ACS Publications. Most Trusted. Most Cited. Most Read
Nitrogen-Doped Graphene Sheets Grown by Chemical Vapor Deposition: Synthesis and Influence of Nitrogen Impurities on Carrier Transport
My Activity
    Article

    Nitrogen-Doped Graphene Sheets Grown by Chemical Vapor Deposition: Synthesis and Influence of Nitrogen Impurities on Carrier Transport
    Click to copy article linkArticle link copied!

    View Author Information
    Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan
    Department of Physics, National Taiwan University, Taipei 106, Taiwan
    § Graduate Institute of Applied Physics, National Taiwan University, Taipei 106, Taiwan
    Institute of Physics, Academia Sinica, Taipei 115, Taiwan
    Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
    *Address correspondence to [email protected], [email protected]
    Other Access OptionsSupporting Information (1)

    ACS Nano

    Cite this: ACS Nano 2013, 7, 8, 6522–6532
    Click to copy citationCitation copied!
    https://doi.org/10.1021/nn402102y
    Published July 23, 2013
    Copyright © 2013 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    A significant advance toward achieving practical applications of graphene as a two-dimensional material in nanoelectronics would be provided by successful synthesis of both n-type and p-type doped graphene. However, reliable doping and a thorough understanding of carrier transport in the presence of charged impurities governed by ionized donors or acceptors in the graphene lattice are still lacking. Here we report experimental realization of few-layer nitrogen-doped (N-doped) graphene sheets by chemical vapor deposition of organic molecule 1,3,5-triazine on Cu metal catalyst. When reducing the growth temperature, the atomic percentage of nitrogen doping is raised from 2.1% to 5.6%. With increasing doping concentration, N-doped graphene sheet exhibits a crossover from p-type to n-type behavior accompanied by a strong enhancement of electron–hole transport asymmetry, manifesting the influence of incorporated nitrogen impurities. In addition, by analyzing the data of X-ray photoelectron spectroscopy, Raman spectroscopy, and electrical measurements, we show that pyridinic and pyrrolic N impurities play an important role in determining the transport behavior of carriers in our N-doped graphene sheets.

    Copyright © 2013 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Detailed results of Lorentzian fits to the Raman spectra for N-doped graphene sheets at different synthesis temperatures. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 272 publications.

    1. Kelly C. B. Maia, Agatha Densy dos Santos Francisco, Mateus Perissé Moreira, Regina S. V. Nascimento, Daniel Grasseschi. Advancements in Surfactant Carriers for Enhanced Oil Recovery: Mechanisms, Challenges, and Opportunities. ACS Omega 2024, 9 (35) , 36874-36903. https://doi.org/10.1021/acsomega.4c04058
    2. Wenye Xuan, Yu-Hao Liu, Shih-Yuan Chen, Matthew S. Dyer, Hsin-Yi Tiffany Chen. Unveiling the Morphology of Carbon-Supported Ru Nanoparticles by Multiscale Modeling. Nano Letters 2024, 24 (9) , 2689-2697. https://doi.org/10.1021/acs.nanolett.3c03796
    3. Dongbo Li, Ping Yang. B, N, and Si Single-Doping at Graphene/Cu (111) Interfaces to Adjust Electrical Properties. Langmuir 2023, 39 (26) , 9172-9179. https://doi.org/10.1021/acs.langmuir.3c00952
    4. Abhyavartin Selvam, Yashtika Raj Singh, Amarnath Karna, Amit Bhatnagar, Monalisa Mukherjee, Sandip Chakrabarti. Emergence of the Janus-MOF (J-MOF) Boat as a Nascent Amalgamation in the Arena of Photothermal Desalination. ACS Applied Materials & Interfaces 2023, 15 (22) , 26918-26927. https://doi.org/10.1021/acsami.3c05187
    5. Yucheng Zhou, Bo Li, Lei Wang, Jingyuan Zhou, Kun He, Wei Li, Jia Li, Xiaodong Hu, Yuan Liu, Lei Liao, Xidong Duan. Regulation of the Electronic Properties of Graphene via Organic Molecular Intercalation. Chemistry of Materials 2023, 35 (5) , 2125-2132. https://doi.org/10.1021/acs.chemmater.2c03753
    6. Bofan Li, Shuting Zhang, Chaojie Cui, Weizhong Qian, Yong Jin. Comprehensive Review on Nitrogen-Doped Graphene: Structure Characterization, Growth Strategy, and Capacitive Energy Storage. Energy & Fuels 2023, 37 (2) , 902-918. https://doi.org/10.1021/acs.energyfuels.2c03517
    7. Nur Hamizah Zainal Ariffin, Muhammad Aniq Shazni Mohammad Haniff, Mohd Ismahadi Syono, Mohd Ambri Mohamed, Azrul Azlan Hamzah, Abdul Manaf Hashim. Low-Temperature Nitrogen Doping of Nanocrystalline Graphene Films with Tunable Pyridinic-N and Pyrrolic-N by Cold-Wall Plasma-Assisted Chemical Vapor Deposition. ACS Omega 2021, 6 (37) , 23710-23722. https://doi.org/10.1021/acsomega.1c01520
    8. Peyman Gholami, Alireza Khataee, Amit Bhatnagar, Behrouz Vahid. Synthesis of N-Doped Magnetic WO3–x@Mesoporous Carbon Using a Diatom Template and Plasma Modification: Visible-Light-Driven Photocatalytic Activities. ACS Applied Materials & Interfaces 2021, 13 (11) , 13072-13086. https://doi.org/10.1021/acsami.0c21076
    9. Jing Li, Xiaomei Zhao, Zhongyun Ma, Yong Pei. Structure and Catalytic Activity of Gold Clusters Supported on Nitrogen-Doped Graphene. The Journal of Physical Chemistry C 2021, 125 (9) , 5006-5019. https://doi.org/10.1021/acs.jpcc.0c08356
    10. Yolanda L. Li, Chih-Te Zee, Janice B. Lin, Victoria M. Basile, Mit Muni, Maria D. Flores, Julen Munárriz, Richard B. Kaner, Anastassia N. Alexandrova, K. N. Houk, Sarah H. Tolbert, Yves Rubin. Fjord-Edge Graphene Nanoribbons with Site-Specific Nitrogen Substitution. Journal of the American Chemical Society 2020, 142 (42) , 18093-18102. https://doi.org/10.1021/jacs.0c07657
    11. Juan Carlos Moreno-López, Filippo Fedi, Giacomo Argentero, Marco Carini, Johnny Chimborazo, Jannik Meyer, Thomas Pichler, Aurelio Mateo-Alonso, Paola Ayala. Exclusive Substitutional Nitrogen Doping on Graphene Decoupled from an Insulating Substrate. The Journal of Physical Chemistry C 2020, 124 (40) , 22150-22157. https://doi.org/10.1021/acs.jpcc.0c06415
    12. Mohsen Abbaspour, Hamed Akbarzadeh, Shadi Zaeifi. Thermodynamics, Structure, and Dynamic Properties of Nanostructured Water Confined into B-, N-, and Si-Doped Graphene Surfaces and Carbon Nanotubes. Industrial & Engineering Chemistry Research 2020, 59 (20) , 9642-9654. https://doi.org/10.1021/acs.iecr.0c00119
    13. Zackery S. Schroer, Yingfen Wu, Yuqian Xing, Xu Wu, Xiao Liu, Xu Wang, Onnica G. Pino, Chuanmin Zhou, Colin Combs, Qinqin Pu, Min Wu, Julia Xiaojun Zhao, Jiao Chen. Nitrogen–Sulfur-Doped Graphene Quantum Dots with Metal Ion-Resistance for Bioimaging. ACS Applied Nano Materials 2019, 2 (11) , 6858-6865. https://doi.org/10.1021/acsanm.9b01309
    14. Nannan Zheng, Yiyu Feng, Yu Zhang, Rongjin Li, Ce Bian, Lihong Bao, Shixuan Du, Huanli Dong, Yongtao Shen, Wei Feng. Reversible Modification of Nitrogen-Doped Graphene Based on Se–N Dynamic Covalent Bonds for Field-Effect Transistors. ACS Applied Materials & Interfaces 2019, 11 (27) , 24360-24366. https://doi.org/10.1021/acsami.9b02989
    15. Yisi Liu, Faqi Zhan, Biqiong Wang, Bo Xie, Qian Sun, Hao Jiang, Jie Li, Xueliang Sun. Three-dimensional Composite Catalysts for Al–O2 Batteries Composed of CoMn2O4 Nanoneedles Supported on Nitrogen-Doped Carbon Nanotubes/Graphene. ACS Applied Materials & Interfaces 2019, 11 (24) , 21526-21535. https://doi.org/10.1021/acsami.9b04861
    16. Xiao Zhu, Tuan K. A. Hoang, Guoqiang Tan, Xilai Jia, Ran Tao, Feng Wu, P. Chen. Tuning Microstructures of Graphene to Improve Power Capability of Rechargeable Hybrid Aqueous Batteries. ACS Applied Materials & Interfaces 2018, 10 (43) , 37110-37118. https://doi.org/10.1021/acsami.8b13744
    17. Ping Cui, Jin-Ho Choi, Changgan Zeng, Zhenyu Li, Jinlong Yang, and Zhenyu Zhang . A Kinetic Pathway toward High-Density Ordered N Doping of Epitaxial Graphene on Cu(111) Using C5NCl5 Precursors. Journal of the American Chemical Society 2017, 139 (21) , 7196-7202. https://doi.org/10.1021/jacs.6b12506
    18. Jiayu Li, Li Lin, Dingran Rui, Qiucheng Li, Jincan Zhang, Ning Kang, Yanfeng Zhang, Hailin Peng, Zhongfan Liu, and H. Q. Xu . Electron–Hole Symmetry Breaking in Charge Transport in Nitrogen-Doped Graphene. ACS Nano 2017, 11 (5) , 4641-4650. https://doi.org/10.1021/acsnano.7b00313
    19. M. A. S. M. Haniff, S. M. Hafiz, N. M. Huang, S. A. Rahman, K. A. A. Wahid, M. I. Syono, and I. A. Azid . Piezoresistive Effect in Plasma-Doping of Graphene Sheet for High-Performance Flexible Pressure Sensing Application. ACS Applied Materials & Interfaces 2017, 9 (17) , 15192-15201. https://doi.org/10.1021/acsami.7b02833
    20. Imteaz Ahmed, Tandra Panja, Nazmul Abedin Khan, Mithun Sarker, Jong-Sung Yu, and Sung Hwa Jhung . Nitrogen-Doped Porous Carbons from Ionic Liquids@MOF: Remarkable Adsorbents for Both Aqueous and Nonaqueous Media. ACS Applied Materials & Interfaces 2017, 9 (11) , 10276-10285. https://doi.org/10.1021/acsami.7b00859
    21. Hee-Kook Kang, Sang-Gil Woo, Jae-Hun Kim, Ji-Sang Yu, Seong-Rae Lee, and Young-Jun Kim . Few-Layer Graphene Island Seeding for Dendrite-Free Li Metal Electrodes. ACS Applied Materials & Interfaces 2016, 8 (40) , 26895-26901. https://doi.org/10.1021/acsami.6b09757
    22. Li Lin, Xiang Xu, Jianbo Yin, Jingyu Sun, Zhenjun Tan, Ai Leen Koh, Huan Wang, Hailin Peng, Yulin Chen, and Zhongfan Liu . Tuning Chemical Potential Difference across Alternately Doped Graphene p–n Junctions for High-Efficiency Photodetection. Nano Letters 2016, 16 (7) , 4094-4101. https://doi.org/10.1021/acs.nanolett.6b00803
    23. Dan Sun, Xia Xue, Yougen Tang, Yan Jing, Bin Huang, Yu Ren, Yan Yao, Haiyan Wang, and Guozhong Cao . High-Rate LiTi2(PO4)3@N–C Composite via Bi-nitrogen Sources Doping. ACS Applied Materials & Interfaces 2015, 7 (51) , 28337-28345. https://doi.org/10.1021/acsami.5b08697
    24. Yun-Pei Zhu, Xueyan Xu, Huan Su, Yu-Ping Liu, Tiehong Chen, and Zhong-Yong Yuan . Ultrafine Metal Phosphide Nanocrystals in Situ Decorated on Highly Porous Heteroatom-Doped Carbons for Active Electrocatalytic Hydrogen Evolution. ACS Applied Materials & Interfaces 2015, 7 (51) , 28369-28376. https://doi.org/10.1021/acsami.5b09092
    25. Lida Pan, Yande Que, Hui Chen, Dongfei Wang, Jun Li, Chengmin Shen, Wende Xiao, Shixuan Du, Hongjun Gao, and Sokrates T. Pantelides . Room-Temperature, Low-Barrier Boron Doping of Graphene. Nano Letters 2015, 15 (10) , 6464-6468. https://doi.org/10.1021/acs.nanolett.5b01839
    26. Mykola Telychko, Pingo Mutombo, Pablo Merino, Prokop Hapala, Martin Ondráček, François C. Bocquet, Jessica Sforzini, Oleksandr Stetsovych, Martin Vondráček, Pavel Jelínek, and Martin Švec . Electronic and Chemical Properties of Donor, Acceptor Centers in Graphene. ACS Nano 2015, 9 (9) , 9180-9187. https://doi.org/10.1021/acsnano.5b03690
    27. Jenel Vatamanu and Dmitry Bedrov . Capacitive Energy Storage: Current and Future Challenges. The Journal of Physical Chemistry Letters 2015, 6 (18) , 3594-3609. https://doi.org/10.1021/acs.jpclett.5b01199
    28. Yong-Hui Tian, Jingsong Huang, Xiaolan Sheng, Bobby G. Sumpter, Mina Yoon, and Miklos Kertesz . Nitrogen Doping Enables Covalent-Like π–π Bonding between Graphenes. Nano Letters 2015, 15 (8) , 5482-5491. https://doi.org/10.1021/acs.nanolett.5b01940
    29. Xianwen Mao, Xiaoqing Yang, Jie Wu, Wenda Tian, Gregory C. Rutledge, and T. Alan Hatton . Microwave-Assisted Oxidation of Electrospun Turbostratic Carbon Nanofibers for Tailoring Energy Storage Capabilities. Chemistry of Materials 2015, 27 (13) , 4574-4585. https://doi.org/10.1021/acs.chemmater.5b00854
    30. Titash Mondal, Anil K. Bhowmick, and Ramanan Krishnamoorti . Controlled Synthesis of Nitrogen-Doped Graphene from a Heteroatom Polymer and Its Mechanism of Formation. Chemistry of Materials 2015, 27 (3) , 716-725. https://doi.org/10.1021/cm503303s
    31. Yongcai Qiu, Wanfei Li, Wen Zhao, Guizhu Li, Yuan Hou, Meinan Liu, Lisha Zhou, Fangmin Ye, Hongfei Li, Zhanhua Wei, Shihe Yang, Wenhui Duan, Yifan Ye, Jinghua Guo, and Yuegang Zhang . High-Rate, Ultralong Cycle-Life Lithium/Sulfur Batteries Enabled by Nitrogen-Doped Graphene. Nano Letters 2014, 14 (8) , 4821-4827. https://doi.org/10.1021/nl5020475
    32. Mykola Telychko, Pingo Mutombo, Martin Ondráček, Prokop Hapala, François C. Bocquet, Jindřich Kolorenč, Martin Vondráček, Pavel Jelínek, and Martin Švec . Achieving High-Quality Single-Atom Nitrogen Doping of Graphene/SiC(0001) by Ion Implantation and Subsequent Thermal Stabilization. ACS Nano 2014, 8 (7) , 7318-7324. https://doi.org/10.1021/nn502438k
    33. Samuele Fanetti, Margherita Citroni, and Roberto Bini . Tuning the Aromaticity of s-Triazine in the Crystal Phase by Pressure. The Journal of Physical Chemistry C 2014, 118 (25) , 13764-13768. https://doi.org/10.1021/jp502020g
    34. Margherita Citroni, Samuele Fanetti, and Roberto Bini . Pressure and Laser-Induced Reactivity in Crystalline s-Triazine. The Journal of Physical Chemistry C 2014, 118 (19) , 10284-10290. https://doi.org/10.1021/jp501350f
    35. Sourav Bag, Kanak Roy, Chinnakonda S. Gopinath, and C. Retna Raj . Facile Single-Step Synthesis of Nitrogen-Doped Reduced Graphene Oxide-Mn3O4 Hybrid Functional Material for the Electrocatalytic Reduction of Oxygen. ACS Applied Materials & Interfaces 2014, 6 (4) , 2692-2699. https://doi.org/10.1021/am405213z
    36. Haibo Wang, Mingshi Xie, Larissa Thia, Adrian Fisher, and Xin Wang . Strategies on the Design of Nitrogen-Doped Graphene. The Journal of Physical Chemistry Letters 2014, 5 (1) , 119-125. https://doi.org/10.1021/jz402416a
    37. Xinghua Liu, Jinsong Li, Shuyu Wang, Xungang Diao, Lijiang Zhao, Junying Zhang. Enhancing electrochemical properties of PNb9O25 anodes at elevated temperature via surface modification by nitrogen-doped carbon. Journal of Power Sources 2025, 629 , 235969. https://doi.org/10.1016/j.jpowsour.2024.235969
    38. Rebti Bhushan, Arkamita Bandyopadhyay, Sangeeth Kallatt, Awalendra K. Thakur, Swapan K. Pati, Prashant Kumar. Microwave graphitic nitrogen/boron ultradoping of graphene. npj 2D Materials and Applications 2024, 8 (1) https://doi.org/10.1038/s41699-024-00457-w
    39. Xin Hong Tai, Chin Wei Lai, Thomas Chung Kuang Yang, Kian Mun Lee, Supakorn Boonyuen, Prastika Krisma Jiwanti, Joon Ching Juan. Enrichment of graphitic-N in nitrogen-doped photoreduced graphene oxide as highly efficient photocatalyst for mineralization of volatile organic compounds. Materials Today Chemistry 2024, 42 , 102372. https://doi.org/10.1016/j.mtchem.2024.102372
    40. Bably Khatun, Kangkan Jyoti Goswami, Neelotpal Sen Sarma. Single step synthesis of β -cyclodextrin-sericin based nitrogen-doped graphene oxide quantum dots for visual and optical detection of Riboflavin via Inner Filter Effect. Journal of Photochemistry and Photobiology A: Chemistry 2024, 456 , 115795. https://doi.org/10.1016/j.jphotochem.2024.115795
    41. Ziyi Zhu, Yongling Men, Wenjia Zhang, Wenhao Yang, Fei Wang, Yanjia Zhang, Yiyong Zhang, Xiaoyuan Zeng, Jie Xiao, Cheng Tang, Xue Li, Yingjie Zhang. Versatile carbon-based materials from biomass for advanced electrochemical energy storage systems. eScience 2024, 4 (5) , 100249. https://doi.org/10.1016/j.esci.2024.100249
    42. Ren-lu Yuan, Ruo-yang Hou, Lei Shang, Xue-wei Liu, Ang Li, Xiao-hong Chen, Huai-he Song. The preparation and properties of N-doped carbon materials and their use for sodium storage. New Carbon Materials 2024, 39 (5) , 770-795. https://doi.org/10.1016/S1872-5805(24)60877-2
    43. Guanghui Zhao, Chunyu Ma, Ruiteng Wang, Penghui Liu, Nan Zhou, Fuwen Qin, Qingyu Zhang. Preparation and properties of electrochemically assisted electroless Ni–P–TiO2–NG composite coatings. Bulletin of Materials Science 2024, 47 (3) https://doi.org/10.1007/s12034-024-03325-x
    44. Yoshitaka Fujimoto. Formation, Structure, Electronic, and Transport Properties of Nitrogen Defects in Graphene and Carbon Nanotubes. Micromachines 2024, 15 (9) , 1172. https://doi.org/10.3390/mi15091172
    45. Jie Yan, Longyi Fan, Zhou Yang, Zhe Ni, Jin Zhang, Xiaolin Chen, Changfeng Wang, Li Yang, Zhonghao Zhou, Renguo Guan. Key role of graphitic-N in N-doped graphene coated Al alloy in corrosion resistance performance. Carbon 2024, 228 , 119378. https://doi.org/10.1016/j.carbon.2024.119378
    46. Thanthita Sasipatworakarn, Daranphop Pikulrat, Kan Homlamai, Salatan Duangdangchote, Montree Sawangphruk. Selective conversion of carbon dioxide to formate using few-layer nitrogen-doped graphene on copper foam with enhanced suppression of the hydrogen evolution reaction. Sustainable Energy & Fuels 2024, 8 (14) , 3164-3173. https://doi.org/10.1039/D4SE00550C
    47. Chaoyue Zhang, Daiyu Song, Xiaofei Liu, Yihang Guo, Xia Yang. In-situ approach to porous nitrogen-doped carbon nanosheets functionalized by Brønsted acidic ionic liquids for microwave-assisted upgrading fructose to 5-hydroxymethylfurfural. Fuel 2024, 367 , 131474. https://doi.org/10.1016/j.fuel.2024.131474
    48. Qingwen Fan, Chaoyun Song, Peng Fu. Advances in the improvement of the quality and efficiency of biomass-derived porous carbon: A comprehensive review on synthesis strategies and heteroatom doping effects. Journal of Cleaner Production 2024, 452 , 142169. https://doi.org/10.1016/j.jclepro.2024.142169
    49. Nkosingiphile E. Zikalala, Shohreh Azizi, Force T. Thema, Karen J. Cloete, Ali.A. Zinatizadeh, Touhami Mokrani, Nomvano Mketo, Malik M. Maaza. Modification of graphene-based nanomaterials with gamma irradiation as an eco-friendly approach for diverse applications: A review. FlatChem 2024, 45 , 100662. https://doi.org/10.1016/j.flatc.2024.100662
    50. Mohammad Taghi Tourchi Moghadam, Karolina Cysewska. Facile synthesis and characterization of graphene and N-doped graphene by CVD method from liquid precursors for promising electrode materials. Materials Science and Engineering: B 2024, 302 , 117254. https://doi.org/10.1016/j.mseb.2024.117254
    51. Weidi Qin, Yang Xiao, Chunlei Zhang, Haiyi Gong, Qingsong Zhang, Qingyi Zeng. Bismuth nanocluster loaded on N-doped porous carbon with “memory catalysis” effect for efficient photocatalytic H2 generation and uranium(VI) reduction. Chemical Engineering Journal 2024, 342 , 151511. https://doi.org/10.1016/j.cej.2024.151511
    52. Yu Wang, Boan Zhong, Jiamiao Ni, Jian Song, Yong Huang, Songsong Yao, Yue Liu, Tongxiang Fan. Enhanced electrical conductivity of copper by nitrogen-doped graphene. Scripta Materialia 2024, 239 , 115797. https://doi.org/10.1016/j.scriptamat.2023.115797
    53. Mingyuan Li, Huiwei Du, Lun Hong, Jingji Zhang, Jiangying Wang, Quan Zong, Zejie Zhu, Xianhe Meng, Tao Hong. Modification of In-situ N-doped graphene coated ZnO composites as anode for high performance lithium-ion batteries. Journal of Alloys and Compounds 2023, 967 , 171731. https://doi.org/10.1016/j.jallcom.2023.171731
    54. Yanru Li, Hongwei Li, Yan Zhao, Dong Ji, Peng Guo, Guixian Li, Xinhong Zhao. Insights on the Roles of Nitrogen Configuration in Enhancing the Performance of Electrocatalytic Methanol Oxidation over Pt Nanoparticles. Small 2023, 19 (46) https://doi.org/10.1002/smll.202303065
    55. Zhuanhong Lu, Jianjun Liang, Wentao Zhang, Zhe Ding, Ping Li, Quanfang Lu, Jingjing Wang, Jie Yu. Three amine derivative/graphene oxide van der Waals heterostructures for the photocatalytic detoxification of As(III). Environmental Technology & Innovation 2023, 32 , 103246. https://doi.org/10.1016/j.eti.2023.103246
    56. Balaram Paudel Jaisi, Rucheng Zhu, Golap Kalita, Masayoshi Umeno. Morphological changes of carbon thin films with nitrogen doping synthesized by microwave-excited surface wave plasma CVD. Materials Chemistry and Physics 2023, 307 , 128183. https://doi.org/10.1016/j.matchemphys.2023.128183
    57. Adriana Marinoiu, Elena Carcadea, Mircea Raceanu. Nitrogen-Doped Graphene Oxide and Application as Electrocatalyst for PEMFC. 2023, NSS03-1-NSS03-3. https://doi.org/10.1109/NAP59739.2023.10310887
    58. Tushar Singh Verma, Pragnya Paramita Samal, Kaliaperumal Selvaraj, Sailaja Krishnamurty. Can Li Atoms Anchored on Boron‐ and Nitrogen‐Doped Graphene Catalyze Dinitrogen Molecules to Ammonia? A DFT Study. ChemPhysChem 2023, 24 (12) https://doi.org/10.1002/cphc.202200750
    59. Syed Niaz Ali Shah, Eman Gul, Narayan Chandra Deb Nath, Guodong Du. Biomass‐derived N‐doped Carbon for Electrochemical Supercapacitors. 2023, 289-313. https://doi.org/10.1002/9781119866435.ch17
    60. Huaxin Li, Kelong Ao, Jiapeng Liu, Fenglei Sun, Xianbo Yu, Xiangyang Zhang, Jihong Shi, Xian Yue, Junhui Xiang. Structural construction of Bi-anchored honeycomb N-doped porous carbon catalyst for efficient CO2 conversion. Chemical Engineering Journal 2023, 464 , 142672. https://doi.org/10.1016/j.cej.2023.142672
    61. Adriana Marinoiu, Mircea Raceanu, Elena Carcadea, Mihai Varlam. Nitrogen-Doped Graphene Oxide as Efficient Metal-Free Electrocatalyst in PEM Fuel Cells. Nanomaterials 2023, 13 (7) , 1233. https://doi.org/10.3390/nano13071233
    62. Silki Sardana, Kanika Aggarwal, Priya Siwach, Latisha Gaba, A. S. Maan, Kuldeep Singh, Anil Ohlan. Hierarchical three dimensional polyaniline/N‐doped graphene nanocomposite hydrogel for energy storage applications. Energy Storage 2023, 5 (2) https://doi.org/10.1002/est2.328
    63. Claire Senger, Xiao Fan, James Nicolas Pagaduan, Xiaoyu Zhang, Jinglei Ping, Reika Katsumata. Defect Healing in Graphene via Rapid Thermal Annealing with Polymeric “Nanobandage”. Small 2023, 19 (10) https://doi.org/10.1002/smll.202206295
    64. Zhichao Guo, Zhenya Ye, Mengqing Yin, Shixun Dai, Xiaohui Zhang, Wei Wang, Zhaoping Liu. Growth of Low-Defect Nitrogen-Doped Graphene Film Using Condensation-Assisted Chemical Vapor Deposition Method. Materials 2023, 16 (3) , 1120. https://doi.org/10.3390/ma16031120
    65. Qingting Zeng, Guangxing Yang, Jianhao Chen, Qiao Zhang, Zhiting Liu, Binhao Qin, Feng Peng. Effects of nitrogen and oxygen on electrochemical reduction of CO2 in nitrogen-doped carbon black. Carbon 2023, 202 , 1-11. https://doi.org/10.1016/j.carbon.2022.10.038
    66. Yoichi Tanabe, Yoshikazu Ito, Katsuaki Sugawara, Samuel Jeong, Tatsuhiko Ohto, Tomohiko Nishiuchi, Naoaki Kawada, Shojiro Kimura, Christopher Florencio Aleman, Takashi Takahashi, Motoko Kotani, Mingwei Chen. Coexistence of Urbach‐Tail‐Like Localized States and Metallic Conduction Channels in Nitrogen‐Doped 3D Curved Graphene. Advanced Materials 2022, 34 (51) https://doi.org/10.1002/adma.202205986
    67. Yasar Ozkan Yesilbag, Fatma Nur Tuzluca Yesilbag, Ahmad Huseyin, Ahmed Jalal Salih Salih, Mehmet Ertugrul. MnO2 nanosheets synthesized on nitrogen-doped vertically aligned carbon nanotubes as a supercapacitor electrode material. Journal of Alloys and Compounds 2022, 925 , 166570. https://doi.org/10.1016/j.jallcom.2022.166570
    68. Yuji Kunisada, Norihito Sakaguchi. Chemical modification of graphene for atomic-scale catalyst supports. Nano Express 2022, 3 (4) , 042001. https://doi.org/10.1088/2632-959X/aca41f
    69. V. V. Shunaev, A. Yu. Gerasimenko, O. E. Glukhova. Electronic Properties of Graphene Nanoribbons Doped with Pyrrole-Like Nitrogen. Semiconductors 2022, 56 (13) , 406-410. https://doi.org/10.1134/S1063782622130103
    70. J. Cencerrero, P. Sánchez, A. de Lucas-Consuegra, A.R. de la Osa, A. Romero. Influence of the reducing agent on the physicochemical and electrocatalytic properties of graphene-based aerogels. FlatChem 2022, 36 , 100435. https://doi.org/10.1016/j.flatc.2022.100435
    71. Imre Bertóti, Shereen Farah, Anna Bulátkó, Attila Farkas, János Madarász, Miklós Mohai, György Sáfrán, Krisztina László. Nitrogen implantation into graphene oxide and reduced graphene oxides using radio frequency plasma treatment in microscale. Carbon 2022, 199 , 415-423. https://doi.org/10.1016/j.carbon.2022.08.024
    72. Daria M. Sedlovets, Arkady N. Redkin, Evgeny N. Kabachkov, Anton P. Naumov, Maxim A. Knyazev, Andrey V. Moiseenko, Vitaly I. Korepanov. Transfer- and lithography-free CVD of N-doped graphenic carbon thin films on non-metal substrates. Materials Research Bulletin 2022, 154 , 111943. https://doi.org/10.1016/j.materresbull.2022.111943
    73. Vijai M. Moorthy, Parthasarathy Varatharajan, Joseph D. Rathnasami, Viranjay M. Srivastava. G-Optrode Bio-Interfaces for Non-Invasive Optical Cell Stimulation: Design and Evaluation. Biosensors 2022, 12 (10) , 808. https://doi.org/10.3390/bios12100808
    74. Piotr Kamedulski, Malgorzata Skorupska, Izabela Koter, Maciej Lewandowski, Víctor Karim Abdelkader-Fernández, Jerzy P. Lukaszewicz. Obtaining N-Enriched Mesoporous Carbon-Based by Means of Gamma Radiation. Nanomaterials 2022, 12 (18) , 3156. https://doi.org/10.3390/nano12183156
    75. Shuang Li, Mincong Liu, Xiulian Wang, Guohua Ye, Yan Peng, Yufeng Zhao, Shiyou Guan. High‐Quality N‐Doped Graphene with Controllable Nitrogen Bonding Configurations Derived from Ionic Liquids. Chemistry – An Asian Journal 2022, 17 (14) https://doi.org/10.1002/asia.202200192
    76. Umar Latif, Mohsin Ali Raza, Zaeem Ur Rehman, Javaid Iqbal, Naesung Lee, Syed Muhammad Zain Mehdi, Muhammad Faheem Maqsood, Sajjad Hussain. Binder free heteroatom‐doped graphene oxide as high energy density electrodes for supercapacitor applications. International Journal of Energy Research 2022, 46 (7) , 9643-9666. https://doi.org/10.1002/er.7835
    77. Jin-Ha Shin, Yong-Sup Choi, Hyun-Jae Park. Remote Plasma-Induced Synthesis of Self-Assembled MoS2/Carbon Nanowall Nanocomposites and Their Application as High-Performance Active Materials for Supercapacitors. Nanomaterials 2022, 12 (8) , 1338. https://doi.org/10.3390/nano12081338
    78. Yasir Qayyum Gill, Umer Abid, Umer Mehmood, Abdulrehman Ishfaq, Muhammad Baqir Naqvi. The use of polymer-graphene composites in fuel cell and solar energy. 2022, 425-505. https://doi.org/10.1016/B978-0-12-821639-2.00004-5
    79. Waseem Raza, Khursheed Ahmad, Haekyoung Kim. Nitrogen-doped graphene as an efficient metal-free catalyst for ammonia and non-enzymatic glucose sensing. Journal of Physics and Chemistry of Solids 2022, 160 , 110359. https://doi.org/10.1016/j.jpcs.2021.110359
    80. J. Cencerrero, P. Sánchez, A.R. de la Osa, A. de Lucas-Consuegra, A. Romero. Influence of the Reducing Agent on the Physicochemical and Electrocatalytic Properties of Graphene-Based Aerogels. SSRN Electronic Journal 2022, 120 https://doi.org/10.2139/ssrn.4187472
    81. Rajib Paul, Qingfeng Zhai, Ajit K. Roy, Liming Dai. Charge transfer of carbon nanomaterials for efficient metal‐free electrocatalysis. Interdisciplinary Materials 2022, 1 (1) , 28-50. https://doi.org/10.1002/idm2.12010
    82. Jingjing Li, Wen-Yan Zan, Hongxing Kang, Zhengping Dong, Xiaoming Zhang, Yixiong Lin, Yue-Wen Mu, Fengwei Zhang, Xian-Ming Zhang, Jing Gu. Graphitic-N highly doped graphene-like carbon: A superior metal-free catalyst for efficient reduction of CO2. Applied Catalysis B: Environmental 2021, 298 , 120510. https://doi.org/10.1016/j.apcatb.2021.120510
    83. Sundaram Chandrasekaran, Chenle Zhang, Yiqing Shu, Huide Wang, Sanming Chen, Thomas Nesakumar Jebakumar Immanuel Edison, Yongping Liu, Namachivayam Karthik, R.D.K. Misra, Libo Deng, Peng Yin, Yanqi Ge, Omar A. Al-Hartomy, Ahmed Al-Ghamdi, Swelm Wageh, Peixin Zhang, Chris Bowen, Zhang Han. Advanced opportunities and insights on the influence of nitrogen incorporation on the physico-/electro-chemical properties of robust electrocatalysts for electrocatalytic energy conversion. Coordination Chemistry Reviews 2021, 449 , 214209. https://doi.org/10.1016/j.ccr.2021.214209
    84. Ao Li, Ye Liu, Zhenbei Wang, Zilong Song, Yuting Zhang, Yiping Wang, Bingbing Xu, Fei Qi, Amir Ikhlaq, Jolanta Kumirska, Ewa Maria Siedlecka. Catalytic ozonation membrane reactor integrated with CuMn2O4/rGO for degradation emerging UV absorbers (BP-4) and fouling in-situ self-cleaning. Separation and Purification Technology 2021, 279 , 119804. https://doi.org/10.1016/j.seppur.2021.119804
    85. Niladri Talukder, Yudong Wang, Bharath Babu Nunna, Eon Soo Lee. Nitrogen-doped graphene nanomaterials for electrochemical catalysis/reactions: A review on chemical structures and stability. Carbon 2021, 185 , 198-214. https://doi.org/10.1016/j.carbon.2021.09.025
    86. Yi-Dai Ying, Jin-Tao Ren, Yu-Ping Liu, Wei Li, Zhong-Yong Yuan. Facile synthesis of nitrogen, phosphorus and sulfur tri-doped carbon nanosheets as efficient oxygen electrocatalyst for rechargeable Zn-air batteries. Materials Science and Engineering: B 2021, 273 , 115439. https://doi.org/10.1016/j.mseb.2021.115439
    87. Niloofar Soltani, Amin Bahrami, Lars Giebeler, Thomas Gemming, Daria Mikhailova. Progress and challenges in using sustainable carbon anodes in rechargeable metal-ion batteries. Progress in Energy and Combustion Science 2021, 87 , 100929. https://doi.org/10.1016/j.pecs.2021.100929
    88. Gunawan Witjaksono, Muhammad Junaid, Mohd Haris Khir, Zaka Ullah, Nelson Tansu, Mohamed Shuaib Bin Mohamed Saheed, Muhammad Aadil Siddiqui, Saeed S. Ba-Hashwan, Abdullah Saleh Algamili, Saeed Ahmed Magsi, Muhammad Zubair Aslam, Rab Nawaz. Effect of Nitrogen Doping on the Optical Bandgap and Electrical Conductivity of Nitrogen-Doped Reduced Graphene Oxide. Molecules 2021, 26 (21) , 6424. https://doi.org/10.3390/molecules26216424
    89. Mudasir Dar, Kowsar Majid, Malik Wahid. In-plane ordering and nature of N-doping in hard carbon synthesized at low temperature govern the sodium-ion intercalation. Journal of Electroanalytical Chemistry 2021, 899 , 115669. https://doi.org/10.1016/j.jelechem.2021.115669
    90. Roozbeh Anvari, Eugene Zaremba, Marc M. Dignam. Impact of nitrogen doping on the linear and nonlinear terahertz response of graphene. Physical Review B 2021, 104 (15) https://doi.org/10.1103/PhysRevB.104.155402
    91. Waqas Ahmad, Zaka Ullah, Nazmina Imrose Sonil, Karim Khan. Introduction, production, characterization and applications of defects in graphene. Journal of Materials Science: Materials in Electronics 2021, 32 (15) , 19991-20030. https://doi.org/10.1007/s10854-021-06575-1
    92. Yanyan Liao, Weiyi Wang, Zhihui Li, Yahong Wang, Lu Zhang, Xiaomei Huang, Peng Cai. Comparative proteomic analysis reveals cytotoxicity induced by graphene oxide exposure in A549 cells. Journal of Applied Toxicology 2021, 41 (7) , 1103-1114. https://doi.org/10.1002/jat.4096
    93. Xiang-Hua Zhang, Shuai-Jie Liu, Li Tian, Qin Wan, Ai-Ming Hu, Xiao-Fei Li. Rectification with controllable directions in sulfur-doped armchair graphene nanoribbon heterojunctions. Chemical Physics 2021, 546 , 111140. https://doi.org/10.1016/j.chemphys.2021.111140
    94. F. Mesquita, G. Copetti, M.A. Tumelero, M.A. Gusmão, C. Radtke, P. Pureur. Electrical magnetotransport properties of chlorinated CVD graphene. Physica B: Condensed Matter 2021, 609 , 412893. https://doi.org/10.1016/j.physb.2021.412893
    95. Pingjian Li, Kesai Xu, Yu Zhou, Yuanfu Chen, Wanli Zhang, Zegao Wang, Xuesong Li. Growth and electrical properties of n-type monolayer sulfur-doped graphene film in air. Journal of Alloys and Compounds 2021, 860 , 158462. https://doi.org/10.1016/j.jallcom.2020.158462
    96. Trang H. Nguyen, Dan Yang, Bo Zhu, Han Lin, Tianyi Ma, Baohua Jia. Doping mechanism directed graphene applications for energy conversion and storage. Journal of Materials Chemistry A 2021, 9 (12) , 7366-7395. https://doi.org/10.1039/D0TA11939C
    97. M. Taazeem Ansari, A. Almohammedi, M. Rafat, M. Mudassir Husain. Occurrence of nonohmic trend in the ballistic transport mode of a modelled low dimensional device capable of performing electronic functions. Superlattices and Microstructures 2021, 151 , 106808. https://doi.org/10.1016/j.spmi.2021.106808
    98. Babasaheb M. Matsagar, Ren-Xuan Yang, Saikat Dutta, Yong Sik Ok, Kevin C.-W. Wu. Recent progress in the development of biomass-derived nitrogen-doped porous carbon. Journal of Materials Chemistry A 2021, 9 (7) , 3703-3728. https://doi.org/10.1039/D0TA09706C
    99. I. Novodchuk, M. Bajcsy, M. Yavuz. Graphene-based field effect transistor biosensors for breast cancer detection: A review on biosensing strategies. Carbon 2021, 172 , 431-453. https://doi.org/10.1016/j.carbon.2020.10.048
    100. Subhajit Das, Sandip Bhattacharya, Debaprasad Das, Hafizur Rahaman, , , , . A survey on pristine and intercalation doped graphene nanoribbon interconnect for future VLSI circuits. AIMS Materials Science 2021, 8 (2) , 247-260. https://doi.org/10.3934/matersci.2021016
    Load more citations

    ACS Nano

    Cite this: ACS Nano 2013, 7, 8, 6522–6532
    Click to copy citationCitation copied!
    https://doi.org/10.1021/nn402102y
    Published July 23, 2013
    Copyright © 2013 American Chemical Society

    Article Views

    6547

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.