ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Predator–Prey Molecular Ecosystems

View Author Information
LIMMS/CNRS-IIS, Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
*Address correspondence to [email protected]
Cite this: ACS Nano 2013, 7, 1, 27–34
Publication Date (Web):November 23, 2012
https://doi.org/10.1021/nn3043572
Copyright © 2012 American Chemical Society

    Article Views

    4241

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (2)»

    Abstract

    Abstract Image

    Biological organisms use intricate networks of chemical reactions to control molecular processes and spatiotemporal organization. In turn, these living systems are embedded in self-organized structures of larger scales, for example, ecosystems. Synthetic in vitro efforts have reproduced the architectures and behaviors of simple cellular circuits. However, because all these systems share the same dynamic foundations, a generalized molecular programming strategy should also support complex collective behaviors, as seen, for example, in animal populations. We report here the bottom-up assembly of chemical systems that reproduce in vitro the specific dynamics of ecological communities. We experimentally observed unprecedented molecular behaviors, including predator–prey oscillations, competition-induced chaos, and symbiotic synchronization. These synthetic systems are tailored through a novel, compact, and versatile design strategy, leveraging the programmability of DNA interactions under the precise control of enzymatic catalysis. Such self-organizing assemblies will foster a better appreciation of the molecular origins of biological complexity and may also serve to orchestrate complex collective operations of molecular agents in technological applications.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Additional figures and experimental details as described in text. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 145 publications.

    1. Marcello DeLuca, Sebastian Sensale, Po-An Lin, Gaurav Arya. Prediction and Control in DNA Nanotechnology. ACS Applied Bio Materials 2024, 7 (2) , 626-645. https://doi.org/10.1021/acsabm.2c01045
    2. Yongpeng Zhang, Yiming Chen, Xuan Liu, Qian Ling, Ranfeng Wu, Jing Yang, Cheng Zhang. Programmable Primer Switching for Regulating Enzymatic DNA Circuits. ACS Nano 2024, 18 (6) , 5089-5100. https://doi.org/10.1021/acsnano.3c12000
    3. Aman Ishaqat, Xiaofeng Zhang, Qing Liu, Lifei Zheng, Andreas Herrmann. Programming DNA Circuits for Controlled Immunostimulation through CpG Oligodeoxynucleotide Delivery. Journal of the American Chemical Society 2023, 145 (23) , 12465-12474. https://doi.org/10.1021/jacs.2c09359
    4. Jiantong Dong, Yu Ouyang, Jianbang Wang, Michael P. O’Hagan, Itamar Willner. Assembly of Dynamic Gated and Cascaded Transient DNAzyme Networks. ACS Nano 2022, 16 (4) , 6153-6164. https://doi.org/10.1021/acsnano.1c11631
    5. Jean-Christophe Galas, André Estevez-Torres, Marc Van Der Hofstadt. Long-Lasting and Responsive DNA/Enzyme-Based Programs in Serum-Supplemented Extracellular Media. ACS Synthetic Biology 2022, 11 (2) , 968-976. https://doi.org/10.1021/acssynbio.1c00583
    6. Marc Van Der Hofstadt, Jean-Christophe Galas, André Estevez-Torres. Spatiotemporal Patterning of Living Cells with Extracellular DNA Programs. ACS Nano 2021, 15 (1) , 1741-1752. https://doi.org/10.1021/acsnano.0c09422
    7. Stefania Gambaro, Carmen Talotta, Paolo Della Sala, Annunziata Soriente, Margherita De Rosa, Carmine Gaeta, Placido Neri. Kinetic and Thermodynamic Modulation of Dynamic Imine Libraries Driven by the Hexameric Resorcinarene Capsule. Journal of the American Chemical Society 2020, 142 (35) , 14914-14923. https://doi.org/10.1021/jacs.0c04705
    8. Matthew R. Lakin, Andrew Phillips. Domain-Specific Programming Languages for Computational Nucleic Acid Systems. ACS Synthetic Biology 2020, 9 (7) , 1499-1513. https://doi.org/10.1021/acssynbio.0c00050
    9. Shalin Shah, Jasmine Wee, Tianqi Song, Luis Ceze, Karin Strauss, Yuan-Jyue Chen, John Reif. Using Strand Displacing Polymerase To Program Chemical Reaction Networks. Journal of the American Chemical Society 2020, 142 (21) , 9587-9593. https://doi.org/10.1021/jacs.0c02240
    10. Pei-Qiang Ma, Qing Huang, Hua-Dong Li, Bin-Cheng Yin, Bang-Ce Ye. Multimachine Communication Network That Mimics the Adaptive Immune Response. Journal of the American Chemical Society 2020, 142 (8) , 3851-3861. https://doi.org/10.1021/jacs.9b11545
    11. Cheng Zhang, Zhiyu Wang, Yan Liu, Jing Yang, Xinxin Zhang, Yifan Li, Linqiang Pan, Yonggang Ke, Hao Yan. Nicking-Assisted Reactant Recycle To Implement Entropy-Driven DNA Circuit. Journal of the American Chemical Society 2019, 141 (43) , 17189-17197. https://doi.org/10.1021/jacs.9b07521
    12. Jürgen Huck, Tamara Kosikova, Douglas Philp. Compositional Persistence in a Multicyclic Network of Synthetic Replicators. Journal of the American Chemical Society 2019, 141 (35) , 13905-13913. https://doi.org/10.1021/jacs.9b06697
    13. Carlo Spaccasassi, Matthew R. Lakin, Andrew Phillips. A Logic Programming Language for Computational Nucleic Acid Devices. ACS Synthetic Biology 2019, 8 (7) , 1530-1547. https://doi.org/10.1021/acssynbio.8b00229
    14. Georg Urtel, Marc Van Der Hofstadt, Jean-Christophe Galas, André Estevez-Torres. rEXPAR: An Isothermal Amplification Scheme That Is Robust to Autocatalytic Parasites. Biochemistry 2019, 58 (23) , 2675-2681. https://doi.org/10.1021/acs.biochem.9b00063
    15. Siyuan S. Wang, Andrew D. Ellington. Pattern Generation with Nucleic Acid Chemical Reaction Networks. Chemical Reviews 2019, 119 (10) , 6370-6383. https://doi.org/10.1021/acs.chemrev.8b00625
    16. Craig C. Robertson, Harold W. Mackenzie, Tamara Kosikova, Douglas Philp. An Environmentally Responsive Reciprocal Replicating Network. Journal of the American Chemical Society 2018, 140 (22) , 6832-6841. https://doi.org/10.1021/jacs.7b13576
    17. Tianqi Song, Sudhanshu Garg, Reem Mokhtar, Hieu Bui, and John Reif . Analog Computation by DNA Strand Displacement Circuits. ACS Synthetic Biology 2016, 5 (8) , 898-912. https://doi.org/10.1021/acssynbio.6b00144
    18. Fredrik Schaufelberger and Olof Ramström . Kinetic Self-Sorting of Dynamic Covalent Catalysts with Systemic Feedback Regulation. Journal of the American Chemical Society 2016, 138 (25) , 7836-7839. https://doi.org/10.1021/jacs.6b04250
    19. Hendrik W. H. van Roekel, Lenny H. H. Meijer, Saeed Masroor, Zandra C. Félix Garza, André Estévez-Torres, Yannick Rondelez, Antonios Zagaris, Mark A. Peletier, Peter A. J. Hilbers, and Tom F. A. de Greef . Automated Design of Programmable Enzyme-Driven DNA Circuits. ACS Synthetic Biology 2015, 4 (6) , 735-745. https://doi.org/10.1021/sb500300d
    20. A. Zambrano, A. S. Zadorin, Y. Rondelez, A. Estévez-Torres, and J.-C. Galas . Pursuit-and-Evasion Reaction-Diffusion Waves in Microreactors with Tailored Geometry. The Journal of Physical Chemistry B 2015, 119 (17) , 5349-5355. https://doi.org/10.1021/jp509474w
    21. Boyan Yordanov, Jongmin Kim, Rasmus L. Petersen, Angelina Shudy, Vishwesh V. Kulkarni, and Andrew Phillips . Computational Design of Nucleic Acid Feedback Control Circuits. ACS Synthetic Biology 2014, 3 (8) , 600-616. https://doi.org/10.1021/sb400169s
    22. Xiu-Juan Qi, Chun-Hua Lu, Xiaoqing Liu, Simcha Shimron, Huang-Hao Yang, and Itamar Willner . Autonomous Control of Interfacial Electron Transfer and the Activation of DNA Machines by an Oscillatory pH System. Nano Letters 2013, 13 (10) , 4920-4924. https://doi.org/10.1021/nl402873y
    23. Adrien Padirac, Teruo Fujii, André Estévez-Torres, and Yannick Rondelez . Spatial Waves in Synthetic Biochemical Networks. Journal of the American Chemical Society 2013, 135 (39) , 14586-14592. https://doi.org/10.1021/ja403584p
    24. Friedrich C. Simmel . Programming the Dynamics of Biochemical Reaction Networks. ACS Nano 2013, 7 (1) , 6-10. https://doi.org/10.1021/nn305811d
    25. Chenyun Sun, Mingqiang Li, Fei Wang. Programming and monitoring surface-confined DNA computing. Bioorganic Chemistry 2024, 143 , 107080. https://doi.org/10.1016/j.bioorg.2023.107080
    26. Matthijs ter Harmsel, Oliver R. Maguire, Sofiya A. Runikhina, Albert S. Y. Wong, Wilhelm T. S. Huck, Syuzanna R. Harutyunyan. A catalytically active oscillator made from small organic molecules. Nature 2023, 621 (7977) , 87-93. https://doi.org/10.1038/s41586-023-06310-2
    27. A. E. Bernardini, O. Bertolami. Quantum Prey–Predator Dynamics: A Gaussian Ensemble Analysis. Foundations of Physics 2023, 53 (3) https://doi.org/10.1007/s10701-023-00703-z
    28. Minghao Hu, Yuqiang Hu, Wenqian Yuan, Zhen Zhang, Tongbo Wu. DNA Reaction Network Mimicking the Basic Steps of Synaptic Communication. Chinese Journal of Chemistry 2023, 41 (11) , 1313-1318. https://doi.org/10.1002/cjoc.202200845
    29. A. E. Bernardini, O. Bertolami. Distorted stability pattern and chaotic features for quantized prey-predator-like dynamics. Physical Review E 2023, 107 (4) https://doi.org/10.1103/PhysRevE.107.044201
    30. Anna C. Jäkel, Michael Heymann, Friedrich C. Simmel. Multiscale Biofabrication: Integrating Additive Manufacturing with DNA‐Programmable Self‐Assembly. Advanced Biology 2023, 7 (3) https://doi.org/10.1002/adbi.202200195
    31. Mo Sun, Jie Deng, Andreas Walther. Communication and Cross‐Regulation between Chemically Fueled Sender and Receiver Reaction Networks**. Angewandte Chemie 2023, 135 (2) https://doi.org/10.1002/ange.202214499
    32. Mo Sun, Jie Deng, Andreas Walther. Communication and Cross‐Regulation between Chemically Fueled Sender and Receiver Reaction Networks**. Angewandte Chemie International Edition 2023, 62 (2) https://doi.org/10.1002/anie.202214499
    33. Fei Wang, Qian Li, Chunhai Fan. The Evolution of DNA-Based Molecular Computing. 2023, 31-45. https://doi.org/10.1007/978-981-19-9891-1_3
    34. Guillaume Gines, Anthony J. Genot, Yannick Rondelez. Parallel Computations with DNA-Encoded Chemical Reaction Networks. 2023, 349-369. https://doi.org/10.1007/978-981-19-9891-1_19
    35. Vladimir Martyanov. Set-Theoretical Data Models in the Problem of Calculating Secondary Structures of RNA. System Analysis & Mathematical Modeling 2022, 4 (4) , 343-357. https://doi.org/10.17150/2713-1734.2022.4(4).343-357
    36. Adrian Zambrano, Giorgio Fracasso, Mengfei Gao, Martina Ugrinic, Dishi Wang, Dietmar Appelhans, Andrew deMello, T-Y. Dora Tang. Programmable synthetic cell networks regulated by tuneable reaction rates. Nature Communications 2022, 13 (1) https://doi.org/10.1038/s41467-022-31471-5
    37. S. Okumura, G. Gines, N. Lobato-Dauzier, A. Baccouche, R. Deteix, T. Fujii, Y. Rondelez, A. J. Genot. Nonlinear decision-making with enzymatic neural networks. Nature 2022, 610 (7932) , 496-501. https://doi.org/10.1038/s41586-022-05218-7
    38. . Getting Things Moving. 2022, 1-157. https://doi.org/10.1002/9781394171521.ch1
    39. Jing Gong, Nozomi Tsumura, Yusuke Sato, Masahiro Takinoue. Computational DNA Droplets Recognizing miRNA Sequence Inputs Based on Liquid–Liquid Phase Separation. Advanced Functional Materials 2022, 32 (37) https://doi.org/10.1002/adfm.202202322
    40. Satoshi Murata, Taro Toyota, Shin‐ichiro M. Nomura, Takashi Nakakuki, Akinori Kuzuya. Molecular Cybernetics: Challenges toward Cellular Chemical Artificial Intelligence. Advanced Functional Materials 2022, 32 (37) https://doi.org/10.1002/adfm.202201866
    41. A. E. Bernardini, O. Bertolami. Noncommutative phase-space Lotka-Volterra dynamics: The quantum analog. Physical Review E 2022, 106 (2) https://doi.org/10.1103/PhysRevE.106.024202
    42. Ganyu Chen, Peichen Shi, Longhui Zeng, Liubin Feng, Xiuxiu Wang, Xujing Lin, Yibin Sun, Hongxun Fang, Xiaoyu Cao, Xinchang Wang, Liulin Yang, Zhongqun Tian. Supramolecular copolymerization through self-correction of non-polymerizable transient intermediates. Chemical Science 2022, 13 (26) , 7796-7804. https://doi.org/10.1039/D2SC01930B
    43. Ibuki Kawamata, Shin-ichiro M. Nomura, Satoshi Murata. Autonomous and Programmable Strand Generator Implemented as DNA and Enzymatic Chemical Reaction Cascade. New Generation Computing 2022, 40 (2) , 723-736. https://doi.org/10.1007/s00354-022-00156-4
    44. Adrien Fauste-Gay, Nicolas Lobato-Dauzier, Alexandre Baccouche, Yannick Rondelez, Soo Hyeon Kim, Teruo Fujii, Nathanael Aubert-Kato, Anthony J. Genot. Toggling Between Two Limit Cycles in a Molecular Ecosystem. New Generation Computing 2022, 40 (2) , 703-721. https://doi.org/10.1007/s00354-022-00178-y
    45. Marko Vasić, Cameron Chalk, Austin Luchsinger, Sarfraz Khurshid, David Soloveichik. Programming and training rate-independent chemical reaction networks. Proceedings of the National Academy of Sciences 2022, 119 (24) https://doi.org/10.1073/pnas.2111552119
    46. Erica Del Grosso, Elisa Franco, Leonard J. Prins, Francesco Ricci. Dissipative DNA nanotechnology. Nature Chemistry 2022, 14 (6) , 600-613. https://doi.org/10.1038/s41557-022-00957-6
    47. Shiho Inagaki, Nathanael Aubert-Kato. Controlling the Synchronization of Molecular Oscillators through Indirect Coupling. Micromachines 2022, 13 (2) , 245. https://doi.org/10.3390/mi13020245
    48. Takashi Nakakuki. Design Theory of Molecular Robots. 2022, 13-58. https://doi.org/10.1007/978-981-19-3987-7_2
    49. Anis Senoussi, Jean-Christophe Galas, André Estevez-Torres. Programmed mechano-chemical coupling in reaction-diffusion active matter. Science Advances 2021, 7 (51) https://doi.org/10.1126/sciadv.abi9865
    50. Alexander I. Novichkov, Anton I. Hanopolskyi, Xiaoming Miao, Linda J. W. Shimon, Yael Diskin-Posner, Sergey N. Semenov. Autocatalytic and oscillatory reaction networks that form guanidines and products of their cyclization. Nature Communications 2021, 12 (1) https://doi.org/10.1038/s41467-021-23206-9
    51. H. Dehne, A. Reitenbach, A. R. Bausch. Reversible and spatiotemporal control of colloidal structure formation. Nature Communications 2021, 12 (1) https://doi.org/10.1038/s41467-021-27016-x
    52. Yongpeng Zhang, Yuhua Feng, Yuan Liang, Jing Yang, Cheng Zhang. Development of Synthetic DNA Circuit and Networks for Molecular Information Processing. Nanomaterials 2021, 11 (11) , 2955. https://doi.org/10.3390/nano11112955
    53. Vasily A Shenshin, Camille Lescanne, Guillaume Gines, Yannick Rondelez. A small-molecule chemical interface for molecular programs. Nucleic Acids Research 2021, 49 (13) , 7765-7774. https://doi.org/10.1093/nar/gkab470
    54. Hui Lv, Qian Li, Jiye Shi, Chunhai Fan, Fei Wang. Biocomputing Based on DNA Strand Displacement Reactions. ChemPhysChem 2021, 22 (12) , 1151-1166. https://doi.org/10.1002/cphc.202100140
    55. Anis Senoussi, Yuliia Vyborna, Hélène Berthoumieux, Jean‐Christophe Galas, André Estevez‐Torres. Learning from Embryo Development to Engineer Self‐organizing Materials. 2021, 21-60. https://doi.org/10.1002/9783527821990.ch2
    56. Sergey N. Semenov. De novo Design of Chemical Reaction Networks and Oscillators and Their Relation to Emergent Properties. 2021, 91-130. https://doi.org/10.1002/9783527821990.ch4
    57. Rémi Merindol, Nicolas Martin, Thomas Beneyton, Jean‐Christophe Baret, Serge Ravaine. Fast and Ample Light Controlled Actuation of Monodisperse All‐DNA Microgels. Advanced Functional Materials 2021, 31 (17) https://doi.org/10.1002/adfm.202010396
    58. Marc Van Der Hofstadt, Guillaume Gines, Jean‐Christophe Galas, André Estevez‐Torres. Programming Spatiotemporal Patterns with DNA‐Based Circuits. 2021, 185-212. https://doi.org/10.1002/9783527825424.ch10
    59. Keita Abe, Satoshi Murata, Ibuki Kawamata. Cascaded pattern formation in hydrogel medium using the polymerisation approach. Soft Matter 2021, B237 https://doi.org/10.1039/D1SM00296A
    60. , Konstantin G. Nikolaev, Nikolai V. Ryzhkov, , Carlos Gershenson, , Ekaterina V. Skorb, . Chemical Systems for Life Science. Reviews on advanced materials and technologies 2021, 3 (1) , 1-28. https://doi.org/10.17586/2687-0568-2021-3-1-1-28
    61. Hedi Sellami, Leo Cazenille, Teruo Fujii, Masami Hagiya, Nathanael Aubert-Kato, Anthony J. Genot. Accelerating the Finite-Element Method for Reaction-Diffusion Simulations on GPUs with CUDA. Micromachines 2020, 11 (9) , 881. https://doi.org/10.3390/mi11090881
    62. Zhiyu Wang, Yingxin Hu, Linqiang Pan. Fuzzy DNA Strand Displacement: A Strategy to Decrease the Complexity of DNA Network Design. Angewandte Chemie 2020, 132 (35) , 15089-15095. https://doi.org/10.1002/ange.202005193
    63. Zhiyu Wang, Yingxin Hu, Linqiang Pan. Fuzzy DNA Strand Displacement: A Strategy to Decrease the Complexity of DNA Network Design. Angewandte Chemie International Edition 2020, 59 (35) , 14979-14985. https://doi.org/10.1002/anie.202005193
    64. Nathanael Aubert-Kato, Leo Cazenille. Designing Dynamical Molecular Systems with the PEN Toolbox. New Generation Computing 2020, 38 (2) , 341-366. https://doi.org/10.1007/s00354-020-00089-w
    65. Shengnan Fu, Na Li, Junjie Li, Yingnan Deng, Lida Xu, Changyuan Yu, Xin Su. Engineering high-robustness DNA molecular circuits by utilizing nucleases. Nanoscale 2020, 12 (13) , 6964-6970. https://doi.org/10.1039/C9NR09979D
    66. Oliver R. Maguire, Albert S. Y. Wong, Jan Harm Westerdiep, Wilhelm T. S. Huck. Early warning signals in chemical reaction networks. Chemical Communications 2020, 56 (26) , 3725-3728. https://doi.org/10.1039/D0CC01010C
    67. Oliver R. Maguire, Albert S. Y. Wong, Mathieu G. Baltussen, Peer van Duppen, Aleksandr A. Pogodaev, Wilhelm T. S. Huck. Dynamic Environments as a Tool to Preserve Desired Output in a Chemical Reaction Network. Chemistry – A European Journal 2020, 26 (7) , 1676-1682. https://doi.org/10.1002/chem.201904725
    68. Zhiyu Wang, Yingxin Hu, Zhekun Chen, Sulin Liao, Yabing Huang. Performing DNA Strand Displacement with DNA Polymerase. 2020, 198-208. https://doi.org/10.1007/978-981-15-3415-7_16
    69. Danielle Ciesielski, Stephanie McCalla, Tomas Gedeon. Analysis of Dynamics of a Biphasic Isothermal DNA Amplification Reaction. SIAM Journal on Applied Mathematics 2020, 80 (5) , 2071-2097. https://doi.org/10.1137/19M1268434
    70. Iuliia Zarubiieva, Vishwesh Kulkarni. Software-Aided Design of Idealised Programmable Nucleic Acid Circuits. 2020, 129-151. https://doi.org/10.1007/978-981-15-0081-7_8
    71. Gabin Laurent, Luca Peliti, David Lacoste. Survival of Self-Replicating Molecules under Transient Compartmentalization with Natural Selection. Life 2019, 9 (4) , 78. https://doi.org/10.3390/life9040078
    72. Georg Urtel, André Estevez-Torres, Jean-Christophe Galas. DNA-based long-lived reaction–diffusion patterning in a host hydrogel. Soft Matter 2019, 15 (45) , 9343-9351. https://doi.org/10.1039/C9SM01786K
    73. , Oliver R. Maguire, Wilhelm T.S. Huck. On the importance of reaction networks for synthetic living systems. Emerging Topics in Life Sciences 2019, 3 (5) , 517-527. https://doi.org/10.1042/ETLS20190016
    74. Serge Le Thanh, Nicolas Lobato-Dauzier, Farad Khoyratee, Romain Beaubois, Teruo Fujii, Anthony Genot, Timothee Levi. Low power and massively parallel simulation of oscillatory biochemical networks on FPGA. 2019, 1-4. https://doi.org/10.1109/BIOCAS.2019.8919020
    75. O. P. Mintser, V. M. Zaliskyi, L. Yu. Babintseva. МЕРЕЖЕВА ОСНОВА ФУНКЦІОНУВАННЯ БІОЛОГІЧНИХ ОСЦИЛЯТОРІВ — ТРИГЕРІВ КОЛИВАЛЬНИХ ЛАНЦЮГІВ У КЛІТИНАХ І БЕЗКЛІТИННИХ СИСТЕМАХ. АНАЛІТИЧНИЙ ОГЛЯД. Medical Informatics and Engineering 2019, (1) , 59-72. https://doi.org/10.11603/mie.1996-1960.2019.1.10110
    76. Lana Zou, Qiong Wu, Yangjie Zhou, Xue Gong, Xiaoqing Liu, Fuan Wang. A DNAzyme-powered cross-catalytic circuit for amplified intracellular imaging. Chemical Communications 2019, 55 (46) , 6519-6522. https://doi.org/10.1039/C9CC02637A
    77. Dominic Scalise, Rebecca Schulman. Controlling Matter at the Molecular Scale with DNA Circuits. Annual Review of Biomedical Engineering 2019, 21 (1) , 469-493. https://doi.org/10.1146/annurev-bioeng-060418-052357
    78. Dohyun Jeong, Melissa Klocke, Siddharth Agarwal, Jeongwon Kim, Seungdo Choi, Elisa Franco, Jongmin Kim. Cell-Free Synthetic Biology Platform for Engineering Synthetic Biological Circuits and Systems. Methods and Protocols 2019, 2 (2) , 39. https://doi.org/10.3390/mps2020039
    79. Fan Li, Mingshu Xiao, Hao Pei. DNA‐Based Chemical Reaction Networks. ChemBioChem 2019, 20 (9) , 1105-1114. https://doi.org/10.1002/cbic.201800721
    80. Danielle Ciesielski, Burcu Özay, Stephanie McCalla, Tomas Gedeon. A mathematical model for a biphasic DNA amplification reaction. Journal of The Royal Society Interface 2019, 16 (154) , 20190143. https://doi.org/10.1098/rsif.2019.0143
    81. Shalin Shah, Tianqi Song, Xin Song, Ming Yang, John Reif. Implementing Arbitrary CRNs Using Strand Displacing Polymerase. 2019, 21-36. https://doi.org/10.1007/978-3-030-26807-7_2
    82. Iuliia Zarubiieva, Joyun Tseng, Vishwesh Kulkarni. Computation of Ratios Using Chemical Reactions and DNA Strand Displacements. 2019, 281-295. https://doi.org/10.1007/978-981-32-9531-5_21
    83. Neil Dalchau, Gregory Szép, Rosa Hernansaiz-Ballesteros, Chris P. Barnes, Luca Cardelli, Andrew Phillips, Attila Csikász-Nagy. Computing with biological switches and clocks. Natural Computing 2018, 17 (4) , 761-779. https://doi.org/10.1007/s11047-018-9686-x
    84. Tomoaki Yoshiyama, Tetsuo Ichii, Tetsuya Yomo, Norikazu Ichihashi. Automated in vitro evolution of a translation-coupled RNA replication system in a droplet flow reactor. Scientific Reports 2018, 8 (1) https://doi.org/10.1038/s41598-018-30374-0
    85. Elise Rosati, Morgan Madec, Jean-Baptiste Kammerer, Luc Hébrard, Christophe Lallement, Jacques Haiech. Efficient Modeling and Simulation of Space-Dependent Biological Systems. Journal of Computational Biology 2018, 25 (8) , 917-933. https://doi.org/10.1089/cmb.2018.0012
    86. Sudhanshu Garg, Shalin Shah, Hieu Bui, Tianqi Song, Reem Mokhtar, John Reif. Renewable Time‐Responsive DNA Circuits. Small 2018, 14 (33) https://doi.org/10.1002/smll.201801470
    87. Tomislav Plesa, Konstantinos C. Zygalakis, David F. Anderson, Radek Erban. Noise control for molecular computing. Journal of The Royal Society Interface 2018, 15 (144) , 20180199. https://doi.org/10.1098/rsif.2018.0199
    88. Thomas E. Ouldridge. The importance of thermodynamics for molecular systems, and the importance of molecular systems for thermodynamics. Natural Computing 2018, 17 (1) , 3-29. https://doi.org/10.1007/s11047-017-9646-x
    89. Zhengda Li, Qiong Yang. Systems and synthetic biology approaches in understanding biological oscillators. Quantitative Biology 2018, 6 (1) , 1-14. https://doi.org/10.1007/s40484-017-0120-7
    90. Ulrich Dobramysl, Mauro Mobilia, Michel Pleimling, Uwe C Täuber. Stochastic population dynamics in spatially extended predator–prey systems. Journal of Physics A: Mathematical and Theoretical 2018, 51 (6) , 063001. https://doi.org/10.1088/1751-8121/aa95c7
    91. Jocelyn Y. Kishi, Thomas E. Schaus, Nikhil Gopalkrishnan, Feng Xuan, Peng Yin. Programmable autonomous synthesis of single-stranded DNA. Nature Chemistry 2018, 10 (2) , 155-164. https://doi.org/10.1038/nchem.2872
    92. Burcu Özay, Cara M. Robertus, Jackson L. Negri, Stephanie E. McCalla. First characterization of a biphasic, switch-like DNA amplification. The Analyst 2018, 143 (8) , 1820-1828. https://doi.org/10.1039/C8AN00130H
    93. Niranjan Srinivas, James Parkin, Georg Seelig, Erik Winfree, David Soloveichik. Enzyme-free nucleic acid dynamical systems. Science 2017, 358 (6369) https://doi.org/10.1126/science.aal2052
    94. Friedrich C. Simmel, Rebecca Schulman. Self-organizing materials built with DNA. MRS Bulletin 2017, 42 (12) , 913-919. https://doi.org/10.1557/mrs.2017.271
    95. Lenny H. H. Meijer, Alex Joesaar, Erik Steur, Wouter Engelen, Rutger A. van Santen, Maarten Merkx, Tom F. A. de Greef. Hierarchical control of enzymatic actuators using DNA-based switchable memories. Nature Communications 2017, 8 (1) https://doi.org/10.1038/s41467-017-01127-w
    96. Anton S. Zadorin, Yannick Rondelez, Guillaume Gines, Vadim Dilhas, Georg Urtel, Adrian Zambrano, Jean-Christophe Galas, André Estevez-Torres. Synthesis and materialization of a reaction–diffusion French flag pattern. Nature Chemistry 2017, 9 (10) , 990-996. https://doi.org/10.1038/nchem.2770
    97. Ashraf S. Hakim, Shimaa T. Omara, Sohier M. Syame, Ehab A. Fouad. Serotyping, antibiotic susceptibility, and virulence genes screening of Escherichia coli isolates obtained from diarrheic buffalo calves in Egyptian farms. Veterinary World 2017, 10 (7) , 769-773. https://doi.org/10.14202/vetworld.2017.769-773
    98. Georg C. Urtel, Thomas Rind, Dieter Braun. Reversible Switching of Cooperating Replicators. Physical Review Letters 2017, 118 (7) https://doi.org/10.1103/PhysRevLett.118.078102
    99. Rémi Merindol, Andreas Walther. Materials learning from life: concepts for active, adaptive and autonomous molecular systems. Chemical Society Reviews 2017, 46 (18) , 5588-5619. https://doi.org/10.1039/C6CS00738D
    100. Sébastien Dhers, Jan Holub, Jean-Marie Lehn. Coevolution and ratiometric behaviour in metal cation-driven dynamic covalent systems. Chemical Science 2017, 8 (3) , 2125-2130. https://doi.org/10.1039/C6SC04662B
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect