ACS Publications. Most Trusted. Most Cited. Most Read
Robust Graphene Membranes in a Silicon Carbide Frame
My Activity

    Article

    Robust Graphene Membranes in a Silicon Carbide Frame
    Click to copy article linkArticle link copied!

    View Author Information
    Lehrstuhl für Angewandte Physik, Center for Nanoanalysis and Electron Microscopy, §Lehrstuhl für Korrosion und Oberflächentechnik, Institute of Advanced Materials and Processes, Lehrstuhl für Technische Physik, #Lehrstuhl für Experimentalphysik, Lehrstuhl für Organische Chemie II, Universität Erlangen-Nürnberg, Germany
    Institut für Physik, Technische Universität Chemnitz, Germany
    *Address correspondence to [email protected]
    Other Access Options

    ACS Nano

    Cite this: ACS Nano 2013, 7, 5, 4441–4448
    Click to copy citationCitation copied!
    https://doi.org/10.1021/nn401037c
    Published April 15, 2013
    Copyright © 2013 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    We present a fabrication process for freely suspended membranes consisting of bi- and trilayer graphene grown on silicon carbide. The procedure, involving photoelectrochemical etching, enables the simultaneous fabrication of hundreds of arbitrarily shaped membranes with an area up to 500 μm2 and a yield of around 90%. Micro-Raman and atomic force microscopy measurements confirm that the graphene layer withstands the electrochemical etching and show that the membranes are virtually unstrained. The process delivers membranes with a cleanliness suited for high-resolution transmission electron microscopy (HRTEM) at atomic scale. The membrane, and its frame, is very robust with respect to thermal cycling above 1000 °C as well as harsh acidic or alkaline treatment.

    Copyright © 2013 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 15 publications.

    1. Julien Chaste, Amine Missaoui, Amina Saadani, Daniel Garcia-Sanchez, Debora Pierucci, Zeineb Ben Aziza, Abdelkarim Ouerghi. Nanomechanical Strain Concentration on a Two-Dimensional Nanobridge within a Large Suspended Bilayer Graphene for Molecular Mass Detection. ACS Applied Nano Materials 2018, 1 (12) , 6752-6759. https://doi.org/10.1021/acsanm.8b01555
    2. Himadri R. Soni, Julian Gebhardt, and Andreas Görling . Reactivity of Substrate-Supported Graphene: A Case Study of Hydrogenation. The Journal of Physical Chemistry C 2018, 122 (5) , 2761-2772. https://doi.org/10.1021/acs.jpcc.7b11220
    3. Jae-Kap Lee, K. P. S. S. Hembram, Yeseul Park, Sang-Gil Lee, Jin-Gyu Kim, Wooyoung Lee, and Dong Ju Moon . Raman Radial Mode Revealed from Curved Graphene. The Journal of Physical Chemistry Letters 2017, 8 (12) , 2597-2601. https://doi.org/10.1021/acs.jpclett.7b01220
    4. Ganjigunte R. Swathi Iyer, Jian Wang, Garth Wells, Srinivasan Guruvenket, Scott Payne, Michael Bradley, and Ferenc Borondics . Large-Area, Freestanding, Single-Layer Graphene–Gold: A Hybrid Plasmonic Nanostructure. ACS Nano 2014, 8 (6) , 6353-6362. https://doi.org/10.1021/nn501864h
    5. W. Rahmah, K. Khoiruddin, I.G. Wenten, S. Kawi. Advancing carbon capture with bio-inspired membrane materials: A review. Carbon Capture Science & Technology 2024, 13 , 100318. https://doi.org/10.1016/j.ccst.2024.100318
    6. Juan-Jesus Velasco Vélez, Yi-Ying Chin, Meng-Hsua Tsai, Oliver James Burton, Ruizhi Wang, Stephan Hofmann, Wei-Hao Hsu, Takuji Ohigashi, Way-Faung Pong, Cheng-Hao Chuang. Evidence of synergistic electrocatalysis at a cobalt oxide–graphene interface through nanochemical mapping of scanning transmission X-ray microscopy. Chinese Journal of Physics 2022, 76 , 135-144. https://doi.org/10.1016/j.cjph.2021.09.018
    7. Florian Speck, Markus Ostler, Sven Besendörfer, Julia Krone, Martina Wanke, Thomas Seyller. Growth and Intercalation of Graphene on Silicon Carbide Studied by Low‐Energy Electron Microscopy. Annalen der Physik 2017, 529 (11) https://doi.org/10.1002/andp.201700046
    8. Ferdinand Kisslinger, Matthias Popp, Johannes Jobst, Sam Shallcross, Heiko B. Weber. Charge‐Carrier Transport in Large‐Area Epitaxial Graphene. Annalen der Physik 2017, 529 (11) https://doi.org/10.1002/andp.201700048
    9. Benjamin Butz, Christian Dolle, Florian Niekiel, Erdmann Spiecker, Konstantin Weber, Bernd Meyer, Daniel Waldmann, Ferdinand Kisslinger, Heiko B. Weber, Sam Shallcross, Christian Halbig, Siegfried Eigler, Colin Ophus. Hidden Defects and Unexpected Properties of Graphene — How Advanced TEM Contributes to Materials Development. Microscopy and Microanalysis 2017, 23 (S1) , 1752-1753. https://doi.org/10.1017/S1431927617009424
    10. Jae-Kap Lee, Jin-Gyu Kim, K. P. S. S. Hembram, Yong-Il Kim, Bong-Ki Min, Yeseul Park, Jeon-Kook Lee, Dong Ju Moon, Wooyoung Lee, Sang-Gil Lee, Phillip John. The Nature of Metastable AA’ Graphite: Low Dimensional Nano- and Single-Crystalline Forms. Scientific Reports 2016, 6 (1) https://doi.org/10.1038/srep39624
    11. Makoto Takamura, Hajime Okamoto, Kazuaki Furukawa, Hiroshi Yamaguchi, Hiroki Hibino. Energy Dissipation in Graphene Mechanical Resonators with and without Free Edges. Micromachines 2016, 7 (9) , 158. https://doi.org/10.3390/mi7090158
    12. Jae-Kap Lee, Sohyung Lee, Yong-Il Kim, Jin-Gyu Kim, Bong-Ki Min, Kyung-Il Lee, Yeseul Park, Phillip John. The seeded growth of graphene. Scientific Reports 2014, 4 (1) https://doi.org/10.1038/srep05682
    13. Makoto Takamura, Hajime Okamoto, Kazuaki Furukawa, Hiroshi Yamaguchi, Hiroki Hibino. Energy dissipation in edged and edgeless graphene mechanical resonators. Journal of Applied Physics 2014, 116 (6) https://doi.org/10.1063/1.4892893
    14. Benjamin Butz, Christian Dolle, Florian Niekiel, Konstantin Weber, Daniel Waldmann, Heiko B. Weber, Bernd Meyer, Erdmann Spiecker. Dislocations in bilayer graphene. Nature 2014, 505 (7484) , 533-537. https://doi.org/10.1038/nature12780
    15. F Fromm, P Wehrfritz, M Hundhausen, Th Seyller. Looking behind the scenes: Raman spectroscopy of top-gated epitaxial graphene through the substrate. New Journal of Physics 2013, 15 (11) , 113006. https://doi.org/10.1088/1367-2630/15/11/113006

    ACS Nano

    Cite this: ACS Nano 2013, 7, 5, 4441–4448
    Click to copy citationCitation copied!
    https://doi.org/10.1021/nn401037c
    Published April 15, 2013
    Copyright © 2013 American Chemical Society

    Article Views

    1635

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.