Letters 2014, 39 (20) , 5909. https://doi.org/10.1364/OL.39.005909
    96. Zheng Liu, Yung-Chang Lin, Chun-Chieh Lu, Chao-Hui Yeh, Po-Wen Chiu, Sumio Iijima, Kazu Suenaga. In situ observation of step-edge in-plane growth of graphene in a STEM. Nature Communications 2014, 5 (1) https://doi.org/10.1038/ncomms5055
    97. Toma Susi, Jani Kotakoski, Demie Kepaptsoglou, Clemens Mangler, Tracy C. Lovejoy, Ondrej L. Krivanek, Recep Zan, Ursel Bangert, Paola Ayala, Jannik C. Meyer, Quentin Ramasse. Silicon–Carbon Bond Inversions Driven by 60-keV Electrons in Graphene. Physical Review Letters 2014, 113 (11) https://doi.org/10.1103/PhysRevLett.113.115501
    98. Jens Kling, Jacob S. Vestergaard, Anders B. Dahl, Nicolas Stenger, Tim J. Booth, Peter Bøggild, Rasmus Larsen, Jakob B. Wagner, Thomas W. Hansen. Pattern recognition approach to quantify the atomic structure of graphene. Carbon 2014, 74 , 363-366. https://doi.org/10.1016/j.carbon.2014.03.013
    99. Kuang He, Gun-Do Lee, Alex W. Robertson, Euijoon Yoon, Jamie H. Warner. Hydrogen-free graphene edges. Nature Communications 2014, 5 (1) https://doi.org/10.1038/ncomms4040
    100. Thomas Trevethan, Christopher D. Latham, Malcolm I. Heggie, Patrick R. Briddon, Mark J. Rayson. Vacancy diffusion and coalescence in graphene directed by defect strain fields. Nanoscale 2014, 6 (5) , 2978-2986. https://doi.org/10.1039/C3NR06222H
    Load all citations