ACS Publications. Most Trusted. Most Cited. Most Read
Effect of Multiple Adduct Fullerenes on Microstructure and Phase Behavior of P3HT:Fullerene Blend Films for Organic Solar Cells
My Activity
    Article

    Effect of Multiple Adduct Fullerenes on Microstructure and Phase Behavior of P3HT:Fullerene Blend Films for Organic Solar Cells
    Click to copy article linkArticle link copied!

    View Author Information
    Centre for Plastic Electronics and Department of Physics, Blackett Laboratory, Imperial College London, London SW7 2AZ, United Kingdom
    Centre for Plastic Electronics and Department of Chemistry, Imperial College London, London SW7 2AZ, United Kingdom
    § School of Physics and Astronomy, Cardiff University, Queens buildings, The Parade, Cardiff CF24 3AA, United Kingdom
    Centre for Plastic Electronics and Department of Materials, Royal School of Mines, Imperial College London, London SW7 2AZ, United Kingdom
    *Address correspondence to [email protected], [email protected]
    Other Access OptionsSupporting Information (1)

    ACS Nano

    Cite this: ACS Nano 2012, 6, 5, 3868–3875
    Click to copy citationCitation copied!
    https://doi.org/10.1021/nn204996w
    Published April 25, 2012
    Copyright © 2012 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    The bis and tris adducts of [6,6]phenyl-C61-butyric acid methyl ester (PCBM) offer lower reduction potentials than PCBM and are therefore expected to offer larger open-circuit voltages and more efficient energy conversion when blended with conjugated polymers in photovoltaic devices in place of PCBM. However, poor photovoltaic device performances are commonly observed when PCBM is replaced with higher-adduct fullerenes. In this work, we use transmission electron microscopy (TEM), steady-state and ultrafast time-resolved photoluminescence spectroscopy (PL), and differential scanning calorimetry (DSC) to probe the microstructural properties of blend films of poly(3-hexylthiophene-2,5-diyl) (P3HT) with the bis and tris adducts of PCBM. TEM and PL indicate that, in as-spun blend films, fullerenes become less soluble in P3HT as the number of adducts increases. PL indicates that upon annealing crystallization leads to phase separation in P3HT:PCBM samples only. DSC studies indicate that the interactions between P3HT and the fullerene become weaker with higher-adduct fullerenes and that all systems exhibit eutectic phase behavior with a eutectic composition being shifted to higher molar fullerene content for higher-adduct fullerenes. We propose two different mechanisms of microstructure development for PCBM and higher-adduct fullerenes. P3HT:PCBM blends, phase segregation is the result of crystallization of either one or both components and is facilitated by thermal treatments. In contrast, for blends containing higher adducts, the phase separation is due to a partial demixing of the amorphous phases. We rationalize the lower photocurrent generation by the higher-adduct fullerene blends in terms of film microstructure.

    Copyright © 2012 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Additional figures contain UV–vis absorption spectra, steady-state PL spectra, ultrafast PL initial fluorescence intensity, GIXRD data and analysis of P3HT:PCBM, P3HT:bis-PCBM, and P3HT:tris-PCBM blends, DSC scans of blends of P3HT:bis-PCBM and P3HT:tris-PCBM at different compositions, and device characteristics for P3HT:bis-PCBM blends at different compositions. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 57 publications.

    1. Xueyan Hou, Jack F. Coker, Jun Yan, Xingyuan Shi, Mohammed Azzouzi, Flurin D. Eisner, James D. McGettrick, Sachetan M. Tuladhar, Isaac Abrahams, Jarvist M. Frost, Zhe Li, T. John S. Dennis, Jenny Nelson. Structure–Property Relationships for the Electronic Applications of Bis-Adduct Isomers of Phenyl-C61 Butyric Acid Methyl Ester. Chemistry of Materials 2024, 36 (1) , 425-438. https://doi.org/10.1021/acs.chemmater.3c02353
    2. Mohamed Zbiri, Peter A. Gilhooly-Finn, Peter Fouquet, Christian B. Nielsen, Anne A. Y. Guilbert. Structural Dynamics of Polymer:Non-Fullerene Organic Solar Cell Blends: A Neutron Spectroscopy Perspective. Chemistry of Materials 2022, 34 (17) , 7937-7946. https://doi.org/10.1021/acs.chemmater.2c01705
    3. Elham Rezasoltani, Anne A. Y. Guilbert, Jun Yan, Xabier Rodríguez-Martínez, Mohammed Azzouzi, Flurin Eisner, Sachetan M. Tuladhar, Zeinab Hamid, Andrew Wadsworth, Iain McCulloch, Mariano Campoy-Quiles, Jenny Nelson. Correlating the Phase Behavior with the Device Performance in Binary Poly-3-hexylthiophene: Nonfullerene Acceptor Blend Using Optical Probes of the Microstructure. Chemistry of Materials 2020, 32 (19) , 8294-8305. https://doi.org/10.1021/acs.chemmater.0c02093
    4. Anne A. Y. Guilbert, Mohamed Zbiri, Alan D. F. Dunbar, and Jenny Nelson . Quantitative Analysis of the Molecular Dynamics of P3HT:PCBM Bulk Heterojunction. The Journal of Physical Chemistry B 2017, 121 (38) , 9073-9080. https://doi.org/10.1021/acs.jpcb.7b08312
    5. Hendrik Utzat, Stoichko D. Dimitrov, Scot Wheeler, Elisa Collado-Fregoso, Pabitra Shakya Tuladhar, Bob C. Schroeder, Iain McCulloch, and James R. Durrant . Charge Separation in Intermixed Polymer:PC70BM Photovoltaic Blends: Correlating Structural and Photophysical Length Scales as a Function of Blend Composition. The Journal of Physical Chemistry C 2017, 121 (18) , 9790-9801. https://doi.org/10.1021/acs.jpcc.7b02898
    6. Naga Rajesh Tummala, Shaaban A. Elroby, Saadullah G. Aziz, Chad Risko, Veaceslav Coropceanu, and Jean-Luc Brédas . Packing and Disorder in Substituted Fullerenes. The Journal of Physical Chemistry C 2016, 120 (31) , 17242-17250. https://doi.org/10.1021/acs.jpcc.6b05197
    7. Dani M. Stoltzfus, Andrew J. Clulow, Hui Jin, Paul L. Burn, and Ian R. Gentle . Impact of Dimerization on Phase Separation and Crystallinity in Bulk Heterojunction Films Containing Non-Fullerene Acceptors. Macromolecules 2016, 49 (12) , 4404-4415. https://doi.org/10.1021/acs.macromol.6b00984
    8. Niko Van den Brande, Guy Van Assche, and Bruno Van Mele . Isothermal Crystallization of PC61BM in Thin Layers Far below the Glass Transition Temperature. Crystal Growth & Design 2015, 15 (11) , 5614-5623. https://doi.org/10.1021/acs.cgd.5b01331
    9. Nicholas E. Jackson, Brett M. Savoie, Lin X. Chen, and Mark A. Ratner . A Simple Index for Characterizing Charge Transport in Molecular Materials. The Journal of Physical Chemistry Letters 2015, 6 (6) , 1018-1021. https://doi.org/10.1021/acs.jpclett.5b00135
    10. Deborah Leman, Mary Allison Kelly, Stuart Ness, Sebastian Engmann, Andrew Herzing, Chad Snyder, Hyun Wook Ro, R. Joseph Kline, Dean M. DeLongchamp, and Lee J. Richter . In Situ Characterization of Polymer–Fullerene Bilayer Stability. Macromolecules 2015, 48 (2) , 383-392. https://doi.org/10.1021/ma5021227
    11. Muhammad Amirul Islam, Tapas K. Purkait, and Jonathan G. C. Veinot . Chloride Surface Terminated Silicon Nanocrystal Mediated Synthesis of Poly(3-hexylthiophene). Journal of the American Chemical Society 2014, 136 (43) , 15130-15133. https://doi.org/10.1021/ja5075739
    12. Christopher Menelaou, Steve Tierney, Nicolas Blouin, William Mitchell, Priti Tiwana, Ian McKerracher, Chennupati Jagadish, Miguel Carrasco, and Laura M. Herz . Effect of Nanocrystalline Domains in Photovoltaic Devices with Benzodithiophene-Based Donor–Acceptor Copolymers. The Journal of Physical Chemistry C 2014, 118 (31) , 17351-17361. https://doi.org/10.1021/jp504010x
    13. Huipeng Chen, Jeff Peet, Yu-Che Hsiao, Bin Hu, and Mark Dadmun . The Impact of Fullerene Structure on Its Miscibility with P3HT and Its Correlation of Performance in Organic Photovoltaics. Chemistry of Materials 2014, 26 (13) , 3993-4003. https://doi.org/10.1021/cm5015898
    14. Yu-Wei Wang, Wei Zhang, Xi-Cheng Ai, Jian-Ping Zhang, Xiao-Feng Wang, and Junji Kido . Influence of Fullerene Multiadducts on the Morphology and Charge Photogeneration of Their Photovoltaic Blends with Poly(3-hexylthiophene). The Journal of Physical Chemistry C 2013, 117 (49) , 25898-25907. https://doi.org/10.1021/jp407990d
    15. A. Bruno, L. X. Reynolds, C. Dyer-Smith, J. Nelson, and S. A. Haque . Determining the Exciton Diffusion Length in a Polyfluorene from Ultrafast Fluorescence Measurements of Polymer/Fullerene Blend Films. The Journal of Physical Chemistry C 2013, 117 (39) , 19832-19838. https://doi.org/10.1021/jp404985q
    16. Yingjie Zhang, Dominik Ziegler, and Miquel Salmeron . Charge Trapping States at the SiO2–Oligothiophene Monolayer Interface in Field Effect Transistors Studied by Kelvin Probe Force Microscopy. ACS Nano 2013, 7 (9) , 8258-8265. https://doi.org/10.1021/nn403750h
    17. Dong Gao, Brandon Djukic, Weiqing Shi, Colin R. Bridges, Lisa M. Kozycz, and Dwight S. Seferos . Evolution of the Electron Mobility in Polymer Solar Cells with Different Fullerene Acceptors. ACS Applied Materials & Interfaces 2013, 5 (16) , 8038-8043. https://doi.org/10.1021/am402100f
    18. Hyunbum Kang, Ki-Hyun Kim, Tae Eui Kang, Chul-Hee Cho, Sunhee Park, Sung Cheol Yoon, and Bumjoon J. Kim . Effect of Fullerene Tris-adducts on the Photovoltaic Performance of P3HT:Fullerene Ternary Blends. ACS Applied Materials & Interfaces 2013, 5 (10) , 4401-4408. https://doi.org/10.1021/am400695e
    19. Karen Fischer, Philipp Marlow, Kilian Bitsch, Christian Sprau, Alexander Colsmann. The Importance of Semiconductor Miscibility for the Formation of Light‐Harvesting Polymer:Fullerene Nanoparticle Dispersions. Solar RRL 2024, 8 (9) https://doi.org/10.1002/solr.202400132
    20. Xueyan Hou, Xiaohan Duan, Mengnan Liang, Zixuan Wang, Dong Yan. Application of Bis-Adducts of Phenyl-C61 Butyric Acid Methyl Ester in Promoting the Open-Circuit Voltage of Indoor Organic Photovoltaics. Materials 2023, 16 (7) , 2613. https://doi.org/10.3390/ma16072613
    21. A. M. Higgins, P. Gutfreund, V. Italia, E. L. Hynes. Equilibration and thermal reversibility in mixtures of model OPV small-molecules and polymers. Journal of Materials Chemistry C 2023, 11 (6) , 2107-2119. https://doi.org/10.1039/D2TC04916C
    22. Divambal Appavoo, Komal Bhardwaj, Samarendra P. Singh, Emmanuel N. Koukaras, Rachana Kumar, Bimlesh Lochab. Covalently linked benzothiadiazole-fullerene adducts for organic optoelectronic devices: synthesis and characterization. RSC Advances 2022, 12 (55) , 35977-35988. https://doi.org/10.1039/D2RA06175A
    23. Zeinab Hamid, Andrew Wadsworth, Elham Rezasoltani, Sarah Holliday, Mohammed Azzouzi, Marios Neophytou, Anne A. Y. Guilbert, Yifan Dong, Mark S. Little, Subhrangsu Mukherjee, Andrew A. Herzing, Helen Bristow, R. Joseph Kline, Dean M. DeLongchamp, Artem A. Bakulin, James R. Durrant, Jenny Nelson, Iain McCulloch. Influence of Polymer Aggregation and Liquid Immiscibility on Morphology Tuning by Varying Composition in PffBT4T‐2DT/Nonfullerene Organic Solar Cells. Advanced Energy Materials 2020, 10 (8) https://doi.org/10.1002/aenm.201903248
    24. Jurong Lu, Xingcui Feng, Yihong Huan, Naiwu Chen, Renzhi Li, Wenyong Lai, Bing Liu, Deqing Gao, Wei Huang. Influence of the intramolecular donor-acceptor distance on the performance of double-cable polymers. European Polymer Journal 2019, 112 , 38-44. https://doi.org/10.1016/j.eurpolymj.2018.12.034
    25. Niko Van den Brande, Guy Van Assche, Bruno Van Mele. Fast scanning chip calorimetry study of P3HT/PC 61 BM submicron layers: structure formation and eutectic behaviour. Polymer International 2019, 68 (2) , 277-282. https://doi.org/10.1002/pi.5672
    26. Ailing Tang, Bo Xiao, Yuming Wang, Feng Gao, Keisuke Tajima, Haijun Bin, Zhi‐Guo Zhang, Yongfang Li, Zhixiang Wei, Erjun Zhou. Simultaneously Achieved High Open‐Circuit Voltage and Efficient Charge Generation by Fine‐Tuning Charge‐Transfer Driving Force in Nonfullerene Polymer Solar Cells. Advanced Functional Materials 2018, 28 (6) https://doi.org/10.1002/adfm.201704507
    27. Matthew Dyson, Renee Kroon, Alexander B. Sieval, Mariano Campoy-Quiles, Christian Müller, Natalie Stingelin. Structure/Property/Processing Relationships for Organic Solar Cells. 2017, 182-225. https://doi.org/10.1039/9781782626749-00182
    28. Manuela Loeblein, Annalisa Bruno, G.C. Loh, Asaf Bolker, Cecile Saguy, Liisa Antila, Siu Hon Tsang, Edwin Hang Tong Teo. Investigation of electronic band structure and charge transfer mechanism of oxidized three-dimensional graphene as metal-free anodes material for dye sensitized solar cell application. Chemical Physics Letters 2017, 685 , 442-450. https://doi.org/10.1016/j.cplett.2017.08.011
    29. N. Van den Brande, N. Patil, M. Guizar-Sicairos, R. Claessens, G. Van Assche, D.W. Breiby, B. Van Mele. Probing the bulk heterojunction morphology in thermally annealed active layers for polymer solar cells. Organic Electronics 2017, 41 , 319-326. https://doi.org/10.1016/j.orgel.2016.11.023
    30. Paul Westacott, Neil D. Treat, Jaime Martin, James H. Bannock, John C. de Mello, Michael Chabinyc, Alexander B. Sieval, Jasper J. Michels, Natalie Stingelin. Origin of fullerene-induced vitrification of fullerene:donor polymer photovoltaic blends and its impact on solar cell performance. Journal of Materials Chemistry A 2017, 5 (6) , 2689-2700. https://doi.org/10.1039/C6TA08950J
    31. Surya Subianto, Naba Dutta, Mats Andersson, Namita Roy Choudhury. Bulk heterojunction organic photovoltaics from water-processable nanomaterials and their facile fabrication approaches. Advances in Colloid and Interface Science 2016, 235 , 56-69. https://doi.org/10.1016/j.cis.2016.05.013
    32. Yingying Fu, Bei Wang, Jianfei Qu, Yang Wu, Wei Ma, Yanhou Geng, Yanchun Han, Zhiyuan Xie. Fullerene‐Free Polymer Solar Cells with Open‐Circuit Voltage above 1.2 V: Tuning Phase Separation Behavior with Oligomer to Replace Polymer Acceptor. Advanced Functional Materials 2016, 26 (32) , 5922-5929. https://doi.org/10.1002/adfm.201601880
    33. Jeff Armstrong, Sanghamitra Mukhopadhyay, Fernando Bresme, Felix Fernandez-Alonso. Heads or tails: how do chemically substituted fullerenes melt?. Physical Chemistry Chemical Physics 2016, 18 (26) , 17202-17209. https://doi.org/10.1039/C6CP01333C
    34. M. Defour, N. Van den Brande, L. Van Lokeren, G. Van Assche, W. Maes, D. Vanderzande, B. Van Mele. Influence of the amorphous phase and preceding solution processing on the eutectic behaviour in the state diagram of P3HT : PC 61 BM determined by rapid heat–cool calorimetry. RSC Advances 2016, 6 (95) , 92981-92988. https://doi.org/10.1039/C6RA20659J
    35. S. Kakogianni, M. A. Lebedeva, G. Paloumbis, A. K. Andreopoulou, K. Porfyrakis, J. K. Kallitsis. Semiconducting end-perfluorinated P3HT–fullerenic hybrids as potential additives for P3HT/IC 70 BA blends. RSC Advances 2016, 6 (100) , 98306-98316. https://doi.org/10.1039/C6RA22857G
    36. A. Bruno, M. Commodo, S.A. Haque, P. Minutolo. Spectroscopic investigation of flame synthesized carbon nanoparticle/P3HT blends. Carbon 2015, 94 , 955-961. https://doi.org/10.1016/j.carbon.2015.07.085
    37. N. Aamina Nismy, K.D.G. Imalka Jayawardena, A.A. Damitha T. Adikaari, S. Ravi P. Silva. Nano-engineering of hybrid organic heterojunctions with carbon nanotubes to improve photovoltaic performance. Organic Electronics 2015, 22 , 35-39. https://doi.org/10.1016/j.orgel.2015.03.018
    38. Xiaofeng Qian, Paolo Umari, Nicola Marzari. First-principles investigation of organic photovoltaic materials C 60 ,   C 70 ,   [ C 60 ] PCBM , and bis- [ C 60 ] PCBM using a many-body G 0 W 0 -Lanczos approach. Physical Review B 2015, 91 (24) https://doi.org/10.1103/PhysRevB.91.245105
    39. Xiao‐rong Pan, Fang Lian, Yi He, Yi‐fei Peng, Xiao‐meng Sun, Yan Wen, Hong‐yan Guan. Enhanced mechanical strength and conductivity of PVFM based membrane and its supporting polymer electrolytes. Journal of Applied Polymer Science 2015, 132 (16) https://doi.org/10.1002/app.41839
    40. N. Van den Brande, G. Van Assche, B. Van Mele. Isothermal structure development in submicron P3HT layers studied by fast scanning chip calorimetry. Polymer 2015, 57 , 39-44. https://doi.org/10.1016/j.polymer.2014.12.015
    41. Anne A. Y. Guilbert, Malte Schmidt, Annalisa Bruno, Jizhong Yao, Simon King, Sachetan M. Tuladhar, Thomas Kirchartz, M. Isabel Alonso, Alejandro R. Goñi, Natalie Stingelin, Saif A. Haque, Mariano Campoy‐Quiles, Jenny Nelson. Spectroscopic Evaluation of Mixing and Crystallinity of Fullerenes in Bulk Heterojunctions. Advanced Functional Materials 2014, 24 (44) , 6972-6980. https://doi.org/10.1002/adfm.201401626
    42. Ilaria Cardinaletti, Jurgen Kesters, Sabine Bertho, Bert Conings, Fortunato Piersimoni, Jan D’Haen, Laurence Lutsen, Milos Nesladek, Bruno Van Mele, Guy Van Assche, Koen Vandewal, Alberto Salleo, Dirk Vanderzande, Wouter Maes, Jean V. Manca. Toward bulk heterojunction polymer solar cells with thermally stable active layer morphology. Journal of Photonics for Energy 2014, 4 (1) , 040997. https://doi.org/10.1117/1.JPE.4.040997
    43. Alexander B. Sieval, Jan C. Hummelen. Fullerene‐Based Acceptor Materials. 2014, 209-238. https://doi.org/10.1002/9783527656912.ch07
    44. Annalisa Bruno, Tiziana Di Luccio, Carmela Borriello, Fulvia Villani, Saif Haque, Carla Minarini. Exciton Dynamics in Hybrid Polymer/QD Blends. Energy Procedia 2014, 44 , 167-175. https://doi.org/10.1016/j.egypro.2013.12.024
    45. Wei Cui, Zhongwei Wu, Changhai Liu, Mingxing Wu, Tingli Ma, Suidong Wang, Shuit-Tong Lee, Baoquan Sun. Room temperature solution processed tungsten carbide as an efficient hole extraction layer for organic photovoltaics. J. Mater. Chem. A 2014, 2 (11) , 3734-3740. https://doi.org/10.1039/C3TA13473C
    46. A. Bruno, C. Borriello, S. A. Haque, C. Minarini, T. Di Luccio. Ternary hybrid systems of P3HT–CdSe–WS 2 nanotubes for photovoltaic applications. Physical Chemistry Chemical Physics 2014, 16 (33) , 17998. https://doi.org/10.1039/C4CP00594E
    47. Sunandan Sarkar, Supriya Saha, Sougata Pal, Pranab Sarkar. Electronic structure and bandgap engineering of CdTe nanotubes and designing the CdTe nanotube–fullerene hybrid nanostructures for photovoltaic applications. RSC Advances 2014, 4 (28) , 14673. https://doi.org/10.1039/c3ra47620k
    48. Annalisa Bruno, Carmela Borriello, Tiziana Di Luccio, Giuseppe Nenna, Lucia Sessa, Simona Concilio, Saif A. Haque, Carla Minarini. White light-emitting nanocomposites based on an oxadiazole–carbazole copolymer (POC) and InP/ZnS quantum dots. Journal of Nanoparticle Research 2013, 15 (11) https://doi.org/10.1007/s11051-013-2085-4
    49. Andrew Ferguson, Wade Braunecker, Dana Olson, Nikos Kopidakis. Engineering Active Materials for Polymer‐Based Organic Photovoltaics. 2013, 273-299. https://doi.org/10.1002/9783527650965.ch11
    50. Kwang-Dae Kim, Dong Chan Lim, Hyun Ook Seo, Joo Yul Lee, Bo Yeol Seo, Da Ji Lee, Youngsup Song, Shinuk Cho, Jae-Hong Lim, Young Dok Kim. Enhanced performance of organic photovoltaics by TiO2-interlayer with precisely controlled thickness between ZnO electron collecting and active layers. Applied Surface Science 2013, 279 , 380-383. https://doi.org/10.1016/j.apsusc.2013.04.119
    51. Yu Xie, Maogang Gong, Tejas A. Shastry, Jessica Lohrman, Mark C. Hersam, Shenqiang Ren. Broad‐Spectral‐Response Nanocarbon Bulk‐Heterojunction Excitonic Photodetectors. Advanced Materials 2013, 25 (25) , 3433-3437. https://doi.org/10.1002/adma.201300292
    52. Wei Ma, John R. Tumbleston, Ming Wang, Eliot Gann, Fei Huang, Harald Ade. Domain Purity, Miscibility, and Molecular Orientation at Donor/Acceptor Interfaces in High Performance Organic Solar Cells: Paths to Further Improvement. Advanced Energy Materials 2013, 3 (7) , 864-872. https://doi.org/10.1002/aenm.201200912
    53. Mark A. Faist, Safa Shoaee, Sachetan Tuladhar, George F. A. Dibb, Samuel Foster, Wei Gong, Thomas Kirchartz, Donal D. C. Bradley, James R. Durrant, Jenny Nelson. Understanding the Reduced Efficiencies of Organic Solar Cells Employing Fullerene Multiadducts as Acceptors. Advanced Energy Materials 2013, 3 (6) , 744-752. https://doi.org/10.1002/aenm.201200673
    54. Pachagounder Sakthivel, Tae Won Ban, Siwon Kim, Suhkmann Kim, Yeong-Soon Gal, Eun Ah Chae, Won Suk Shin, Sang-Jin Moon, Jong-Cheol Lee, Sung-Ho Jin. Synthesis and studies of methyl ester substituted thieno-o-quinodimethane fullerene multiadducts for polymer solar cells. Solar Energy Materials and Solar Cells 2013, 113 , 13-19. https://doi.org/10.1016/j.solmat.2013.01.040
    55. Han Yan, Denghua Li, Chang He, Zhixiang Wei, Yanlian Yang, Yongfang Li. A material combination principle for highly efficient polymer solar cells investigated by mesoscopic phase heterogeneity. Nanoscale 2013, 5 (23) , 11649. https://doi.org/10.1039/c3nr03165a
    56. Tao Wang, Andrew J. Pearson, David G. Lidzey. Correlating molecular morphology with optoelectronic function in solar cells based on low band-gap copolymer:fullerene blends. Journal of Materials Chemistry C 2013, 1 (44) , 7266. https://doi.org/10.1039/c3tc31235f
    57. Yu-Wei Su, Shang-Che Lan, Kung-Hwa Wei. Organic photovoltaics. Materials Today 2012, 15 (12) , 554-562. https://doi.org/10.1016/S1369-7021(13)70013-0

    ACS Nano

    Cite this: ACS Nano 2012, 6, 5, 3868–3875
    Click to copy citationCitation copied!
    https://doi.org/10.1021/nn204996w
    Published April 25, 2012
    Copyright © 2012 American Chemical Society

    Article Views

    2403

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.