ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Gold Nanoparticles as a Vaccine Platform: Influence of Size and Shape on Immunological Responses in Vitro and in Vivo

View Author Information
Research Institute for Electronic Science (RIES), Hokkaido University, N21W10, Sapporo 001-0021, Japan
Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
§ Department of Pathology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan
Global COE Program, Hokkaido University, Sapporo 060-0818, Japan
Division of Collaboration and Education, Research Center for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan
# Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
*Address correspondence to [email protected]
Cite this: ACS Nano 2013, 7, 5, 3926–3938
Publication Date (Web):April 30, 2013
https://doi.org/10.1021/nn3057005
Copyright © 2013 American Chemical Society

    Article Views

    9087

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    This paper demonstrates how the shape and size of gold nanoparticles (AuNPs) affect immunological responses in vivo and in vitro for the production of antibodies for West Nile virus (WNV). We prepared spherical (20 and 40 nm in diameter), rod (40 × 10 nm), and cubic (40 × 40 × 40 nm) AuNPs as adjuvants and coated them with WNV envelope (E) protein. We measured anti-WNVE antibodies after inoculation of these WNVE-coated AuNPs (AuNP-Es) into mice. The 40 nm spherical AuNP-Es (Sphere40-Es) induced the highest level of WNVE-specific antibodies, while rod AuNP-Es (Rod-Es) induced only 50% of that of Sphere40-E. To examine the mechanisms of the shape-dependent WNVE antibody production, we next measured the efficiency of cellular uptake of AuNP-Es into RAW264.7 macrophage cells and bone-marrow-derived dendritic cells (BMDCs) and the subsequent cytokine secretion from BMDCs. The uptake of Rod-Es into the cells proceeded more efficiently than those of Sphere-Es or cubic WNVE-coated AuNPs (Cube-Es), suggesting that antibody production was not dependent on the uptake efficiency of the different AuNP-Es. Cytokine production from BMDCs treated with the AuNP-Es revealed that only Rod-E-treated cells produced significant levels of interleukin-1β (IL-1β) and interleukin-18 (IL-18), indicating that Rod-Es activated inflammasome-dependent cytokine secretion. Meanwhile, Sphere40-Es and Cube-Es both significantly induced inflammatory cytokine production, including tumor necrosis factor-α (TNF-α), IL-6, IL-12, and granulocyte macrophage colony-stimulating factor (GM-CSF). These results suggested that AuNPs are effective vaccine adjuvants and enhance the immune response via different cytokine pathways depending on their sizes and shapes.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Figure S1–S7 and Table S1 as described in the text. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 506 publications.

    1. Yusuke Sakamoto, Shota Fujii, Shin Takano, Jokichi Fukushima, Mitsuru Ando, Noriyuki Kodera, Tomoki Nishimura. Manipulation of Macrophage Uptake by Controlling the Aspect Ratio of Graft Copolymer Micelles. Nano Letters 2024, 24 (19) , 5838-5846. https://doi.org/10.1021/acs.nanolett.4c01054
    2. Jiaji Fu, Wentai Cai, Shangwen Pan, Lang Chen, Xiaowei Fang, You Shang, Jiqian Xu. Developments and Trends of Nanotechnology Application in Sepsis: A Comprehensive Review Based on Knowledge Visualization Analysis. ACS Nano 2024, 18 (11) , 7711-7738. https://doi.org/10.1021/acsnano.3c10458
    3. Natália Cristina Dalibera, Monica Josiane Rodrigues-Jesus, Robert Andreata-Santos, Luiz Mário Ramos Janini, Aline Furtado Oliveira, Adriano Rodrigues Azzoni, Luís Carlos de Souza Ferreira, Marianna T. P. Favaro. SARS-CoV-2 Nanovaccine Composed of Microfluidic-Produced Gold Nanoparticles Induces Neutralizing Immune Responses. ACS Applied Nano Materials 2023, 6 (24) , 22774-22783. https://doi.org/10.1021/acsanm.3c03905
    4. Yue Wu, Xiaoyu Liang, Canquan Mao, Yuhong Jiang. The Distinct Properties of Polysaccharide Nanoparticles Tune Immune Responses against mRNA Antigen via Stimulator of Interferon Genes-Mediated Autophagy and Inflammasome. ACS Nano 2023, 17 (21) , 21782-21798. https://doi.org/10.1021/acsnano.3c07632
    5. Baochao Fan, Jun Gu, Bin Deng, Weilu Guo, Shuaifeng Zhang, Li Li, Bin Li. Positively Charged-Amylose-Entangled Au-Nanoparticles Acting as Protein Carriers and Potential Adjuvants to SARS-CoV-2 Subunit Vaccines. ACS Applied Materials & Interfaces 2023, 15 (25) , 29982-29997. https://doi.org/10.1021/acsami.3c05295
    6. James Hooper, Darshita Budhadev, Dario Luis Fernandez Ainaga, Nicole Hondow, Dejian Zhou, Yuan Guo. Polyvalent Glycan Functionalized Quantum Nanorods as Mechanistic Probes for Shape-Selective Multivalent Lectin-Glycan Recognition. ACS Applied Nano Materials 2023, 6 (6) , 4201-4213. https://doi.org/10.1021/acsanm.2c05247
    7. Preeti Ravindra Bhoge, Sandhya Mardhekar, Suraj Toraskar, Balamurugan Subramani, Raghavendra Kikkeri. Pairing Nanoparticles Geometry with TLR Agonists to Modulate Immune Responses for Vaccine Development. ACS Applied Bio Materials 2022, 5 (12) , 5675-5681. https://doi.org/10.1021/acsabm.2c00716
    8. Sandra Hočevar, Viola Puddinu, Laetitia Haeni, Alke Petri-Fink, Julia Wagner, Montserrat Alvarez, Martin James David Clift, Carole Bourquin. PEGylated Gold Nanoparticles Target Age-Associated B Cells In Vivo. ACS Nano 2022, 16 (11) , 18119-18132. https://doi.org/10.1021/acsnano.2c04871
    9. Sepanta Hosseinpour, Laurence J. Walsh, Chun Xu. Modulating Osteoimmune Responses by Mesoporous Silica Nanoparticles. ACS Biomaterials Science & Engineering 2022, 8 (10) , 4110-4122. https://doi.org/10.1021/acsbiomaterials.1c00899
    10. Adam M. Weiss, Samir Hossainy, Stuart J. Rowan, Jeffrey A. Hubbell, Aaron P. Esser-Kahn. Immunostimulatory Polymers as Adjuvants, Immunotherapies, and Delivery Systems. Macromolecules 2022, 55 (16) , 6913-6937. https://doi.org/10.1021/acs.macromol.2c00854
    11. Suraj Toraskar, Preeti Madhukar Chaudhary, Raghavendra Kikkeri. The Shape of Nanostructures Encodes Immunomodulation of Carbohydrate Antigen and Vaccine Development. ACS Chemical Biology 2022, 17 (5) , 1122-1130. https://doi.org/10.1021/acschembio.1c00998
    12. Wei Zhang, Hender Lopez, Luca Boselli, Paolo Bigini, André Perez-Potti, Zengchun Xie, Valentina Castagnola, Qi Cai, Camila P. Silveira, Joao M. de Araujo, Laura Talamini, Nicolò Panini, Giuseppe Ristagno, Martina B. Violatto, Stéphanie Devineau, Marco P. Monopoli, Mario Salmona, Valeria A. Giannone, Sandra Lara, Kenneth A. Dawson, Yan Yan. A Nanoscale Shape-Discovery Framework Supporting Systematic Investigations of Shape-Dependent Biological Effects and Immunomodulation. ACS Nano 2022, 16 (1) , 1547-1559. https://doi.org/10.1021/acsnano.1c10074
    13. He Ren, Jiexin Li, Gengqi Liu, Yaping Sun, Xingyue Yang, Zhen Jiang, Jingyu Zhang, Jonathan F. Lovell, Yumiao Zhang. Anticancer Vaccination with Immunogenic Micelles That Capture and Release Pristine CD8+ T-Cell Epitopes and Adjuvants. ACS Applied Materials & Interfaces 2022, 14 (2) , 2510-2521. https://doi.org/10.1021/acsami.1c18117
    14. Lei Li, Xi Yan, Meng Xia, Bi Shen, Yiting Cao, Xiayu Wu, Jinwen Sun, Yue Zhang, Mingcui Zhang. Nanoparticle/Nanocarrier Formulation as an Antigen: The Immunogenicity and Antigenicity of Itself. Molecular Pharmaceutics 2022, 19 (1) , 148-159. https://doi.org/10.1021/acs.molpharmaceut.1c00704
    15. Lei Zhang, Zhihui Liang, Chen Chen, Xuecheng Yang, Duo Fu, Hang Bao, Min Li, Shuting Shi, Ge Yu, Yixuan Zhang, Caiqiao Zhang, Weiting Zhang, Changying Xue, Bingbing Sun. Engineered Hydroxyapatite Nanoadjuvants with Controlled Shape and Aspect Ratios Reveal Their Immunomodulatory Potentials. ACS Applied Materials & Interfaces 2021, 13 (50) , 59662-59672. https://doi.org/10.1021/acsami.1c17804
    16. Wangqing Bian, Yakun Wang, Zhenxing Pan, Niping Chen, Xiaojing Li, Wing-Leung Wong, Xujie Liu, Yan He, Kun Zhang, Yu-Jing Lu. Review of Functionalized Nanomaterials for Photothermal Therapy of Cancers. ACS Applied Nano Materials 2021, 4 (11) , 11353-11385. https://doi.org/10.1021/acsanm.1c01903
    17. Yanqiu Song, Qi Su, Huijuan Song, Xiaoguang Shi, Mingming Li, Na Song, Shaofeng Lou, Weiwei Wang, Zhilin Yu. Precisely Shaped Self-Adjuvanting Peptide Vaccines with Enhanced Immune Responses for HPV-Associated Cancer Therapy. ACS Applied Materials & Interfaces 2021, 13 (42) , 49737-49753. https://doi.org/10.1021/acsami.1c15361
    18. Lin Zhang, Dayong Jin, Martina H. Stenzel. Polymer-Functionalized Upconversion Nanoparticles for Light/Imaging-Guided Drug Delivery. Biomacromolecules 2021, 22 (8) , 3168-3201. https://doi.org/10.1021/acs.biomac.1c00669
    19. Teodora Andrian, Pietro Delcanale, Silvia Pujals, Lorenzo Albertazzi. Correlating Super-Resolution Microscopy and Transmission Electron Microscopy Reveals Multiparametric Heterogeneity in Nanoparticles. Nano Letters 2021, 21 (12) , 5360-5368. https://doi.org/10.1021/acs.nanolett.1c01666
    20. Bader M. Jarai, Zachary Stillman, Kartik Bomb, April M. Kloxin, Catherine A. Fromen. Biomaterials-Based Opportunities to Engineer the Pulmonary Host Immune Response in COVID-19. ACS Biomaterials Science & Engineering 2021, 7 (5) , 1742-1764. https://doi.org/10.1021/acsbiomaterials.0c01287
    21. Po-Ming Chen, Wen-Yu Pan, Po-Kai Luo, Hieu Nghia Phung, Yu-Miao Liu, Min-Chun Chiang, Wan-An Chang, Ting-Lun Tien, Chih-Yang Huang, Wen-Wei Wu, Wei-Tso Chia, Hsing-Wen Sung. Pollen-Mimetic Metal–Organic Frameworks with Tunable Spike-Like Nanostructures That Promote Cell Interactions to Improve Antigen-Specific Humoral Immunity. ACS Nano 2021, 15 (4) , 7596-7607. https://doi.org/10.1021/acsnano.1c01129
    22. Jie Wang, Muhetaerjiang Mamuti, Hao Wang. Therapeutic Vaccines for Cancer Immunotherapy. ACS Biomaterials Science & Engineering 2020, 6 (11) , 6036-6052. https://doi.org/10.1021/acsbiomaterials.0c01201
    23. Riddhiman Medhi, Pannaree Srinoi, Nhat Ngo, Hung-Vu Tran, T. Randall Lee. Nanoparticle-Based Strategies to Combat COVID-19. ACS Applied Nano Materials 2020, 3 (9) , 8557-8580. https://doi.org/10.1021/acsanm.0c01978
    24. Gaurav Chauhan, Marc J. Madou, Sourav Kalra, Vianni Chopra, Deepa Ghosh, Sergio O. Martinez-Chapa. Nanotechnology for COVID-19: Therapeutics and Vaccine Research. ACS Nano 2020, 14 (7) , 7760-7782. https://doi.org/10.1021/acsnano.0c04006
    25. Elena A. Egorova, Mark M. J. van Rijt, Nico Sommerdijk, Gert S. Gooris, Joke A. Bouwstra, Aimee L. Boyle, Alexander Kros. One Peptide for Them All: Gold Nanoparticles of Different Sizes Are Stabilized by a Common Peptide Amphiphile. ACS Nano 2020, 14 (5) , 5874-5886. https://doi.org/10.1021/acsnano.0c01021
    26. Motao Zhu, Libo Du, Ruifang Zhao, Helen Y. Wang, Yuliang Zhao, Guangjun Nie, Rong-Fu Wang. Cell-Penetrating Nanoparticles Activate the Inflammasome to Enhance Antibody Production by Targeting Microtubule-Associated Protein 1-Light Chain 3 for Degradation. ACS Nano 2020, 14 (3) , 3703-3717. https://doi.org/10.1021/acsnano.0c00962
    27. Lili Zhao, Mariusz Skwarczynski, Istvan Toth. Polyelectrolyte-Based Platforms for the Delivery of Peptides and Proteins. ACS Biomaterials Science & Engineering 2019, 5 (10) , 4937-4950. https://doi.org/10.1021/acsbiomaterials.9b01135
    28. Yi-Nan Zhang, James Lazarovits, Wilson Poon, Ben Ouyang, Luan N. M. Nguyen, Benjamin R. Kingston, Warren C. W. Chan. Nanoparticle Size Influences Antigen Retention and Presentation in Lymph Node Follicles for Humoral Immunity. Nano Letters 2019, 19 (10) , 7226-7235. https://doi.org/10.1021/acs.nanolett.9b02834
    29. Zhengying Gu, Tianqing Liu, Jie Tang, Yannan Yang, Hao Song, Zewen K. Tuong, Jianye Fu, Chengzhong Yu. Mechanism of Iron Oxide-Induced Macrophage Activation: The Impact of Composition and the Underlying Signaling Pathway. Journal of the American Chemical Society 2019, 141 (15) , 6122-6126. https://doi.org/10.1021/jacs.8b10904
    30. Franco Furlani, Pasquale Sacco, Eva Decleva, Renzo Menegazzi, Ivan Donati, Sergio Paoletti, Eleonora Marsich. Chitosan Acetylation Degree Influences the Physical Properties of Polysaccharide Nanoparticles: Implication for the Innate Immune Cells Response. ACS Applied Materials & Interfaces 2019, 11 (10) , 9794-9803. https://doi.org/10.1021/acsami.8b21791
    31. Nana Zhao, Liemei Yan, Xiaoyi Zhao, Xinyan Chen, Aihua Li, Di Zheng, Xin Zhou, Xiaoguang Dai, Fu-Jian Xu. Versatile Types of Organic/Inorganic Nanohybrids: From Strategic Design to Biomedical Applications. Chemical Reviews 2019, 119 (3) , 1666-1762. https://doi.org/10.1021/acs.chemrev.8b00401
    32. Hongjian Zhou, Sangjin Oh, Ji Eun Kim, Fengming Zou, Dae Youn Hwang, Jaebeom Lee. In Vivo Study of Spiky Fe3O4@Au Nanoparticles with Different Branch Lengths: Biodistribution, Clearance, and Biocompatibility in Mice. ACS Applied Bio Materials 2019, 2 (1) , 163-170. https://doi.org/10.1021/acsabm.8b00505
    33. James Lazarovits, Yih Yang Chen, Fayi Song, Wayne Ngo, Anthony J. Tavares, Yi-Nan Zhang, Julie Audet, Bo Tang, Qiaochu Lin, Mayra Cruz Tleugabulova, Stefan Wilhelm, Jonathan R. Krieger, Thierry Mallevaey, Warren C. W. Chan. Synthesis of Patient-Specific Nanomaterials. Nano Letters 2019, 19 (1) , 116-123. https://doi.org/10.1021/acs.nanolett.8b03434
    34. Krzysztof Sztandera, Michał Gorzkiewicz, Barbara Klajnert-Maculewicz. Gold Nanoparticles in Cancer Treatment. Molecular Pharmaceutics 2019, 16 (1) , 1-23. https://doi.org/10.1021/acs.molpharmaceut.8b00810
    35. Mohan Vedhanayagam, Balachandran Unni Nair, Kalarical Janardhanan Sreeram. Collagen-ZnO Scaffolds for Wound Healing Applications: Role of Dendrimer Functionalization and Nanoparticle Morphology. ACS Applied Bio Materials 2018, 1 (6) , 1942-1958. https://doi.org/10.1021/acsabm.8b00491
    36. Lei Deng, Bao-Zhong Wang. A Perspective on Nanoparticle Universal Influenza Vaccines. ACS Infectious Diseases 2018, 4 (12) , 1656-1665. https://doi.org/10.1021/acsinfecdis.8b00206
    37. Santiswarup Singha, Kun Shao, Kristofor K. Ellestad, Yang Yang, Pere Santamaria. Nanoparticles for Immune Stimulation Against Infection, Cancer, and Autoimmunity. ACS Nano 2018, 12 (11) , 10621-10635. https://doi.org/10.1021/acsnano.8b05950
    38. Jun Yue, Roger M. Pallares, Lisa E. Cole, Emma E. Coughlin, Chad A. Mirkin, Andrew Lee, Teri W. Odom. Smaller CpG-Conjugated Gold Nanoconstructs Achieve Higher Targeting Specificity of Immune Activation. ACS Applied Materials & Interfaces 2018, 10 (26) , 21920-21926. https://doi.org/10.1021/acsami.8b06633
    39. Seyedmehdi Hossaini Nasr, Anne Tonson, Mohammad H. El-Dakdouki, David C. Zhu, Dalen Agnew, Robert Wiseman, Chunqi Qian, Xuefei Huang. Effects of Nanoprobe Morphology on Cellular Binding and Inflammatory Responses: Hyaluronan-Conjugated Magnetic Nanoworms for Magnetic Resonance Imaging of Atherosclerotic Plaques. ACS Applied Materials & Interfaces 2018, 10 (14) , 11495-11507. https://doi.org/10.1021/acsami.7b19708
    40. Calum Kinnear, Thomas L. Moore, Laura Rodriguez-Lorenzo, Barbara Rothen-Rutishauser, and Alke Petri-Fink . Form Follows Function: Nanoparticle Shape and Its Implications for Nanomedicine. Chemical Reviews 2017, 117 (17) , 11476-11521. https://doi.org/10.1021/acs.chemrev.7b00194
    41. Simone Nicolardi, Yuri E. M. van der Burgt, Jeroen D. C. Codée, Manfred Wuhrer, Cornelis H. Hokke, and Fabrizio Chiodo . Structural Characterization of Biofunctionalized Gold Nanoparticles by Ultrahigh-Resolution Mass Spectrometry. ACS Nano 2017, 11 (8) , 8257-8264. https://doi.org/10.1021/acsnano.7b03402
    42. Xu Li, Stephanie Hufnagel, Haiyue Xu, Solange A. Valdes, Sachin G. Thakkar, Zhengrong Cui, and Hugo Celio . Aluminum (Oxy)Hydroxide Nanosticks Synthesized in Bicontinuous Reverse Microemulsion Have Potent Vaccine Adjuvant Activity. ACS Applied Materials & Interfaces 2017, 9 (27) , 22893-22901. https://doi.org/10.1021/acsami.7b03965
    43. Prasanna Lakshmi Abbaraju, Anand Kumar Meka, Hao Song, Yannan Yang, Manasi Jambhrunkar, Jun Zhang, Chun Xu, Meihua Yu, and Chengzhong Yu . Asymmetric Silica Nanoparticles with Tunable Head–Tail Structures Enhance Hemocompatibility and Maturation of Immune Cells. Journal of the American Chemical Society 2017, 139 (18) , 6321-6328. https://doi.org/10.1021/jacs.6b12622
    44. Charles B. Chesson, Shaunte Ekpo-Otu, Janice J. Endsley, and Jai S. Rudra . Biomaterials-Based Vaccination Strategies for the Induction of CD8+T Cell Responses. ACS Biomaterials Science & Engineering 2017, 3 (2) , 126-143. https://doi.org/10.1021/acsbiomaterials.6b00412
    45. Katelyn T. Gause, Adam K. Wheatley, Jiwei Cui, Yan Yan, Stephen J. Kent, and Frank Caruso . Immunological Principles Guiding the Rational Design of Particles for Vaccine Delivery. ACS Nano 2017, 11 (1) , 54-68. https://doi.org/10.1021/acsnano.6b07343
    46. Katsuyuki Nambara, Kenichi Niikura, Hideyuki Mitomo, Takafumi Ninomiya, Chie Takeuchi, Jinjian Wei, Yasutaka Matsuo, and Kuniharu Ijiro . Reverse Size Dependences of the Cellular Uptake of Triangular and Spherical Gold Nanoparticles. Langmuir 2016, 32 (47) , 12559-12567. https://doi.org/10.1021/acs.langmuir.6b02064
    47. Weitao Yang, Weisheng Guo, Wenjun Le, Guoxian Lv, Fuhe Zhang, Lei Shi, Xiuli Wang, Jun Wang, Sheng Wang, Jin Chang, and Bingbo Zhang . Albumin-Bioinspired Gd:CuS Nanotheranostic Agent for In Vivo Photoacoustic/Magnetic Resonance Imaging-Guided Tumor-Targeted Photothermal Therapy. ACS Nano 2016, 10 (11) , 10245-10257. https://doi.org/10.1021/acsnano.6b05760
    48. Zhen Li, Liang Sun, Yufei Zhang, Andrew P. Dove, Rachel K. O’Reilly, and Guosong Chen . Shape Effect of Glyco-Nanoparticles on Macrophage Cellular Uptake and Immune Response. ACS Macro Letters 2016, 5 (9) , 1059-1064. https://doi.org/10.1021/acsmacrolett.6b00419
    49. Ranran Wang, Yang Hu, Nana Zhao, and Fu-Jian Xu . Well-Defined Peapod-like Magnetic Nanoparticles and Their Controlled Modification for Effective Imaging Guided Gene Therapy. ACS Applied Materials & Interfaces 2016, 8 (18) , 11298-11308. https://doi.org/10.1021/acsami.6b01697
    50. Xi Chen, Yan Yan, Markus Müllner, Yuan Ping, Jiwei Cui, Kristian Kempe, Christina Cortez-Jugo, and Frank Caruso . Shape-Dependent Activation of Cytokine Secretion by Polymer Capsules in Human Monocyte-Derived Macrophages. Biomacromolecules 2016, 17 (3) , 1205-1212. https://doi.org/10.1021/acs.biomac.6b00027
    51. Qianqian Zhou, Yulong Zhang, Juan Du, Yuan Li, Yong Zhou, Qiuxia Fu, Jingang Zhang, Xiaohui Wang, and Linsheng Zhan . Different-Sized Gold Nanoparticle Activator/Antigen Increases Dendritic Cells Accumulation in Liver-Draining Lymph Nodes and CD8+ T Cell Responses. ACS Nano 2016, 10 (2) , 2678-2692. https://doi.org/10.1021/acsnano.5b07716
    52. Darrell J. Irvine, Melissa C. Hanson, Kavya Rakhra, and Talar Tokatlian . Synthetic Nanoparticles for Vaccines and Immunotherapy. Chemical Reviews 2015, 115 (19) , 11109-11146. https://doi.org/10.1021/acs.chemrev.5b00109
    53. Peipei Zhang, Yu-Chieh Chiu, Lisa H. Tostanoski, and Christopher M. Jewell . Polyelectrolyte Multilayers Assembled Entirely from Immune Signals on Gold Nanoparticle Templates Promote Antigen-Specific T Cell Response. ACS Nano 2015, 9 (6) , 6465-6477. https://doi.org/10.1021/acsnano.5b02153
    54. Sharmine Alam and Ashis Mukhopadhyay . Conjugation of Gold Nanorods with Bovine Serum Albumin Protein. The Journal of Physical Chemistry C 2014, 118 (47) , 27459-27464. https://doi.org/10.1021/jp5093465
    55. Hsiao-Lan Pu, Wei-Lun Chiang, Barnali Maiti, Zi-Xian Liao, Yi-Cheng Ho, Min Suk Shim, Er-Yuan Chuang, Younan Xia, and Hsing-Wen Sung . Nanoparticles with Dual Responses to Oxidative Stress and Reduced pH for Drug Release and Anti-inflammatory Applications. ACS Nano 2014, 8 (2) , 1213-1221. https://doi.org/10.1021/nn4058787
    56. Hong Ren Quanxuan Zhang Liangyi Qie Gregory L. Baker . The Adjuvant Effect of Emerging Nanomaterials: A Double-Edged Sword. 2013, 3-21. https://doi.org/10.1021/bk-2013-1150.ch001
    57. Zhe Sun, Hui Zhao, Li Ma, Yanli Shi, Mei Ji, Xiaodong Sun, Dan Ma, Wei Zhou, Tao Huang, Dongsheng Zhang. The quest for nanoparticle-powered vaccines in cancer immunotherapy. Journal of Nanobiotechnology 2024, 22 (1) https://doi.org/10.1186/s12951-024-02311-z
    58. Ze-Min Cai, Zi-Zhan Li, Nian-Nian Zhong, Lei-Ming Cao, Yao Xiao, Jia-Qi Li, Fang-Yi Huo, Bing Liu, Chun Xu, Yi Zhao, Lang Rao, Lin-Lin Bu. Revolutionizing lymph node metastasis imaging: the role of drug delivery systems and future perspectives. Journal of Nanobiotechnology 2024, 22 (1) https://doi.org/10.1186/s12951-024-02408-5
    59. Jinyu Guo, Changhua Liu, Zhaoyang Qi, Ting Qiu, Jin Zhang, Huanghao Yang. Engineering customized nanovaccines for enhanced cancer immunotherapy. Bioactive Materials 2024, 36 , 330-357. https://doi.org/10.1016/j.bioactmat.2024.02.028
    60. Yangyang Zhu, Pin Chen, Bochuan Hu, Suqin Zhong, Kai Yan, Yu Wu, Shanshan Li, Yinyin Yang, Zexin Xu, Yutong Lu, Ying Ouyang, Hui Bao, Weiguang Gu, Longping Wen, Yunjiao Zhang. MDSC-targeting gold nanoparticles enhance PD-1 tumor immunotherapy by inhibiting NLRP3 inflammasomes. Biomaterials 2024, 307 , 122533. https://doi.org/10.1016/j.biomaterials.2024.122533
    61. Jie Wang, Zongying Zhang, Rongxiang Liang, Wujun Chen, Qian Li, Jiazhen Xu, Hongmei Zhao, Dongming Xing. Targeting lymph nodes for enhanced cancer vaccination: From nanotechnology to tissue engineering. Materials Today Bio 2024, 26 , 101068. https://doi.org/10.1016/j.mtbio.2024.101068
    62. Maryam Hajfathalian, Katherine J. Mossburg, Allan Radaic, Katherine E. Woo, Pallavi Jonnalagadda, Yvonne Kapila, Paul L. Bollyky, David P. Cormode. A review of recent advances in the use of complex metal nanostructures for biomedical applications from diagnosis to treatment. WIREs Nanomedicine and Nanobiotechnology 2024, 16 (3) https://doi.org/10.1002/wnan.1959
    63. Xueqiang Peng, Jianjun Fang, Chuyuan Lou, Liang Yang, Shaobo Shan, Zixian Wang, Yutong Chen, Hangyu Li, Xuexin Li. Engineered nanoparticles for precise targeted drug delivery and enhanced therapeutic efficacy in cancer immunotherapy. Acta Pharmaceutica Sinica B 2024, 10 https://doi.org/10.1016/j.apsb.2024.05.010
    64. Helena Almeida, Giovanni Traverso, Bruno Sarmento, José das Neves. Nanoscale anisotropy for biomedical applications. Nature Reviews Bioengineering 2024, 15 https://doi.org/10.1038/s44222-024-00169-2
    65. Marta Dolce, Daniela Proietti, Silvia Principato, Fabiola Giusti, Giusy Manuela Adamo, Sara Favaron, Elia Ferri, Immaculada Margarit, Maria Rosaria Romano, Maria Scarselli, Filippo Carboni. Impact of Protein Nanoparticle Shape on the Immunogenicity of Antimicrobial Glycoconjugate Vaccines. International Journal of Molecular Sciences 2024, 25 (7) , 3736. https://doi.org/10.3390/ijms25073736
    66. Muhammad Umar Farooq, Charles H. Lawrie, Nan-Nan Deng. Engineering nanoparticles for cancer immunotherapy: Current achievements, key considerations and future perspectives. Chemical Engineering Journal 2024, 486 , 150356. https://doi.org/10.1016/j.cej.2024.150356
    67. Yifan Zhou, Mingyu Xu, Wenyue Shen, Yufeng Xu, An Shao, Peifang Xu, Ke Yao, Haijie Han, Juan Ye. Recent Advances in Nanomedicine for Ocular Fundus Neovascularization Disease Management. Advanced Healthcare Materials 2024, 22 https://doi.org/10.1002/adhm.202304626
    68. Maha Mobasher, Rais Ansari, Ana M. Castejon, Jaleh Barar, Yadollah Omidi. Advanced nanoscale delivery systems for mRNA-based vaccines. Biochimica et Biophysica Acta (BBA) - General Subjects 2024, 1868 (3) , 130558. https://doi.org/10.1016/j.bbagen.2024.130558
    69. Melissa Saibene, Tommaso Serchi, Patrizia Bonfanti, Anita Colombo, Inge Nelissen, Rashi Halder, Jean-Nicolas Audinot, Beatriz Pelaz, Mahmoud G. Soliman, Wolfgang J. Parak, Paride Mantecca, Arno C. Gutleb, Sebastien Cambier. The use of a complex tetra-culture alveolar model to study the biological effects induced by gold nanoparticles with different physicochemical properties. Environmental Toxicology and Pharmacology 2024, 106 , 104353. https://doi.org/10.1016/j.etap.2023.104353
    70. Mahvash Dehghankhold, Samira Sadat Abolmaali, Navid Nezafat, Ali Mohammad Tamaddon. Peptide nanovaccine in melanoma immunotherapy. International Immunopharmacology 2024, 129 , 111543. https://doi.org/10.1016/j.intimp.2024.111543
    71. Vishal Kumar Deb, Nidhi Chauhan, Ramesh Chandra, Utkarsh Jain. Recent Progression in Controlled Drug Delivery Through Advanced Functional Nanomaterials in Cancer Therapy. BioNanoScience 2024, 164 https://doi.org/10.1007/s12668-023-01297-6
    72. Zi‐Zhan Li, Nian‐Nian Zhong, Lei‐Ming Cao, Ze‐Min Cai, Yao Xiao, Guang‐Rui Wang, Bing Liu, Chun Xu, Lin‐Lin Bu. Nanoparticles Targeting Lymph Nodes for Cancer Immunotherapy: Strategies and Influencing Factors. Small 2024, 12 https://doi.org/10.1002/smll.202308731
    73. Susan Farfán-Castro, Mariano J. García-Soto, Lourdes Betancourt-Mendiola, Jacquelynne Cervantes, René Segura, Omar González-Ortega, Sergio Rosales-Mendoza. Synthesis and evaluation of gold nanoparticles conjugated with five antigenic peptides derived from the spike protein of SARS-CoV-2 for vaccine development. Frontiers in Nanotechnology 2024, 6 https://doi.org/10.3389/fnano.2024.1335346
    74. Jessica Anindita, Hiroki Tanaka, Takuma Yamakawa, Yuka Sato, Chika Matsumoto, Kota Ishizaki, Taiji Oyama, Satoko Suzuki, Keisuke Ueda, Kenjirou Higashi, Kunikazu Moribe, Kasumi Sasaki, Yumika Ogura, Etsuo Yonemochi, Yu Sakurai, Hiroto Hatakeyama, Hidetaka Akita. The Effect of Cholesterol Content on the Adjuvant Activity of Nucleic-Acid-Free Lipid Nanoparticles. Pharmaceutics 2024, 16 (2) , 181. https://doi.org/10.3390/pharmaceutics16020181
    75. Omer Akturk, Bengi Yilmaz. Cellular interactions and design principles of glyco-gold nanoparticles for drug delivery applications. 2024, 85-119. https://doi.org/10.1016/B978-0-443-19061-2.00012-2
    76. 一帆 温. Progress in the Application of Gold Nanoparticles in Viral Diseases. Hans Journal of Nanotechnology 2024, 14 (01) , 1-11. https://doi.org/10.12677/NAT.2024.141001
    77. Niloufar Rashidi, Kulmira Nurgali, Vasso Apostolopoulos, Majid Davidson. The application of nanoparticle-based delivery systems in vaccine development. 2024, 243-262. https://doi.org/10.1016/B978-0-443-18564-9.00001-1
    78. Shah Sarthak, Pasupuleti Dedeepya, Adediran Emmanuel, Bansal Amit, Joshi Devyani, Patil Smital, Bagwe Priyal, Mohammad N. Uddin, Martin J. D'Souza. Vaccine adjuvants and carriers. 2024, 13-36. https://doi.org/10.1016/B978-0-443-18564-9.00022-9
    79. Neha P. Thakare, Divya P. Barai, Bharat A. Bhanvase. Environment and health impacts of nanofluids. 2024, 345-364. https://doi.org/10.1016/B978-0-443-15483-6.00015-9
    80. Ao He, Xiaoye Li, Zhuo Dai, Qiang Li, Yu Zhang, Meng Ding, Zhi-fa Wen, Yongbin Mou, Heng Dong. Nanovaccine-based strategies for lymph node targeted delivery and imaging in tumor immunotherapy. Journal of Nanobiotechnology 2023, 21 (1) https://doi.org/10.1186/s12951-023-01989-x
    81. Jingyuan Han, Qianli Ma, Yanxin An, Fan Wu, Yuqing Zhao, Gaoyi Wu, Jing Wang. The current status of stimuli-responsive nanotechnologies on orthopedic titanium implant surfaces. Journal of Nanobiotechnology 2023, 21 (1) https://doi.org/10.1186/s12951-023-02017-8
    82. Farhat Naz, Arun Kumar, Pankaj Prabhakar, Shantanu Lale. In-vitro Safety Assessment of Ultrasmall Gold Nanoparticles for Preclinical Drug Delivery Applications. Drug Delivery Letters 2023, 13 (4) , 304-321. https://doi.org/10.2174/2210303113666230622123933
    83. Nusrat Chowdhury, Anup Kundu. Nanotechnology Platform for Advancing Vaccine Development against the COVID-19 Virus. Diseases 2023, 11 (4) , 177. https://doi.org/10.3390/diseases11040177
    84. Weifan Ye, Yiwen Jia, Hongze Ren, Yujie Xie, Meihua Yu, Yu Chen. Regulation of Antigen‐Specific Immunotherapy with Nanomaterials. Advanced NanoBiomed Research 2023, 3 (12) https://doi.org/10.1002/anbr.202300068
    85. Priyanka, Mai Abdel Haleem Abusalah, Hitesh Chopra, Abhilasha Sharma, Suhad Asad Mustafa, Om Prakash Choudhary, Manish Sharma, Manish Dhawan, Rajiv Khosla, Aanchal Loshali, Ankush Sundriyal, Jyoti Saini. Nanovaccines: A game changing approach in the fight against infectious diseases. Biomedicine & Pharmacotherapy 2023, 167 , 115597. https://doi.org/10.1016/j.biopha.2023.115597
    86. Xia Peng, Yiqin Ge, Weize Li, Xiuke Lin, Hua Song, Lihui Lin, Jinyan Zhao, Yanting Gao, Juan Wang, Jia Li, Yuji Huang, Yanning Li, Li Li. Targeting Lewis X oligosaccharide-modified liposomes encapsulated with house dust mite allergen Der f 2 to dendritic cells inhibits Th2 immune response. European Journal of Pharmaceutical Sciences 2023, 190 , 106570. https://doi.org/10.1016/j.ejps.2023.106570
    87. Elmas Pınar KAHRAMAN KILBAŞ, Mustafa ALTINDİŞ. Mevcut ve Gelişmekte Olan Aşı Teknolojileri; Kısa derleme. Journal of Biotechnology and Strategic Health Research 2023, 7 (3) , 148-156. https://doi.org/10.34084/bshr.1374872
    88. Guojiao Lin, Jialiang Wang, Yong-Guang Yang, Yuning Zhang, Tianmeng Sun. Advances in dendritic cell targeting nano-delivery systems for induction of immune tolerance. Frontiers in Bioengineering and Biotechnology 2023, 11 https://doi.org/10.3389/fbioe.2023.1242126
    89. Natashya Falcone, Menekse Ermis, Dilara Goksu Tamay, Marvin Mecwan, Mahsa Monirizad, Tess Grett Mathes, Vadim Jucaud, Auveen Choroomi, Natan Roberto de Barros, Yangzhi Zhu, Nihal Engin Vrana, Heinz‐Bernhard Kraatz, Han‐Jun Kim, Ali Khademhosseini. Peptide Hydrogels as Immunomaterials and Their Use in Cancer Immunotherapy Delivery. Advanced Healthcare Materials 2023, 12 (27) https://doi.org/10.1002/adhm.202301096
    90. Emine Yavuz, Adam A. Walters, Bhavnesh V. Chudasama, Shunping Han, Yue Qin, Khuloud T. Al‐Jamal. Investigating the Potential of Cuboidal Nanometals as Protein Subunit Vaccine Carriers In Vivo. Advanced Materials Interfaces 2023, 10 (29) https://doi.org/10.1002/admi.202202511
    91. Shivang Dhoundiyal, Md. Aftab Alam. Overcoming the Limitations of Therapeutic Strategies to Combat Pancreatic Cancer using Nanotechnology. Current Cancer Drug Targets 2023, 23 (9) , 697-717. https://doi.org/10.2174/1568009623666230329085618
    92. Jinsong Zhang, Jianghua Yang, Qianlin Li, Ruihao Peng, Shoudong Fan, Huaimin Yi, Yuying Lu, Yuanli Peng, Haozhen Yan, Lidan Sun, Jiahai Lu, Zeliang Chen. T Cell Activating Thermostable Self‐Assembly Nanoscaffold Tailored for Cellular Immunity Antigen Delivery. Advanced Science 2023, 10 (26) https://doi.org/10.1002/advs.202303049
    93. Hongjuan Zhao, Yatong Li, Beibei Zhao, Cuixia Zheng, Mengya Niu, Qingling Song, Xinxin Liu, Qianhua Feng, Zhenzhong Zhang, Lei Wang. Orchestrating antigen delivery and presentation efficiency in lymph node by nanoparticle shape for immune response. Acta Pharmaceutica Sinica B 2023, 13 (9) , 3892-3905. https://doi.org/10.1016/j.apsb.2023.02.003
    94. Chittaranjan Baruah, Pankaj Das, Papari Devi, Palash Moni Saikia, Bhabesh Deka. The emergence of nanovaccines as a new paradigm in virological vaccinology: a review. Exploration of Immunology 2023, , 361-383. https://doi.org/10.37349/ei.2023.00107
    95. Sarmistha Saha, Luciano Saso. Identity crisis of nanostructures inside the human body: a perspective on inflammation. Frontiers in Nanotechnology 2023, 5 https://doi.org/10.3389/fnano.2023.1256952
    96. Natália Cristina Dalibera, Aline Furtado Oliveira, Adriano Rodrigues Azzoni. Synthesis of gold nanoparticles with different sizes and morphologies using a single LTCC-based microfluidic system for point-of-care use in personalized medicine. Microfluidics and Nanofluidics 2023, 27 (8) https://doi.org/10.1007/s10404-023-02667-y
    97. Jenny Schunke, Volker Mailänder, Katharina Landfester, Michael Fichter. Delivery of Immunostimulatory Cargos in Nanocarriers Enhances Anti-Tumoral Nanovaccine Efficacy. International Journal of Molecular Sciences 2023, 24 (15) , 12174. https://doi.org/10.3390/ijms241512174
    98. Mohammad Anisuzzman, Varsha Komalla, Mariam Abdulaziz M. Tarkistani, Veysel Kayser. Anti-Tumor Activity of Novel Nimotuzumab-Functionalized Gold Nanoparticles as a Potential Immunotherapeutic Agent against Skin and Lung Cancers. Journal of Functional Biomaterials 2023, 14 (8) , 407. https://doi.org/10.3390/jfb14080407
    99. Yiming Wu, Zhe Zhang, Yuquan Wei, Zhiyong Qian, Xiawei Wei. Nanovaccines for cancer immunotherapy: Current knowledge and future perspectives. Chinese Chemical Letters 2023, 34 (8) , 108098. https://doi.org/10.1016/j.cclet.2022.108098
    100. DaeYong Lee, Kristin Huntoon, Jacques Lux, Betty Y. S. Kim, Wen Jiang. Engineering nanomaterial physical characteristics for cancer immunotherapy. Nature Reviews Bioengineering 2023, 1 (7) , 499-517. https://doi.org/10.1038/s44222-023-00047-3
    Load more citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect