ACS Publications. Most Trusted. Most Cited. Most Read
Ultra-Low Doses of Chirality Sorted (6,5) Carbon Nanotubes for Simultaneous Tumor Imaging and Photothermal Therapy
My Activity
    Article

    Ultra-Low Doses of Chirality Sorted (6,5) Carbon Nanotubes for Simultaneous Tumor Imaging and Photothermal Therapy
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Material Science and Engineering, Stanford University, Stanford, California 94305, United States
    Department of Chemistry, Stanford University, Stanford, California 94305, United States
    § Department of Comparative Medicine, Stanford University School of Medicine, Stanford, California 94305, United States
    *Address correspondence to [email protected]
    Other Access OptionsSupporting Information (1)

    ACS Nano

    Cite this: ACS Nano 2013, 7, 4, 3644–3652
    Click to copy citationCitation copied!
    https://doi.org/10.1021/nn4006472
    Published March 23, 2013
    Copyright © 2013 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Single-walled carbon nanotubes (SWCNTs) exhibit intrinsic fluorescence and strong optical absorption in the near-infrared (NIR) biological window (0.7–1.4 μm), rendering them ideal for in vivo imaging and photothermal therapy. Advances in SWCNT sorting have led to improved nanoelectronics and are promising for nanomedicine. To date, SWCNTs used in vivo consist of heterogeneous mixtures of nanotubes and only a small subset of chirality nanotubes fluoresces or heats under a NIR laser. Here, we demonstrate that separated (6,5) SWCNTs exchanged into a biocompatible surfactant, C18-PMH-mPEG, are more than 6-fold brighter in photoluminescence on the per mass basis, afford clear tumor imaging, and reach requisite photothermal tumor ablation temperatures with a >10-fold lower injected dose than as-synthesized SWCNT mixtures while exhibiting relatively low (6,5) accumulation in the reticuloendothelial system. The intravenous injection of ∼4 μg of (6,5) SWCNTs per mouse (0.254 mg/kg) for dual imaging/photothermal therapy is, by far, the lowest reported dose for nanoparticle-based in vivo therapeutics.

    Copyright © 2013 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Experimental methods, (6.5) separation details, (6,5) Raman characterization, surfactant exchange and length distributions, (6,5) mass balancing using the π–π* interband transition, toxicity and histology. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 273 publications.

    1. Andrew T. Krasley, Eugene Li, Jesus M. Galeana, Chandima Bulumulla, Abraham G. Beyene, Gozde S. Demirer. Carbon Nanomaterial Fluorescent Probes and Their Biological Applications. Chemical Reviews 2024, 124 (6) , 3085-3185. https://doi.org/10.1021/acs.chemrev.3c00581
    2. Guiquan Zhang, Xuemei Chen, Xu Chen, Kaihong Du, Keke Ding, Dong He, Dan Ding, Rong Hu, Anjun Qin, Ben Zhong Tang. Click-Reaction-Mediated Chemotherapy and Photothermal Therapy Synergistically Inhibit Breast Cancer in Mice. ACS Nano 2023, 17 (15) , 14800-14813. https://doi.org/10.1021/acsnano.3c03005
    3. RezaeeMelorina DolafiPh.D. studentDahalBiplavPh.D. studentLiWenzhiProfessorKailash Arole, Department of Materials Science and Engineering, Texas A&M University. Single-Walled Carbon Nanotubes. 2023https://doi.org/10.1021/acsinfocus.7e7021
    4. Wenhui Yi, Asif Khalid, Naila Arshad, M. Sohail Asghar, Muhammad Sultan Irshad, Xianbao Wang, Yueyang Yi, Jinhai Si, Xun Hou, Hong Rong Li. Recent Progress and Perspective of an Evolving Carbon Family From 0D to 3D: Synthesis, Biomedical Applications, and Potential Challenges. ACS Applied Bio Materials 2023, 6 (6) , 2043-2088. https://doi.org/10.1021/acsabm.3c00076
    5. Yutaka Maeda, Rina Morooka, Pei Zhao, Daiki Uchida, Yui Konno, Michio Yamada, Masahiro Ehara. Controlling Near-Infrared Photoluminescence Properties of Single-Walled Carbon Nanotubes by Substituent Effect in Stepwise Chemical Functionalization. The Journal of Physical Chemistry C 2023, 127 (5) , 2360-2370. https://doi.org/10.1021/acs.jpcc.2c06153
    6. Yuanbo Pan, Yang Zhu, Canxin Xu, Chunshu Pan, Yu Shi, Jianhua Zou, Yanying Li, Xueyin Hu, Bo Zhou, Chenyang Zhao, Qianqian Gao, Jianmin Zhang, Aiguo Wu, Xiaoyuan Chen, Juan Li. Biomimetic Yolk–Shell Nanocatalysts for Activatable Dual-Modal-Image-Guided Triple-Augmented Chemodynamic Therapy of Cancer. ACS Nano 2022, 16 (11) , 19038-19052. https://doi.org/10.1021/acsnano.2c08077
    7. Jianying Ouyang, Homin Shin, Paul Finnie, Jianfu Ding, Chang Guo, Zhao Li, Yuan Chen, Li Wei, Alison J. Wu, Simona Moisa, François Lapointe, Patrick R. L. Malenfant. Impact of Conjugated Polymer Characteristics on the Enrichment of Single-Chirality Single-Walled Carbon Nanotubes. ACS Applied Polymer Materials 2022, 4 (8) , 6239-6254. https://doi.org/10.1021/acsapm.2c01022
    8. Yulin Xie, Man Wang, Qianqian Sun, Dongmei Wang, Shuiping Luo, Chunxia Li. PtBi-β-CD-Ce6 Nanozyme for Combined Trimodal Imaging-Guided Photodynamic Therapy and NIR-II Responsive Photothermal Therapy. Inorganic Chemistry 2022, 61 (18) , 6852-6860. https://doi.org/10.1021/acs.inorgchem.2c00168
    9. Thaar M. D. Alharbi, Qin Li, Colin L. Raston. Thin Film Mechano-Energy Induced Slicing of Carbon Nanotubes under Flow. ACS Sustainable Chemistry & Engineering 2021, 9 (48) , 16044-16051. https://doi.org/10.1021/acssuschemeng.1c03109
    10. Xinping Luo, Dehong Hu, Duyang Gao, Yuenan Wang, Xinhua Chen, Xin Liu, Hairong Zheng, Minjie Sun, Zonghai Sheng. Metabolizable Near-Infrared-II Nanoprobes for Dynamic Imaging of Deep-Seated Tumor-Associated Macrophages in Pancreatic Cancer. ACS Nano 2021, 15 (6) , 10010-10024. https://doi.org/10.1021/acsnano.1c01608
    11. Yohei Yomogida, Takeshi Tanaka, Mayumi Tsuzuki, Xiaojun Wei, Hiromichi Kataura. Automatic Sorting of Single-Chirality Single-Wall Carbon Nanotubes Using Hydrophobic Cholates: Implications for Multicolor Near-Infrared Optical Technologies. ACS Applied Nano Materials 2020, 3 (11) , 11289-11297. https://doi.org/10.1021/acsanm.0c02389
    12. Wu Cai, Guohua Fan, Hui Zhou, Lei Chen, Jianxian Ge, Baoxing Huang, Dandan Zhou, Jianfeng Zeng, Qingqing Miao, Chunhong Hu. Self-Assembled Hybrid Nanocomposites for Multimodal Imaging-Guided Photothermal Therapy of Lymph Node Metastasis. ACS Applied Materials & Interfaces 2020, 12 (44) , 49407-49415. https://doi.org/10.1021/acsami.0c14576
    13. Elizângela H. Fragal, Vanessa H. Fragal, Gabriela H. Da Silva, Suely P. C. Gonçalves, Diego S. T. Martinez, Adley F. Rubira, Rafael Silva. Enhancing Near-Infrared Photothermal Efficiency of Biocompatible Flame-Synthesized Carbon Nano-Onions with Metal Dopants and Silica Coating. ACS Applied Bio Materials 2020, 3 (9) , 5984-5994. https://doi.org/10.1021/acsabm.0c00643
    14. Shunjie Liu, Hanlin Ou, Yuanyuan Li, Haoke Zhang, Junkai Liu, Xuefeng Lu, Ryan T.K. Kwok, Jacky W.Y. Lam, Dan Ding, Ben Zhong Tang. Planar and Twisted Molecular Structure Leads to the High Brightness of Semiconducting Polymer Nanoparticles for NIR-IIa Fluorescence Imaging. Journal of the American Chemical Society 2020, 142 (35) , 15146-15156. https://doi.org/10.1021/jacs.0c07193
    15. Pengfei Liu, Xiaoyu Mu, Xiao-Dong Zhang, Dong Ming. The Near-Infrared-II Fluorophores and Advanced Microscopy Technologies Development and Application in Bioimaging. Bioconjugate Chemistry 2020, 31 (2) , 260-275. https://doi.org/10.1021/acs.bioconjchem.9b00610
    16. Chuan Chen, Rui Tian, Yun Zeng, Chengchao Chu, Gang Liu. Activatable Fluorescence Probes for “Turn-On” and Ratiometric Biosensing and Bioimaging: From NIR-I to NIR-II. Bioconjugate Chemistry 2020, 31 (2) , 276-292. https://doi.org/10.1021/acs.bioconjchem.9b00734
    17. Nishtha Panwar, Alana Mauluidy Soehartono, Kok Ken Chan, Shuwen Zeng, Gaixia Xu, Junle Qu, Philippe Coquet, Ken-Tye Yong, Xiaoyuan Chen. Nanocarbons for Biology and Medicine: Sensing, Imaging, and Drug Delivery. Chemical Reviews 2019, 119 (16) , 9559-9656. https://doi.org/10.1021/acs.chemrev.9b00099
    18. Yunfeng Li, Xiaojian Wu, Mijin Kim, Jacob Fortner, Haoran Qu, YuHuang Wang. Fluorescent Ultrashort Nanotubes from Defect-Induced Chemical Cutting. Chemistry of Materials 2019, 31 (12) , 4536-4544. https://doi.org/10.1021/acs.chemmater.9b01196
    19. Tsukasa Takeuchi, Yoko Iizumi, Masako Yudasaka, Shinae Kizaka-Kondoh, Toshiya Okazaki. Characterization and Biodistribution Analysis of Oxygen-Doped Single-Walled Carbon Nanotubes Used as in Vivo Fluorescence Imaging Probes. Bioconjugate Chemistry 2019, 30 (5) , 1323-1330. https://doi.org/10.1021/acs.bioconjchem.9b00088
    20. Liyao Luo, Hongyu He, Chunhui Li, Yaqian He, Zining Hao, Shuai Wang, Qianqian Zhao, Zhiwei Liu, Dawei Gao. Near-Infrared Responsive Bimetallic Nanovesicles for Enhanced Synergistic Chemophotothermal Therapy. ACS Biomaterials Science & Engineering 2019, 5 (3) , 1321-1331. https://doi.org/10.1021/acsbiomaterials.8b01534
    21. Shota Sekiyama, Masakazu Umezawa, Yoko Iizumi, Takuji Ube, Toshiya Okazaki, Masao Kamimura, Kohei Soga. Delayed Increase in Near-Infrared Fluorescence in Cultured Murine Cancer Cells Labeled with Oxygen-Doped Single-Walled Carbon Nanotubes. Langmuir 2019, 35 (3) , 831-837. https://doi.org/10.1021/acs.langmuir.8b03789
    22. Youbin Li, Songjun Zeng, Jianhua Hao. Non-Invasive Optical Guided Tumor Metastasis/Vessel Imaging by Using Lanthanide Nanoprobe with Enhanced Down-Shifting Emission beyond 1500 nm. ACS Nano 2019, 13 (1) , 248-259. https://doi.org/10.1021/acsnano.8b05431
    23. Pan-pan Zhu, Zhen Cheng, Ling-ling Du, Qian Chen, Ke-jun Tan. Synthesis of the Cu-Doped Dual-Emission Fluorescent Carbon Dots and Its Analytical Application. Langmuir 2018, 34 (34) , 9982-9989. https://doi.org/10.1021/acs.langmuir.8b01230
    24. Wujun Xu, Konstantin Tamarov, Li Fan, Sari Granroth, Jimi Rantanen, Tuomo Nissinen, Sirpa Peräniemi, Oskari Uski, Maija-Riitta Hirvonen, Vesa-Pekka Lehto. Scalable Synthesis of Biodegradable Black Mesoporous Silicon Nanoparticles for Highly Efficient Photothermal Therapy. ACS Applied Materials & Interfaces 2018, 10 (28) , 23529-23538. https://doi.org/10.1021/acsami.8b04557
    25. Tsai-Mu Cheng, Hsueh-Liang Chu, Yi-Cheng Lee, Di-Yan Wang, Che-Chang Chang, Kuan-Lan Chung, Hung-Chi Yen, Chu-Wen Hsiao, Xi-Yu Pan, Tsung-Rong Kuo, Chia-Chun Chen. Quantitative Analysis of Glucose Metabolic Cleavage in Glucose Transporters Overexpressed Cancer Cells by Target-Specific Fluorescent Gold Nanoclusters. Analytical Chemistry 2018, 90 (6) , 3974-3980. https://doi.org/10.1021/acs.analchem.7b04961
    26. Agathe Belime, Edmond Gravel, Sophie Brenet, Sarah Ancelet, Charlotte Caneiro, Yanxia Hou, Nicole Thielens, Eric Doris, and Wai Li Ling . Mode of PEG Coverage on Carbon Nanotubes Affects Binding of Innate Immune Protein C1q. The Journal of Physical Chemistry B 2018, 122 (2) , 757-763. https://doi.org/10.1021/acs.jpcb.7b06596
    27. Yue Qiao, Fei Ma, Chao Liu, Bo Zhou, Qiaolin Wei, Wanlin Li, Danni Zhong, Yangyang Li, and Min Zhou . Near-Infrared Laser-Excited Nanoparticles To Eradicate Multidrug-Resistant Bacteria and Promote Wound Healing. ACS Applied Materials & Interfaces 2018, 10 (1) , 193-206. https://doi.org/10.1021/acsami.7b15251
    28. Ching-Wei Lin, Hailing Yang, Stephen R. Sanchez, Weiqun Mao, Lan Pang, Kathleen M. Beckingham, Robert C. Bast, Jr., and R. Bruce Weisman . In Vivo Optical Detection and Spectral Triangulation of Carbon Nanotubes. ACS Applied Materials & Interfaces 2017, 9 (48) , 41680-41690. https://doi.org/10.1021/acsami.7b12916
    29. Jingke Yao, Shusen Kang, Jian Zhang, Jia Du, Zhe Zhang, and Mao Li . Amphiphilic Near-Infrared Conjugated Polymer for Photothermal and Chemo Combination Therapy. ACS Biomaterials Science & Engineering 2017, 3 (10) , 2230-2234. https://doi.org/10.1021/acsbiomaterials.7b00344
    30. Yue Cao, Jingwen Yi, Xiaoguang Yang, Lei Liu, Chunlei Yu, Yanxin Huang, Luguo Sun, Yongli Bao, and Yuxin Li . Efficient Cancer Regression by a Thermosensitive Liposome for Photoacoustic Imaging-Guided Photothermal/Chemo Combinatorial Therapy. Biomacromolecules 2017, 18 (8) , 2306-2314. https://doi.org/10.1021/acs.biomac.7b00464
    31. Woo-jin Jeong, Mahnseok Kye, So-hee Han, Jun Shik Choi, and Yong-beom Lim . Inhibition of Multimolecular RNA–Protein Interactions Using Multitarget-Directed Nanohybrid System. ACS Applied Materials & Interfaces 2017, 9 (13) , 11537-11545. https://doi.org/10.1021/acsami.7b01517
    32. Steingrimur Stefansson, Rodrigo Lazo-Portugal, Saeyoung Ahn, and Martha Knight . Spiral Countercurrent Chromatography Enrichment, Characterization, and Assays of Carbon Nanotube Chiralities for Use in Biosensors. ACS Omega 2017, 2 (3) , 1156-1162. https://doi.org/10.1021/acsomega.6b00536
    33. Bilu Liu, Fanqi Wu, Hui Gui, Ming Zheng, and Chongwu Zhou . Chirality-Controlled Synthesis and Applications of Single-Wall Carbon Nanotubes. ACS Nano 2017, 11 (1) , 31-53. https://doi.org/10.1021/acsnano.6b06900
    34. Ruichan Lv, Piaoping Yang, Bo Hu, Jiating Xu, Wenting Shang, and Jie Tian . In Situ Growth Strategy to Integrate Up-Conversion Nanoparticles with Ultrasmall CuS for Photothermal Theranostics. ACS Nano 2017, 11 (1) , 1064-1072. https://doi.org/10.1021/acsnano.6b07990
    35. Daqi Zhang, Juan Yang, Meihui Li, and Yan Li . (n,m) Assignments of Metallic Single-Walled Carbon Nanotubes by Raman Spectroscopy: The Importance of Electronic Raman Scattering. ACS Nano 2016, 10 (12) , 10789-10797. https://doi.org/10.1021/acsnano.6b04453
    36. Xiaoxiao Wang, Dongwei Cao, Xuejiao Tang, Jingjing Yang, Daoyong Jiang, Mei Liu, Nongyue He, and Zhifei Wang . Coating Carbon Nanosphere with Patchy Gold for Production of Highly Efficient Photothermal Agent. ACS Applied Materials & Interfaces 2016, 8 (30) , 19321-19332. https://doi.org/10.1021/acsami.6b05550
    37. Ondřej Kozák, Mária Sudolská, Goutam Pramanik, Petr Cígler, Michal Otyepka, and Radek Zbořil . Photoluminescent Carbon Nanostructures. Chemistry of Materials 2016, 28 (12) , 4085-4128. https://doi.org/10.1021/acs.chemmater.6b01372
    38. Chuanxiong Nie, Chong Cheng, Lang Ma, Jie Deng, and Changsheng Zhao . Mussel-Inspired Antibacterial and Biocompatible Silver–Carbon Nanotube Composites: Green and Universal Nanointerfacial Functionalization. Langmuir 2016, 32 (23) , 5955-5965. https://doi.org/10.1021/acs.langmuir.6b00708
    39. Jibin Song, Feng Wang, Xiangyu Yang, Bo Ning, Mary G. Harp, Stephen H. Culp, Song Hu, Peng Huang, Liming Nie, Jingyi Chen, and Xiaoyuan Chen . Gold Nanoparticle Coated Carbon Nanotube Ring with Enhanced Raman Scattering and Photothermal Conversion Property for Theranostic Applications. Journal of the American Chemical Society 2016, 138 (22) , 7005-7015. https://doi.org/10.1021/jacs.5b13475
    40. Ping Wu, Dan Deng, Jingwen Gao, and Chenxin Cai . Tubelike Gold Sphere–Attapulgite Nanocomposites with a High Photothermal Conversion Ability in the Near-Infrared Region for Enhanced Cancer Photothermal Therapy. ACS Applied Materials & Interfaces 2016, 8 (16) , 10243-10252. https://doi.org/10.1021/acsami.6b02270
    41. Yao Wang, Hao Song, Chengzhong Yu, and Hongchen Gu . From Helixes to Mesostructures: Evolution of Mesoporous Silica Shells on Single-Walled Carbon Nanotubes. Chemistry of Materials 2016, 28 (3) , 936-942. https://doi.org/10.1021/acs.chemmater.5b04660
    42. Jing Yu, Yanmin Ju, Lingyun Zhao, Xin Chu, Wenlong Yang, Yonglu Tian, Fugeng Sheng, Jian Lin, Fei Liu, Yunhe Dong, and Yanglong Hou . Multistimuli-Regulated Photochemothermal Cancer Therapy Remotely Controlled via Fe5C2 Nanoparticles. ACS Nano 2016, 10 (1) , 159-169. https://doi.org/10.1021/acsnano.5b04706
    43. Guosong Hong, Shuo Diao, Alexander L. Antaris, and Hongjie Dai . Carbon Nanomaterials for Biological Imaging and Nanomedicinal Therapy. Chemical Reviews 2015, 115 (19) , 10816-10906. https://doi.org/10.1021/acs.chemrev.5b00008
    44. Mengxiao Yu and Jie Zheng . Clearance Pathways and Tumor Targeting of Imaging Nanoparticles. ACS Nano 2015, 9 (7) , 6655-6674. https://doi.org/10.1021/acsnano.5b01320
    45. Da Zhang, Ming Wu, Yongyi Zeng, Lingjie Wu, Qingtang Wang, Xiao Han, Xiaolong Liu, and Jingfeng Liu . Chlorin e6 Conjugated Poly(dopamine) Nanospheres as PDT/PTT Dual-Modal Therapeutic Agents for Enhanced Cancer Therapy. ACS Applied Materials & Interfaces 2015, 7 (15) , 8176-8187. https://doi.org/10.1021/acsami.5b01027
    46. Lingyan Yang, Yu-Ting Tseng, Guangli Suo, Liliang Chen, Jiantao Yu, Wei-Jane Chiu, Chih-Ching Huang, and Chia-Hua Lin . Photothermal Therapeutic Response of Cancer Cells to Aptamer–Gold Nanoparticle-Hybridized Graphene Oxide under NIR Illumination. ACS Applied Materials & Interfaces 2015, 7 (9) , 5097-5106. https://doi.org/10.1021/am508117e
    47. Ruichan Lv, Piaoping Yang, Fei He, Shili Gai, Chunxia Li, Yunlu Dai, Guixin Yang, and Jun Lin . A Yolk-like Multifunctional Platform for Multimodal Imaging and Synergistic Therapy Triggered by a Single Near-Infrared Light. ACS Nano 2015, 9 (2) , 1630-1647. https://doi.org/10.1021/nn5063613
    48. Ruichan Lv, Piaoping Yang, Fei He, Shili Gai, Guixin Yang, and Jun Lin . Hollow Structured Y2O3:Yb/Er–CuxS Nanospheres with Controllable Size for Simultaneous Chemo/Photothermal Therapy and Bioimaging. Chemistry of Materials 2015, 27 (2) , 483-496. https://doi.org/10.1021/cm503647k
    49. Saide Z. Nergiz, Naveen Gandra, Sirimuvva Tadepalli, and Srikanth Singamaneni . Multifunctional Hybrid Nanopatches of Graphene Oxide and Gold Nanostars for Ultraefficient Photothermal Cancer Therapy. ACS Applied Materials & Interfaces 2014, 6 (18) , 16395-16402. https://doi.org/10.1021/am504795d
    50. Xue Zhang, Xiaowei Xu, Tingting Li, Min Lin, Xiaoying Lin, Hao Zhang, Hongchen Sun, and Bai Yang . Composite Photothermal Platform of Polypyrrole-Enveloped Fe3O4 Nanoparticle Self-Assembled Superstructures. ACS Applied Materials & Interfaces 2014, 6 (16) , 14552-14561. https://doi.org/10.1021/am503831m
    51. Naoto Saito, Hisao Haniu, Yuki Usui, Kaoru Aoki, Kazuo Hara, Seiji Takanashi, Masayuki Shimizu, Nobuyo Narita, Masanori Okamoto, Shinsuke Kobayashi, Hiroki Nomura, Hiroyuki Kato, Naoyuki Nishimura, Seiichi Taruta, and Morinobu Endo . Safe Clinical Use of Carbon Nanotubes as Innovative Biomaterials. Chemical Reviews 2014, 114 (11) , 6040-6079. https://doi.org/10.1021/cr400341h
    52. Ashwinkumar A. Bhirde, Bhaskara V. Chikkaveeraiah, Avinash Srivatsan, Gang Niu, Albert J. Jin, Ankur Kapoor, Zhe Wang, Sachin Patel, Vyomesh Patel, Alexander M. Gorbach, Richard D. Leapman, J. Silvio Gutkind, Angela R. Hight Walker, and Xiaoyuan Chen . Targeted Therapeutic Nanotubes Influence the Viscoelasticity of Cancer Cells to Overcome Drug Resistance. ACS Nano 2014, 8 (5) , 4177-4189. https://doi.org/10.1021/nn501223q
    53. Min Lin, Changrun Guo, Jing Li, Ding Zhou, Kun Liu, Xue Zhang, Tianshu Xu, Hao Zhang, Liping Wang, and Bai Yang . Polypyrrole-Coated Chainlike Gold Nanoparticle Architectures with the 808 nm Photothermal Transduction Efficiency up to 70%. ACS Applied Materials & Interfaces 2014, 6 (8) , 5860-5868. https://doi.org/10.1021/am500715f
    54. Lingjie Meng, Wenjian Xia, Li Liu, Lvye Niu, and Qinghua Lu . Golden Single-Walled Carbon Nanotubes Prepared Using Double Layer Polysaccharides Bridge for Photothermal Therapy. ACS Applied Materials & Interfaces 2014, 6 (7) , 4989-4996. https://doi.org/10.1021/am406031n
    55. Bilu Liu, Jia Liu, Xiaomin Tu, Jialu Zhang, Ming Zheng, and Chongwu Zhou . Chirality-Dependent Vapor-Phase Epitaxial Growth and Termination of Single-Wall Carbon Nanotubes. Nano Letters 2013, 13 (9) , 4416-4421. https://doi.org/10.1021/nl402259k
    56. Maohao Yang, Wanyin Ge, Qian Zhang, Xin Xie, Zili Luo, Shifan Shang, Huating Diwu. Realizing high photothermal conversion efficiency in traditional Chinese purple (BaCuSi 2 O 6 ) pigment. Archaeometry 2024, 32 https://doi.org/10.1111/arcm.13040
    57. Bjoern F. Hill, Jennifer M. Mohr, Isabelle K. Sandvoss, Juliana Gretz, Phillip Galonska, Lena Schnitzler, Luise Erpenbeck, Sebastian Kruss. Ratiometric near infrared fluorescence imaging of dopamine with 1D and 2D nanomaterials. Nanoscale 2024, 16 (39) , 18534-18544. https://doi.org/10.1039/D4NR02358G
    58. Mohammad M. Safaee, Shoichi Nishitani, Ian R. McFarlane, Sarah J. Yang, Ethan Sun, Sebastiana M. Medina, Henry Squire, Markita P. Landry. Dual Infrared 2‐Photon Microscopy Achieves Minimal Background Deep Tissue Imaging in Brain and Plant Tissues. Advanced Functional Materials 2024, 34 (44) https://doi.org/10.1002/adfm.202404709
    59. Katarzyna Wojtera, Lukasz Pietrzak, Lukasz Szymanski, Slawomir Wiak. Investigation of Ferromagnetic Nanoparticles’ Behavior in a Radio Frequency Electromagnetic Field for Medical Applications. Electronics 2024, 13 (12) , 2287. https://doi.org/10.3390/electronics13122287
    60. Zhenxu Yang, Arun Jaiswal, Qiankun Yin, Xiaoqi Lin, Lu Liu, Jiarong Li, Xiaochen Liu, Zhejun Xu, Jiao Jiao Li, Ken-Tye Yong. Chiral nanomaterials in tissue engineering. Nanoscale 2024, 16 (10) , 5014-5041. https://doi.org/10.1039/D3NR05003C
    61. Liantao Xin, Chen Ma, Qianru Wu, Shaokang Liu, Linhai Li, Xiuyun Zhang, Liu Qian, Maoshuai He, Dong Li, Fangqian Han, Shulan Hao, Lihu Feng, Yahan Li, Huaping Liu, Lili Zhang, Chang Liu, Jin Zhang. Highly selective growth of (6,5) single-walled carbon nanotubes from sigma phase alloy catalyst. Nano Research 2024, 17 (3) , 1999-2003. https://doi.org/10.1007/s12274-023-5930-5
    62. Mengyu Cao, Xuezhen Ma, Chang Wang, Wentao Zou, Fang Wang, Bing Yu, Hailin Cong, Youqing Shen. Design of donor–acceptor conjugated polymers based on diketopyrrolopyrrole for NIR-II multifunctional imaging. Journal of Materials Chemistry B 2024, 12 (9) , 2294-2303. https://doi.org/10.1039/D3TB02864J
    63. Ivan A. Ross. Breast Cancer. 2024, 343-429. https://doi.org/10.1007/978-3-031-63681-3_8
    64. José M. de Albornoz-Caratozzolo, Felipe Cervantes-Sodi. Chiraltube, rolling 2D materials into chiral nanotubes. Nanoscale Advances 2023, 6 (1) , 79-91. https://doi.org/10.1039/D3NA00301A
    65. Yutaka Maeda, Yasuhiro Suzuki, Yui Konno, Pei Zhao, Nobuhiro Kikuchi, Michio Yamada, Masaya Mitsuishi, Anh T. N. Dao, Hitoshi Kasai, Masahiro Ehara. Selective emergence of photoluminescence at telecommunication wavelengths from cyclic perfluoroalkylated carbon nanotubes. Communications Chemistry 2023, 6 (1) https://doi.org/10.1038/s42004-023-00950-1
    66. Abduladheem Turki Jalil, Noora. G. Al-Fatlawi, Lubna R. Al-Ameer, Mustafa Asaad Rasol, Jabbar Hassoon Zamil Al-Tamimi, Muna S. Merza, Ronak Taher Ali, Rahman S. Zabibah, Farah Al-Hili. Nanotechnology Potent Photothermal and Photodynamic Immunotherapies of Cancer. Journal of Medical and Biological Engineering 2023, 43 (6) , 649-662. https://doi.org/10.1007/s40846-023-00836-6
    67. Parvin Shokrollahi, Yadollah Omidi, Luigi X. Cubeddu, Hossein Omidian. Conductive polymers for cardiac tissue engineering and regeneration. Journal of Biomedical Materials Research Part B: Applied Biomaterials 2023, 111 (11) , 1979-1995. https://doi.org/10.1002/jbm.b.35293
    68. Dandan Wu, Xuehui Chen, Shuqiu Zhou, Bin Li. Reactive oxidative species (ROS)-based nanomedicine for BBB crossing and glioma treatment: current status and future directions. Frontiers in Immunology 2023, 14 https://doi.org/10.3389/fimmu.2023.1241791
    69. Mohamed J. Saadh, Hala Baher, Yuanji Li, Mvnl chaitanya, José Luis Arias-Gonzáles, Omer Qutaiba B. Allela, Mohammed H. Mahdi, Juan Carlos Cotrina-Aliaga, Natrayan Lakshmaiya, Salam Ahjel, Ali H. Amin, Gregorio Gilmer Rosales Rojas, Fuad Ameen, Muhammad Ahsan, Reza Akhavan-Sigari. The bioengineered and multifunctional nanoparticles in pancreatic cancer therapy: Bioresponisive nanostructures, phototherapy and targeted drug delivery. Environmental Research 2023, 233 , 116490. https://doi.org/10.1016/j.envres.2023.116490
    70. Yarima S. García. Application of Carbonaceous Quantum Dots in Biomedical. 2023, 78-93. https://doi.org/10.2174/9789815136265123010008
    71. Blazej Podlesny, Kevin R. Hinkle, Keita Hayashi, Yoshiaki Niidome, Tomohiro Shiraki, Dawid Janas. Highly‐Selective Harvesting of (6,4) SWCNTs Using the Aqueous Two‐Phase Extraction Method and Nonionic Surfactants. Advanced Science 2023, 10 (14) https://doi.org/10.1002/advs.202207218
    72. Bei Li, Xiwen Ye, Yi Fu, Lei Feng, Jianrong Xu, Xiaoya Niu, Hui Ye, Zhen You. Hollow MnO2-Based Nanoprobes for Enhanced Photothermal/Photodynamic /Chemodynamic Co-Therapy of Hepatocellular Carcinoma. Pharmaceutical Research 2023, 40 (5) , 1271-1282. https://doi.org/10.1007/s11095-023-03501-4
    73. Qi Xin, Huizhen Ma, Hao Wang, Xiao‐Dong Zhang. Tracking tumor heterogeneity and progression with near‐infrared II fluorophores. Exploration 2023, 3 (2) https://doi.org/10.1002/EXP.20220011
    74. Mateusz Michał Tomczyk, Masafumi Minoshima, Kazuya Kikuchi, Agata Blacha-Grzechnik, Zbigniew Starosolski, Rohan Bhavane, Mariusz Zalewski, Nikodem Kuźnik. Hybrid, dual visible and near-infrared fluorescence emission of (6,5) single-walled carbon nanotubes modified with fluorescein through aryl diazonium salt chemistry. Nanotechnology 2023, 34 (5) , 055703. https://doi.org/10.1088/1361-6528/ac9c6a
    75. Asif Khalid, Wenhui Yi, Sweejiang Yoo, Shakeel Abbas, Jinhai Si, Xun Hou, Jin Hou. Single-chirality of single-walled carbon nanotubes (SWCNTs) through chromatography and its potential biological applications. New Journal of Chemistry 2023, 47 (3) , 992-1022. https://doi.org/10.1039/D2NJ04056E
    76. Sabyasachi Choudhuri, Jyotirmoy Panda. Biomedical Application of Porous Carbon and Its Future in Precision Medical Devices. 2023, 449-491. https://doi.org/10.1007/978-981-19-7188-4_17
    77. Mehak Ghafoor, Muhammad Awais Aslam, Ahmed Shuja Syed, Javeed Akhtar. Electronic applications of carbon nano-dots. 2023, 227-247. https://doi.org/10.1016/B978-0-323-91145-0.00012-8
    78. S. Saravanan, S. Sutha, Sankar Sekar, N. Vasudevan, E. Kayalvizhi Nangai. Quantum dots: Emerging trends toward biosensing. 2023, 129-145. https://doi.org/10.1016/B978-0-323-98362-4.00006-4
    79. Xiaohan Liu, Limeng Pan, Kaiye Wang, Wei Pan, Na Li, Bo Tang. Imaging strategies for monitoring the immune response. Chemical Science 2022, 13 (44) , 12957-12970. https://doi.org/10.1039/D2SC03446H
    80. Yanan Liu, Junfang Huang, Jie Liu. Single laser activated photothermal/photodynamic dual-modal cancer phototherapy by using ROS-responsive targeting flower-like ruthenium nanoparticles. Journal of Materials Chemistry B 2022, 10 (38) , 7760-7771. https://doi.org/10.1039/D2TB01276F
    81. Md Imran Hossain, Sitansu Sekhar Nanda, Subramanian Tamil Selvan, Dong Kee Yi. Recent Insights into NIR-Light-Responsive Materials for Photothermal Cell Treatments. Nanomaterials 2022, 12 (19) , 3318. https://doi.org/10.3390/nano12193318
    82. Mohammad Ehtisham Khan, Akbar Mohammad, Taeho Yoon. State-of-the-art developments in carbon quantum dots (CQDs): Photo-catalysis, bio-imaging, and bio-sensing applications. Chemosphere 2022, 302 , 134815. https://doi.org/10.1016/j.chemosphere.2022.134815
    83. Marianna V. Kharlamova, Maria G. Burdanova, Maksim I. Paukov, Christian Kramberger. Synthesis, Sorting, and Applications of Single-Chirality Single-Walled Carbon Nanotubes. Materials 2022, 15 (17) , 5898. https://doi.org/10.3390/ma15175898
    84. Sihao Liang, Peng Gao, An Wang, Chunhua Zeng, Guirong Bao, Dong Tian. Insights into the influence of functional groups on the properties of graphene from first‐principles calculations. Journal of Physical Organic Chemistry 2022, 35 (8) https://doi.org/10.1002/poc.4387
    85. Namdev Dhas, Monarch Pastagia, Akanksha Sharma, Alisha Khera, Ritu Kudarha, Sanjay Kulkarni, Soji Soman, Srinivas Mutalik, Ravi Pratap Barnwal, Gurpal Singh, Mital Patel. Organic quantum dots: An ultrasmall nanoplatform for cancer theranostics. Journal of Controlled Release 2022, 348 , 798-824. https://doi.org/10.1016/j.jconrel.2022.06.033
    86. Katarzyna Wojtera, Krzysztof Smółka, Łukasz Szymański, Sławomir Wiak, Aleksandra Urbanek. Examination of the Effect of RF Field on Fe-MWCNTs and Their Application in Medicine. Electronics 2022, 11 (13) , 2099. https://doi.org/10.3390/electronics11132099
    87. Adeola A. Fadahunsi, Chengpan Li, Muhammad Imran Khan, Weiping Ding. MXenes: state-of-the-art synthesis, composites and bioapplications. Journal of Materials Chemistry B 2022, 10 (23) , 4331-4345. https://doi.org/10.1039/D2TB00289B
    88. Ruichan Lv, Micah Raab, Yanxing Wang, Jie Tian, Jun Lin, Paras N. Prasad. Nanochemistry advancing photon conversion in rare-earth nanostructures for theranostics. Coordination Chemistry Reviews 2022, 460 , 214486. https://doi.org/10.1016/j.ccr.2022.214486
    89. Xiaojun Wei, Shilong Li, Wenke Wang, Xiao Zhang, Weiya Zhou, Sishen Xie, Huaping Liu. Recent Advances in Structure Separation of Single‐Wall Carbon Nanotubes and Their Application in Optics, Electronics, and Optoelectronics. Advanced Science 2022, 9 (14) https://doi.org/10.1002/advs.202200054
    90. Shu Zhang, Jinbo Pang, Yufen Li, Feng Yang, Thomas Gemming, Kai Wang, Xiao Wang, Songang Peng, Xiaoyan Liu, Bin Chang, Hong Liu, Weijia Zhou, Gianaurelio Cuniberti, Mark H. Rümmeli. Emerging Internet of Things driven carbon nanotubes-based devices. Nano Research 2022, 15 (5) , 4613-4637. https://doi.org/10.1007/s12274-021-3986-7
    91. Julia Ackermann, Justus T. Metternich, Svenja Herbertz, Sebastian Kruss. Biosensing with Fluorescent Carbon Nanotubes. Angewandte Chemie 2022, 134 (18) https://doi.org/10.1002/ange.202112372
    92. Julia Ackermann, Justus T. Metternich, Svenja Herbertz, Sebastian Kruss. Biosensing with Fluorescent Carbon Nanotubes. Angewandte Chemie International Edition 2022, 61 (18) https://doi.org/10.1002/anie.202112372
    93. Hwapyung Jung, Vijay S. Sapner, Arindam Adhikari, Bhaskar R. Sathe, Rajkumar Patel. Recent Progress on Carbon Quantum Dots Based Photocatalysis. Frontiers in Chemistry 2022, 10 https://doi.org/10.3389/fchem.2022.881495
    94. Xuanxuan An, Qin Tan, Shuang Pan, Shujun Zhen, Yongmei Hu, Xiaoli Hu. Determination of xanthine using a ratiometric fluorescence probe based on boron-doped carbon quantum dots and gold nanoclusters. Microchimica Acta 2022, 189 (4) https://doi.org/10.1007/s00604-021-05139-8
    95. Yuanbo Pan, Canxin Xu, Hongzhang Deng, Qing You, Chenyang Zhao, Yanying Li, Qianqian Gao, Ozioma Udochukwu Akakuru, Juan Li, Jianmin Zhang, Aiguo Wu, Xiaoyuan Chen. Localized NIR-II laser mediated chemodynamic therapy of glioblastoma. Nano Today 2022, 43 , 101435. https://doi.org/10.1016/j.nantod.2022.101435
    96. Cristina Bura, Teodora Mocan, Cristiana Grapa, Lucian Mocan. Carbon Nanotubes-Based Assays for Cancer Detection and Screening. Pharmaceutics 2022, 14 (4) , 781. https://doi.org/10.3390/pharmaceutics14040781
    97. Sara I. Amaral, Raquel Costa-Almeida, Inês C. Gonçalves, Fernão D. Magalhães, Artur M. Pinto. Carbon nanomaterials for phototherapy of cancer and microbial infections. Carbon 2022, 190 , 194-244. https://doi.org/10.1016/j.carbon.2021.12.084
    98. Marzieh Salimi, Sara Mosca, Benjamin Gardner, Francesca Palombo, Pavel Matousek, Nicholas Stone. Nanoparticle-Mediated Photothermal Therapy Limitation in Clinical Applications Regarding Pain Management. Nanomaterials 2022, 12 (6) , 922. https://doi.org/10.3390/nano12060922
    99. Jing Liu, Shasha He, Yingli Luo, Yue Zhang, Xiaojiao Du, Cheng Xu, Kanyi Pu, Jun Wang. Tumor‐Microenvironment‐Activatable Polymer Nano‐Immunomodulator for Precision Cancer Photoimmunotherapy. Advanced Materials 2022, 34 (8) https://doi.org/10.1002/adma.202106654
    100. Kotoe Ichihashi, Masakazu Umezawa, Yuichi Ueya, Kyohei Okubo, Eiji Takamoto, Takashi Matsuda, Masao Kamimura, Kohei Soga. Effect of the enantiomeric structure of hydrophobic polymers on the encapsulation properties of a second near infrared (NIR-II) fluorescent dye for in vivo deep imaging. RSC Advances 2022, 12 (3) , 1310-1318. https://doi.org/10.1039/D1RA08330A
    Load more citations

    ACS Nano

    Cite this: ACS Nano 2013, 7, 4, 3644–3652
    Click to copy citationCitation copied!
    https://doi.org/10.1021/nn4006472
    Published March 23, 2013
    Copyright © 2013 American Chemical Society

    Article Views

    4554

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.