ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Biomolecule Surface Patterning May Enhance Membrane Association

View Author Information
Departament d’Enginyeria Quimica, Universitat Rovira i Virgili, 26 Av. dels Paisos Catalans, 43007 Tarragona, Spain
Department of Chemical Engineering and Biotechnology, University of Cambridge, Pembroke Street, Cambridge CB2 3RA, United Kingdom
§ ICREA, 23 Passeig Lluis Companys, 08010 Barcelona, Spain
*Address correspondence to [email protected]
Cite this: ACS Nano 2012, 6, 2, 1308–1313
Publication Date (Web):January 12, 2012
https://doi.org/10.1021/nn204736b
Copyright © 2012 American Chemical Society

    Article Views

    642

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    Abstract Image

    Under dehydration conditions, amphipathic late embryogenesis abundant proteins fold spontaneously from a random conformation into α-helical structures, and this transition is promoted by the presence of membranes. To gain insight into the thermodynamics of membrane association, we model the resulting α-helical structures as infinite rigid cylinders patterned with hydrophobic and hydrophilic stripes oriented parallel to their axis. Statistical thermodynamic calculations using single chain mean field theory show that the relative thickness of the stripes controls the free energy of interaction of the α-helices with a phospholipid bilayer, as does the bilayer structure and the depth of the equilibrium penetration of the cylinders into the bilayer. The results may suggest the optimal thickness of the stripes to mimic the association of such protein with membranes.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Cited By

    This article is cited by 27 publications.

    1. Kwahun Lee, Liuyang Zhang, Yi Yi, Xianqiao Wang, Yan Yu. Rupture of Lipid Membranes Induced by Amphiphilic Janus Nanoparticles. ACS Nano 2018, 12 (4) , 3646-3657. https://doi.org/10.1021/acsnano.8b00759
    2. Randy P. Carney, Yann Astier, Tamara M. Carney, Kislon Voïtchovsky, Paulo H. Jacob Silva, and Francesco Stellacci . Electrical Method to Quantify Nanoparticle Interaction with Lipid Bilayers. ACS Nano 2013, 7 (2) , 932-942. https://doi.org/10.1021/nn3036304
    3. Sergey Pogodin, Marco Werner, Jens-Uwe Sommer, and Vladimir A. Baulin . Nanoparticle-Induced Permeability of Lipid Membranes. ACS Nano 2012, 6 (12) , 10555-10561. https://doi.org/10.1021/nn3028858
    4. Haixiao Wan, Duo Xu, Lijuan Gao, Li-Tang Yan. Entropy‐Mediated Nanoparticle Cellular Uptake. Small Science 2023, 5 https://doi.org/10.1002/smsc.202300078
    5. , Բ. Խոսրավիզադ Վահրամյանս, Ա. Հ. Մելիքյան, . Հայկական և իրանական ցորենի սորտերի չորադիմացկանության համեմատումը ըստ՝ Wdhn13 և WCS726 դեհիդրին գեների էքսպրեսիայի և ջրի հարաբերական պարունակության տոկոսի. Biological Journal of Armenia 2022, 74 (3) , 64-71. https://doi.org/10.54503/0366-5119-2022.74.3-64
    6. Denver P. Linklater, Vladimir A. Baulin, Xavier Le Guével, Jean‐Baptiste Fleury, Eric Hanssen, The Hong Phong Nguyen, Saulius Juodkazis, Gary Bryant, Russell J. Crawford, Paul Stoodley, Elena P. Ivanova. Antibacterial Action of Nanoparticles by Lethal Stretching of Bacterial Cell Membranes. Advanced Materials 2020, 32 (52) https://doi.org/10.1002/adma.202005679
    7. Kwahun Lee, Yan Yu. Lipid bilayer disruption induced by amphiphilic Janus nanoparticles: the non-monotonic effect of charged lipids. Soft Matter 2019, 15 (11) , 2373-2380. https://doi.org/10.1039/C8SM02525H
    8. Tedrick Thomas Salim Lew, Min Hao Wong, Seon‐Yeong Kwak, Rosalie Sinclair, Volodymyr B. Koman, Michael S. Strano. Rational Design Principles for the Transport and Subcellular Distribution of Nanomaterials into Plant Protoplasts. Small 2018, 14 (44) https://doi.org/10.1002/smll.201802086
    9. Mikhail A. Kiselev, Domenico Lombardo. Structural characterization in mixed lipid membrane systems by neutron and X-ray scattering. Biochimica et Biophysica Acta (BBA) - General Subjects 2017, 1861 (1) , 3700-3717. https://doi.org/10.1016/j.bbagen.2016.04.022
    10. Domenico Lombardo, Pietro Calandra, Ersilia Bellocco, Giuseppina Laganà, Davide Barreca, Salvatore Magazù, Ulderico Wanderlingh, Mikhail A. Kiselev. Effect of anionic and cationic polyamidoamine (PAMAM) dendrimers on a model lipid membrane. Biochimica et Biophysica Acta (BBA) - Biomembranes 2016, 1858 (11) , 2769-2777. https://doi.org/10.1016/j.bbamem.2016.08.001
    11. Liping Chen, Shiyan Xiao, Hong Zhu, Lei Wang, Haojun Liang. Shape-dependent internalization kinetics of nanoparticles by membranes. Soft Matter 2016, 12 (9) , 2632-2641. https://doi.org/10.1039/C5SM01869B
    12. Rupak Bhattacharya, Chaitanya Indukuri, Nafisa Begam, Oliver H. Seeck, Jaydeep K. Basu. Plasmonic Lipid Bilayer Membranes for Enhanced Detection Sensitivity of Biolabeling Fluorophores. Advanced Functional Materials 2015, 25 (46) , 7233-7242. https://doi.org/10.1002/adfm.201502153
    13. Marjan Gharagozloo, Amirreza Rafiee, Ding Wen Chen, Marianna Foldvari. A flow cytometric approach to study the mechanism of gene delivery to cells by gemini-lipid nanoparticles: an implication for cell membrane nanoporation. Journal of Nanobiotechnology 2015, 13 (1) https://doi.org/10.1186/s12951-015-0125-1
    14. Baolin Huang, Yuan Yuan, Sai Ding, Jianbo Li, Jie Ren, Bo Feng, Tong Li, Yuantong Gu, Changsheng Liu. Nanostructured hydroxyapatite surfaces-mediated adsorption alters recognition of BMP receptor IA and bioactivity of bone morphogenetic protein-2. Acta Biomaterialia 2015, 27 , 275-285. https://doi.org/10.1016/j.actbio.2015.09.007
    15. S. R. Varanasi, O. A. Guskova, A. John, J.-U. Sommer. Water around fullerene shape amphiphiles: A molecular dynamics simulation study of hydrophobic hydration. The Journal of Chemical Physics 2015, 142 (22) https://doi.org/10.1063/1.4922322
    16. Yang Li, Li Jing, Yongbo Yu, Yang Yu, Junchao Duan, Man Yang, Weijia Geng, Lizhen Jiang, Qiuling Li, Zhiwei Sun. Cytoskeleton and Chromosome Damage Leading to Abnormal Mitosis Were Involved in Multinucleated Cells Induced by Silicon Nanoparticles. Particle & Particle Systems Characterization 2015, 32 (6) , 636-645. https://doi.org/10.1002/ppsc.201400180
    17. Tatsuro Goda, Kazuhiko Ishihara, Yuji Miyahara. Critical update on 2‐methacryloyloxyethyl phosphorylcholine (MPC) polymer science. Journal of Applied Polymer Science 2015, 132 (16) https://doi.org/10.1002/app.41766
    18. Hong‐ming Ding, Yu‐qiang Ma. Theoretical and Computational Investigations of Nanoparticle–Biomembrane Interactions in Cellular Delivery. Small 2015, 11 (9-10) , 1055-1071. https://doi.org/10.1002/smll.201401943
    19. M. A. Kiselev, E. V. Zemlyanaya, N. Y. Ryabova, T. Hauss, L. Almasy, S. S. Funari, J. Zbytovska, D. Lombardo. Influence of ceramide on the internal structure and hydration of the phospholipid bilayer studied by neutron and X-ray scattering. Applied Physics A 2014, 116 (1) , 319-325. https://doi.org/10.1007/s00339-013-8123-3
    20. Thilini Silva, Lok R. Pokhrel, Brajesh Dubey, Thabet M. Tolaymat, Kurt J. Maier, Xuefeng Liu. Particle size, surface charge and concentration dependent ecotoxicity of three organo-coated silver nanoparticles: Comparison between general linear model-predicted and observed toxicity. Science of The Total Environment 2014, 468-469 , 968-976. https://doi.org/10.1016/j.scitotenv.2013.09.006
    21. Binghui Wu, Shaoheng Tang, Mei Chen, Nanfeng Zheng. Amphiphilic modification and asymmetric silica encapsulation of hydrophobic Au–Fe 3 O 4 dumbbell nanoparticles. Chem. Commun. 2014, 50 (2) , 174-176. https://doi.org/10.1039/C3CC47634K
    22. Reid C. Van Lehn, Alfredo Alexander-Katz. Free energy change for insertion of charged, monolayer-protected nanoparticles into lipid bilayers. Soft Matter 2014, 10 (4) , 648-658. https://doi.org/10.1039/C3SM52329B
    23. Tracey M. Hinton, Felix Grusche, Durga Acharya, Ravi Shukla, Vipul Bansal, Lynne J. Waddington, Paul Monaghan, Benjamin W. Muir. Bicontinuous cubic phase nanoparticle lipid chemistry affects toxicity in cultured cells. Toxicol. Res. 2014, 3 (1) , 11-22. https://doi.org/10.1039/C3TX50075F
    24. T. Matos, S. Senkbeil, A. Mendonça, J. A. Queiroz, J. P. Kutter, L. Bulow. Nucleic acid and protein extraction from electropermeabilized E. coli cells on a microfluidic chip. The Analyst 2013, 138 (24) , 7347. https://doi.org/10.1039/c3an01576a
    25. Qing Liang. Penetration of polymer-grafted nanoparticles through a lipid bilayer. Soft Matter 2013, 9 (23) , 5594. https://doi.org/10.1039/c3sm27254k
    26. Thomas H. F. Thake, Jennifer R. Webb, Anthony Nash, Joshua Z. Rappoport, Rebecca Notman. Permeation of polystyrene nanoparticles across model lipid bilayer membranes. Soft Matter 2013, 9 (43) , 10265. https://doi.org/10.1039/c3sm51225h
    27. Christina L. Ting, Amalie L. Frischknecht. Activated pathways for the directed insertion of patterned nanoparticles into polymer membranes. Soft Matter 2013, 9 (40) , 9615. https://doi.org/10.1039/c3sm51734a

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect