ACS Publications. Most Trusted. Most Cited. Most Read
Exceptional Tunability of Band Energy in a Compressively Strained Trilayer MoS2 Sheet
My Activity
    Article

    Exceptional Tunability of Band Energy in a Compressively Strained Trilayer MoS2 Sheet
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Applied Physics and Materials Research Centre, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
    State Key Laboratory of Mechanics and Control of Mechanical Structures, Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education and Institute of Nano Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
    § Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
    *Address correspondence to [email protected], [email protected]
    Other Access OptionsSupporting Information (1)

    ACS Nano

    Cite this: ACS Nano 2013, 7, 8, 7126–7131
    Click to copy citationCitation copied!
    https://doi.org/10.1021/nn4024834
    Published July 11, 2013
    Copyright © 2013 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Tuning band energies of semiconductors through strain engineering can significantly enhance their electronic, photonic, and spintronic performances. Although low-dimensional nanostructures are relatively flexible, the reported tunability of the band gap is within 100 meV per 1% strain. It is also challenging to control strains in atomically thin semiconductors precisely and monitor the optical and phonon properties simultaneously. Here, we developed an electromechanical device that can apply biaxial compressive strain to trilayer MoS2 supported by a piezoelectric substrate and covered by a transparent graphene electrode. Photoluminescence and Raman characterizations show that the direct band gap can be blue-shifted for ∼300 meV per 1% strain. First-principles investigations confirm the blue-shift of the direct band gap and reveal a higher tunability of the indirect band gap than the direct one. The exceptionally high strain tunability of the electronic structure in MoS2 promising a wide range of applications in functional nanodevices and the developed methodology should be generally applicable for two-dimensional semiconductors.

    Copyright © 2013 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    XRD of the PMN-PT and MoS2, elasticity of the MoS2, Raman and PL mappings, and calculated Raman frequencies and band-gap energies. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 583 publications.

    1. Yuxiang Chen, Zhengyue Li, Yinfei Xie, Bo Zou, Yongze Xu, Yu Zhou, Jinfeng Yang, Huarui Sun. Strain- and Ar/H2 Annealing-Induced Sulfur Defects in Monolayer MoS2 Probed by Raman Spectroscopy. The Journal of Physical Chemistry C 2025, 129 (6) , 3145-3151. https://doi.org/10.1021/acs.jpcc.5c00296
    2. Conor S. Boland, Yiwei Sun, Dimitrios G. Papageorgiou. Bandgap Engineering of 2D Materials toward High-Performing Straintronics. Nano Letters 2024, 24 (41) , 12722-12732. https://doi.org/10.1021/acs.nanolett.4c03321
    3. Bhumit Luhar, Rahul Dhankhar, Rajesh V. Nair, Ashish Soni, Nagendra S. Kamath, Suman Kalyan Pal, Viswanath Balakrishnan. Charge Transfer Mediated Photoluminescence Engineering in WS2 Monolayers for Optoelectronic Application. ACS Applied Nano Materials 2024, 7 (19) , 22350-22359. https://doi.org/10.1021/acsanm.4c03296
    4. Tao Yuwen, Ruiquan Yang, Assel Aitkaliyeva, Charles J Hages, Daniel R. Talham. Spin-Crossover Solids as Phase-Change Materials to Actuate Strain in 2D MoS2. Chemistry of Materials 2024, 36 (18) , 8714-8724. https://doi.org/10.1021/acs.chemmater.4c01389
    5. Abin Varghese, Adityanarayan H. Pandey, Pooja Sharma, Yuefeng Yin, Nikhil V. Medhekar, Saurabh Lodha. Electrically Controlled High Sensitivity Strain Modulation in MoS2 Field-Effect Transistors via a Piezoelectric Thin Film on Silicon Substrates. Nano Letters 2024, 24 (28) , 8472-8480. https://doi.org/10.1021/acs.nanolett.4c00357
    6. Sergii Golovynskyi, Oleksandr I. Datsenko, Ana I. Pérez-Jiménez, Artem Kuklin, Marc Chaigneau, Andrii Golovynskyi, Iuliia Golovynska, Matteo Bosi, Luca Seravalli. Exciton and Trion at the Perimeter and Grain Boundary of CVD-Grown Monolayer MoS2: Strain Effects Influencing Application in Nano-Optoelectronics. ACS Applied Nano Materials 2024, 7 (13) , 15570-15582. https://doi.org/10.1021/acsanm.4c02284
    7. Mirali Jahangirzadeh Varjovi, Mehmet Emin Kilic, Engin Durgun. A First-Principles Investigation of InSiN2 Monolayer: A Novel Two-Dimensional Material with Enhanced Stability and Tunable Vibrational and Electronic Properties. The Journal of Physical Chemistry C 2024, 128 (18) , 7795-7805. https://doi.org/10.1021/acs.jpcc.4c01602
    8. Md Masud Rana, Kazi M. Alam, Narendra Chaulagain, John Garcia, Navneet Kumar, Damini Vrushabendrakumar, Harshitha Rajashekhar, Guy M. Bernard, Alkiviathes Meldrum, Vladimir K. Michaelis, Karthik Shankar. Tunable Absorption and Emission in Mixed Halide Bismuth Oxyhalides for Photoelectrochemical Water Splitting. ACS Applied Nano Materials 2024, 7 (6) , 6005-6019. https://doi.org/10.1021/acsanm.3c05925
    9. Ajit Kumar Katiyar, Anh Tuan Hoang, Duo Xu, Juyeong Hong, Beom Jin Kim, Seunghyeon Ji, Jong-Hyun Ahn. 2D Materials in Flexible Electronics: Recent Advances and Future Prospectives. Chemical Reviews 2024, 124 (2) , 318-419. https://doi.org/10.1021/acs.chemrev.3c00302
    10. Qing Liu, Silin Cui, Renji Bian, Er Pan, Guiming Cao, Wenwu Li, Fucai Liu. The Integration of Two-Dimensional Materials and Ferroelectrics for Device Applications. ACS Nano 2024, 18 (3) , 1778-1819. https://doi.org/10.1021/acsnano.3c05711
    11. Burcu Ozden, Tianyi Zhang, Mingzu Liu, Andres Fest, Daniel A Pearson, Ethan Khan, Sunil Uprety, Jiffer E. Razon, Javari Cherry, Kazunori Fujisawa, He Liu, Nestor Perea-López, Ke Wang, Tamara Isaacs-Smith, Minseo Park, Mauricio Terrones. Engineering Vacancies for the Creation of Antisite Defects in Chemical Vapor Deposition Grown Monolayer MoS2 and WS2 via Proton Irradiation. ACS Nano 2023, 17 (24) , 25101-25117. https://doi.org/10.1021/acsnano.3c07752
    12. Hongrong Wu, Na Li, Maolin Tang, Wenhui Tang, Junhua Zhao. Unconventional Enhancement of Photoluminescence in Multilayer MoS2 within MoS2/MoO2 Heterostructures: Implication for Optoelectronic Devices. ACS Applied Nano Materials 2023, 6 (24) , 22711-22719. https://doi.org/10.1021/acsanm.3c03445
    13. Mayur Khan, Ramcharan Meena, Devesh Kumar Avasthi, Ambuj Tripathi. Study of Ion Velocity Effect on the Band Gap of CVD-Grown Few-Layer MoS2. ACS Omega 2023, 8 (49) , 46540-46547. https://doi.org/10.1021/acsomega.3c05240
    14. Yeojin Ahn, Gyubin Lee, Namgyu Noh, Chulwan Lee, Duc Duy Le, Sunghun Kim, Yeonghoon Lee, Jounghoon Hyun, Chan-young Lim, Jaehun Cha, Mingi Jho, Seonggeon Gim, Jonathan D. Denlinger, Chan-Ho Yang, Jong Min Yuk, Myung Joon Han, Yeongkwan Kim. Converting the Bulk Transition Metal Dichalcogenides Crystal into Stacked Monolayers via Ethylenediamine Intercalation. Nano Letters 2023, 23 (21) , 9733-9739. https://doi.org/10.1021/acs.nanolett.3c02268
    15. Rehab Albaridy, Dharmaraj Periyanagounder, Dipti Naphade, Chien-Ju Lee, Mohamed Hedhili, Yi Wan, Wen-Hao Chang, Thomas D. Anthopoulos, Vincent Tung, Areej Aljarb, Udo Schwingenschlögl. Strain-Induced Sulfur Vacancies in Monolayer MoS2. ACS Materials Letters 2023, 5 (9) , 2584-2593. https://doi.org/10.1021/acsmaterialslett.3c00507
    16. Adrián Dewambrechies, Alexander Yu. Polyakov, Betül Küçüköz, Timur O. Shegai. Enhanced Second-Order Nonlinearities at Strained Ultrasharp Zigzag Edges in Multilayer MoS2. The Journal of Physical Chemistry C 2023, 127 (31) , 15395-15405. https://doi.org/10.1021/acs.jpcc.3c03812
    17. Chae-Lin Park, Byeonghwa Goh, Shi Hyeong Kim, Joonmyung Choi. Omnidirectional Energy Harvesting Fleeces. ACS Applied Materials & Interfaces 2023, 15 (30) , 36688-36697. https://doi.org/10.1021/acsami.3c06644
    18. Rita Tilmann, Cian Bartlam, Oliver Hartwig, Bartlomiej Tywoniuk, Nikolas Dominik, Conor P. Cullen, Lisanne Peters, Tanja Stimpel-Lindner, Niall McEvoy, Georg S. Duesberg. Identification of Ubiquitously Present Polymeric Adlayers on 2D Transition Metal Dichalcogenides. ACS Nano 2023, 17 (11) , 10617-10627. https://doi.org/10.1021/acsnano.3c01649
    19. Henrik Wördenweber, Annika Grundmann, Zhaodong Wang, Susanne Hoffmann-Eifert, Holger Kalisch, Andrei Vescan, Michael Heuken, Rainer Waser, Silvia Karthäuser. The MoS2-Graphene-Sapphire Heterostructure: Influence of Substrate Properties on the MoS2 Band Structure. The Journal of Physical Chemistry C 2023, 127 (22) , 10878-10887. https://doi.org/10.1021/acs.jpcc.3c02503
    20. Anupam Giri, Gyeongbae Park, Unyong Jeong. Layer-Structured Anisotropic Metal Chalcogenides: Recent Advances in Synthesis, Modulation, and Applications. Chemical Reviews 2023, 123 (7) , 3329-3442. https://doi.org/10.1021/acs.chemrev.2c00455
    21. Amal Kishore, Nilakantha Tripathy, Abir De Sarkar. Unconventional Anisotropy in Excitonic Properties and Carrier Mobility in Iodine-Based XTeI (X = Ga, In) Monolayers for Visible-Light Photocatalytic Water Splitting. The Journal of Physical Chemistry C 2023, 127 (4) , 1992-2002. https://doi.org/10.1021/acs.jpcc.2c07367
    22. Navid Solati, Cüneyt Karakaya, Sarp Kaya. Advancing the Understanding of the Structure–Activity–Durability Relation of 2D MoS2 for the Hydrogen Evolution Reaction. ACS Catalysis 2023, 13 (1) , 342-354. https://doi.org/10.1021/acscatal.2c03719
    23. Yu Lei, Tianyi Zhang, Yu-Chuan Lin, Tomotaroh Granzier-Nakajima, George Bepete, Dorota A. Kowalczyk, Zhong Lin, Da Zhou, Thomas F. Schranghamer, Akhil Dodda, Amritanand Sebastian, Yifeng Chen, Yuanyue Liu, Geoffrey Pourtois, Thomas J. Kempa, Bruno Schuler, Mark T. Edmonds, Su Ying Quek, Ursula Wurstbauer, Stephen M. Wu, Nicholas R. Glavin, Saptarshi Das, Saroj Prasad Dash, Joan M. Redwing, Joshua A. Robinson, Mauricio Terrones. Graphene and Beyond: Recent Advances in Two-Dimensional Materials Synthesis, Properties, and Devices. ACS Nanoscience Au 2022, 2 (6) , 450-485. https://doi.org/10.1021/acsnanoscienceau.2c00017
    24. Zhuofa Chen, Weijun Luo, Liangbo Liang, Xi Ling, Anna K. Swan. Charge Separation in Monolayer WSe2 by Strain Engineering: Implications for Strain-Induced Diode Action. ACS Applied Nano Materials 2022, 5 (10) , 15095-15101. https://doi.org/10.1021/acsanm.2c03264
    25. Dongdong Ding, Zhuangzhuang Qu, Xiangyan Han, Chunrui Han, Quan Zhuang, Xiang-Long Yu, Ruirui Niu, Zhiyu Wang, Zhuoxian Li, Zizhao Gan, Jiansheng Wu, Jianming Lu. Multivalley Superconductivity in Monolayer Transition Metal Dichalcogenides. Nano Letters 2022, 22 (19) , 7919-7926. https://doi.org/10.1021/acs.nanolett.2c02947
    26. Ki Seok Kim, Ki Hyun Kim, Ji Eun Kang, Ju-Hee Lee, You Jin Ji, Geun Young Yeom. Atomic Layer Engineering of TMDs by Modulation of Top Chalcogen Atoms: For Electrical Contact and Chemical Doping. ACS Applied Electronic Materials 2022, 4 (8) , 3794-3800. https://doi.org/10.1021/acsaelm.2c00379
    27. Jian Liu, Nan Lu, Jie Guan, Yaowu Hu. Laser Shock-Induced Nano-Twist of Transition Metal Dichalcogenides. ACS Applied Materials & Interfaces 2022, 14 (32) , 37213-37221. https://doi.org/10.1021/acsami.2c10661
    28. Libin Liang, Katrina Czar, Madalina I. Furis. Strain-Enhanced Formation of Delocalized Exciton States in Phthalocyanine Crystalline Thin Films. The Journal of Physical Chemistry C 2022, 126 (20) , 8889-8896. https://doi.org/10.1021/acs.jpcc.2c01382
    29. Xinyun Wang, Yuzhou Zhao, Xiao Kong, Qi Zhang, Hong Kuan Ng, Sharon Xiaodai Lim, Yue Zheng, Xiao Wu, Kenji Watanabe, Qing-Hua Xu, Takashi Taniguchi, Goki Eda, Kuan Eng Johnson Goh, Song Jin, Kian Ping Loh, Feng Ding, Wanxin Sun, Chorng Haur Sow. Dynamic Tuning of Moiré Superlattice Morphology by Laser Modification. ACS Nano 2022, 16 (5) , 8172-8180. https://doi.org/10.1021/acsnano.2c01625
    30. Robert Oliva, Tomasz Wozniak, Paulo E. Faria, Jr., Filip Dybala, Jan Kopaczek, Jaroslav Fabian, Paweł Scharoch, Robert Kudrawiec. Strong Substrate Strain Effects in Multilayered WS2 Revealed by High-Pressure Optical Measurements. ACS Applied Materials & Interfaces 2022, 14 (17) , 19857-19868. https://doi.org/10.1021/acsami.2c01726
    31. Rui Xu, Yingzhuo Lun, Lan Meng, Fei Pang, Yuhao Pan, Zhiyue Zheng, Le Lei, Sabir Hussain, Yan Jun Li, Yasuhiro Sugawara, Jiawang Hong, Wei Ji, Zhihai Cheng. Visualization of Strain-Engineered Nanopattern in Center-Confined Mesoscopic WS2 Monolayer Flakes. The Journal of Physical Chemistry C 2022, 126 (16) , 7184-7192. https://doi.org/10.1021/acs.jpcc.1c10538
    32. Inho Jeong, Kyungjune Cho, Seobin Yun, Jiwon Shin, Jaeyoung Kim, Gyu Tae Kim, Takhee Lee, Seungjun Chung. Tailoring the Electrical Characteristics of MoS2 FETs through Controllable Surface Charge Transfer Doping Using Selective Inkjet Printing. ACS Nano 2022, 16 (4) , 6215-6223. https://doi.org/10.1021/acsnano.2c00021
    33. Nikos Kanistras, Aristotelis P. Sgouros, George Kalosakas, Michail M. Sigalas. Delayed Thermal Relaxation in Lateral Heterostructures of Transition-Metal Dichalcogenides. The Journal of Physical Chemistry C 2022, 126 (15) , 6815-6824. https://doi.org/10.1021/acs.jpcc.2c00789
    34. Zihan Zhao, Weifeng Zhang, He Hao, Nan Liu. Efficient and Air-Stable Doping of Folded MoS2 Nanosheets for Use in Field-Effect Transistors. ACS Applied Nano Materials 2022, 5 (2) , 2068-2074. https://doi.org/10.1021/acsanm.1c03794
    35. Di Wang, Zhengwei Zhang, Bolong Huang, Hongmei Zhang, Ziwei Huang, Miaomiao Liu, Xidong Duan. Few-Layer WS2–WSe2 Lateral Heterostructures: Influence of the Gas Precursor Selenium/Tungsten Ratio on the Number of Layers. ACS Nano 2022, 16 (1) , 1198-1207. https://doi.org/10.1021/acsnano.1c08979
    36. Cinzia Di Giorgio, Elena Blundo, Giorgio Pettinari, Marco Felici, Antonio Polimeni, Fabrizio Bobba. Exceptional Elasticity of Microscale Constrained MoS2 Domes. ACS Applied Materials & Interfaces 2021, 13 (40) , 48228-48238. https://doi.org/10.1021/acsami.1c13293
    37. Xi Yang, Zhihong Zhu, Fang Luo, Guang Wang, Gang Peng, Mengjian Zhu, Shiqiao Qin. Strain-Induced Alternating Photoluminescence Segmentation in Hexagonal Monolayer Tungsten Disulfide Grown by Physical Vapor Deposition. ACS Applied Materials & Interfaces 2021, 13 (38) , 46164-46170. https://doi.org/10.1021/acsami.1c13096
    38. Linfei Li, Jeremy F. Schultz, Sayantan Mahapatra, Xiaolong Liu, Chasen Shaw, Xu Zhang, Mark C. Hersam, Nan Jiang. Angstrom-Scale Spectroscopic Visualization of Interfacial Interactions in an Organic/Borophene Vertical Heterostructure. Journal of the American Chemical Society 2021, 143 (38) , 15624-15634. https://doi.org/10.1021/jacs.1c04380
    39. Yichao Zhang, David J. Flannigan. Imaging Nanometer Phonon Softening at Crystal Surface Steps with 4D Ultrafast Electron Microscopy. Nano Letters 2021, 21 (17) , 7332-7338. https://doi.org/10.1021/acs.nanolett.1c02524
    40. Weifeng Zhang, Zihan Zhao, Yating Yang, Yan Zhang, He Hao, Li Li, Weigao Xu, Banghua Peng, Run Long, Nan Liu. Paraffin-Enabled Compressive Folding of Two-Dimensional Materials with Controllable Broadening of the Electronic Band Gap. ACS Applied Materials & Interfaces 2021, 13 (34) , 40922-40931. https://doi.org/10.1021/acsami.1c11269
    41. Zhihua Cheng, Yukun Xiao, Wenpeng Wu, Xinqun Zhang, Qiang Fu, Yang Zhao, Liangti Qu. All-pH-Tolerant In-Plane Heterostructures for Efficient Hydrogen Evolution Reaction. ACS Nano 2021, 15 (7) , 11417-11427. https://doi.org/10.1021/acsnano.1c01024
    42. Xinke Liu, Shengqun Hu, Zhichen Lin, Xiaohua Li, Lijun Song, Wenjie Yu, Qi Wang, Wei He. High-Performance MoS2 Photodetectors Prepared Using a Patterned Gallium Nitride Substrate. ACS Applied Materials & Interfaces 2021, 13 (13) , 15820-15826. https://doi.org/10.1021/acsami.0c22799
    43. Zhengwei Zhang, Yuan Liu, Chen Dai, Xiangdong Yang, Peng Chen, Huifang Ma, Bei Zhao, Ruixia Wu, Ziwei Huang, Di Wang, Miaomiao Liu, Ying Huangfu, Sen Xin, Jun Luo, Yiliu Wang, Jia Li, Bo Li, Xidong Duan. Highly Selective Synthesis of Monolayer or Bilayer WSe2 Single Crystals by Pre-annealing the Solid Precursor. Chemistry of Materials 2021, 33 (4) , 1307-1313. https://doi.org/10.1021/acs.chemmater.0c04210
    44. Jubok Lee, Seok Joon Yun, Changwon Seo, Kiwon Cho, Tae Soo Kim, Gwang Hwi An, Kibum Kang, Hyun Seok Lee, Jeongyong Kim. Switchable, Tunable, and Directable Exciton Funneling in Periodically Wrinkled WS2. Nano Letters 2021, 21 (1) , 43-50. https://doi.org/10.1021/acs.nanolett.0c02619
    45. Mike Tebyetekerwa, Jian Zhang, Zhen Xu, Thien N. Truong, Zongyou Yin, Yuerui Lu, Seeram Ramakrishna, Daniel Macdonald, Hieu T. Nguyen. Mechanisms and Applications of Steady-State Photoluminescence Spectroscopy in Two-Dimensional Transition-Metal Dichalcogenides. ACS Nano 2020, 14 (11) , 14579-14604. https://doi.org/10.1021/acsnano.0c08668
    46. Ghada Dushaq, Bruna Paredes, Jin-You Lu, Matteo Chiesa, Mahmoud Rasras. Tuning the Photoluminescence of Few-Layer MoS2 Nanosheets by Mechanical Nanostamping for Broadband Optoelectronic Applications. ACS Applied Nano Materials 2020, 3 (10) , 10333-10341. https://doi.org/10.1021/acsanm.0c02235
    47. Kunyan Zhang, Yunfan Guo, Qingqing Ji, Ang-Yu Lu, Cong Su, Hua Wang, Alexander A. Puretzky, David B. Geohegan, Xiaofeng Qian, Shiang Fang, Efthimios Kaxiras, Jing Kong, Shengxi Huang. Enhancement of van der Waals Interlayer Coupling through Polar Janus MoSSe. Journal of the American Chemical Society 2020, 142 (41) , 17499-17507. https://doi.org/10.1021/jacs.0c07051
    48. Jakub Sitek, Janusz Plocharski, Iwona Pasternak, Arkadiusz P. Gertych, Clifford McAleese, Ben R. Conran, Mariusz Zdrojek, Wlodek Strupinski. Substrate-Induced Variances in Morphological and Structural Properties of MoS2 Grown by Chemical Vapor Deposition on Epitaxial Graphene and SiO2. ACS Applied Materials & Interfaces 2020, 12 (40) , 45101-45110. https://doi.org/10.1021/acsami.0c06173
    49. Luca Sortino, Matthew Brooks, Panaiot G. Zotev, Armando Genco, Javier Cambiasso, Sandro Mignuzzi, Stefan A. Maier, Guido Burkard, Riccardo Sapienza, Alexander I. Tartakovskii. Dielectric Nanoantennas for Strain Engineering in Atomically Thin Two-Dimensional Semiconductors. ACS Photonics 2020, 7 (9) , 2413-2422. https://doi.org/10.1021/acsphotonics.0c00294
    50. Hyowon Moon, Gabriele Grosso, Chitraleema Chakraborty, Cheng Peng, Takashi Taniguchi, Kenji Watanabe, Dirk Englund. Dynamic Exciton Funneling by Local Strain Control in a Monolayer Semiconductor. Nano Letters 2020, 20 (9) , 6791-6797. https://doi.org/10.1021/acs.nanolett.0c02757
    51. Zhen Zhang, Jing-Yang You, Bo Gu, Gang Su. Antiferromagnetic and Electric Polarized States in Two-Dimensional Janus Semiconductor Fe2Cl3I3. The Journal of Physical Chemistry C 2020, 124 (35) , 19219-19227. https://doi.org/10.1021/acs.jpcc.0c04813
    52. Cliff Chen, Protik Das, Ece Aytan, Weimin Zhou, Justin Horowitz, Biswarup Satpati, Alexander A. Balandin, Roger K. Lake, Peng Wei. Strain-Controlled Superconductivity in Few-Layer NbSe2. ACS Applied Materials & Interfaces 2020, 12 (34) , 38744-38750. https://doi.org/10.1021/acsami.0c08804
    53. Yu Kyoung Ryu, Felix Carrascoso, Rubén López-Nebreda, Nicolás Agraït, Riccardo Frisenda, Andres Castellanos-Gomez. Microheater Actuators as a Versatile Platform for Strain Engineering in 2D Materials. Nano Letters 2020, 20 (7) , 5339-5345. https://doi.org/10.1021/acs.nanolett.0c01706
    54. Madan Sharma, Aditya Singh, Rajendra Singh. Monolayer MoS2 Transferred on Arbitrary Substrates for Potential Use in Flexible Electronics. ACS Applied Nano Materials 2020, 3 (5) , 4445-4453. https://doi.org/10.1021/acsanm.0c00551
    55. Qingyi Li, Laizhi Sui, Guangming Niu, Jutao Jiang, Yutong Zhang, Guorong Wu, Mingxing Jin, Kaijun Yuan. Pressure Manipulation of Interlayer Interactions and Ultrafast Carrier Dynamics in Few-Layer MoS2. The Journal of Physical Chemistry C 2020, 124 (20) , 11183-11192. https://doi.org/10.1021/acs.jpcc.0c01869
    56. Youchao Kong, Haoqiang Ai, Wei Wang, Xiuhua Xie, Kin Ho Lo, Shuangpeng Wang, Hui Pan. Waved 2D Transition-Metal Disulfides for Nanodevices and Catalysis: A First-Principle Study. ACS Applied Nano Materials 2020, 3 (3) , 2804-2812. https://doi.org/10.1021/acsanm.0c00119
    57. Pavithra Sriram, Yu-Po Wen, Arumugam Manikandan, Kun-Chieh Hsu, Shin-Yi Tang, Bo-Wei Hsu, Yu-Ze Chen, Hao-Wu Lin, Horng-Tay Jeng, Yu-Lun Chueh, Ta-Jen Yen. Enhancing Quantum Yield in Strained MoS2 Bilayers by Morphology-Controlled Plasmonic Nanostructures toward Superior Photodetectors. Chemistry of Materials 2020, 32 (6) , 2242-2252. https://doi.org/10.1021/acs.chemmater.9b02886
    58. Xiaofei Liu, Yao Li, Wanlin Guo. Friction Modulation via Photoexcitation in Two-Dimensional Materials. ACS Applied Materials & Interfaces 2020, 12 (2) , 2910-2915. https://doi.org/10.1021/acsami.9b20285
    59. Fangzhi Yan, Chih-Kai Liao, Guanhua Wu, Stephan B. Bach, Mahmoud A. Mahmoud. Metal Nanoclusters Modify the Band Gap and Maintain the Ultrathin Nature of Semiconducting Two-Dimensional Materials. The Journal of Physical Chemistry C 2019, 123 (49) , 29856-29865. https://doi.org/10.1021/acs.jpcc.9b08103
    60. Hong Je Choi, Woosun Jang, Young Eun Kim, Aloysius Soon, Yong Soo Cho. Stretching-Driven Crystal Anisotropy and Optical Modulations of Flexible Wide Band Gap Inorganic Thin Films. ACS Applied Materials & Interfaces 2019, 11 (44) , 41516-41522. https://doi.org/10.1021/acsami.9b14274
    61. Daniel J. Trainer, Yuan Zhang, Fabrizio Bobba, Xiaoxing Xi, Saw-Wai Hla, Maria Iavarone. The Effects of Atomic-Scale Strain Relaxation on the Electronic Properties of Monolayer MoS2. ACS Nano 2019, 13 (7) , 8284-8291. https://doi.org/10.1021/acsnano.9b03652
    62. Chih-Kai Liao, Jasmine Phan, Maura Herrera, Mahmoud A. Mahmoud. Modifying the Band Gap of Semiconducting Two-Dimensional Materials by Polymer Assembly into Different Structures. Langmuir 2019, 35 (14) , 4956-4965. https://doi.org/10.1021/acs.langmuir.9b00205
    63. Faxin Li, Jianli Zou, Lujie Cao, Zhiqiang Li, Shuai Gu, Ying Liu, Jianqiao Zhang, Hongtao Liu, Zhouguang Lu. In Situ Study of K+ Electrochemical Intercalating into MoS2 Flakes. The Journal of Physical Chemistry C 2019, 123 (8) , 5067-5072. https://doi.org/10.1021/acs.jpcc.8b09898
    64. Anastasia V. Tyurnina, Denis A. Bandurin, Ekaterina Khestanova, Vasyl G. Kravets, Maciej Koperski, Francisco Guinea, Alexander N. Grigorenko, Andre K. Geim, Irina V. Grigorieva. Strained Bubbles in van der Waals Heterostructures as Local Emitters of Photoluminescence with Adjustable Wavelength. ACS Photonics 2019, 6 (2) , 516-524. https://doi.org/10.1021/acsphotonics.8b01497
    65. Juanxia Wu, Liming Xie. Structural Quantification for Graphene and Related Two-Dimensional Materials by Raman Spectroscopy. Analytical Chemistry 2019, 91 (1) , 468-481. https://doi.org/10.1021/acs.analchem.8b04991
    66. Peiyu Chen, Wenshuo Xu, Yakun Gao, Jamie H. Warner, Martin R. Castell. Epitaxial Growth of Monolayer MoS2 on SrTiO3 Single Crystal Substrates for Applications in Nanoelectronics. ACS Applied Nano Materials 2018, 1 (12) , 6976-6988. https://doi.org/10.1021/acsanm.8b01792
    67. Zuyun He, Ran Zhao, Xiaofei Chen, Huijun Chen, Yunmin Zhu, Huimin Su, Shengxi Huang, Jianming Xue, Junfeng Dai, Shuang Cheng, Meilin Liu, Xinwei Wang, Yan Chen. Defect Engineering in Single-Layer MoS2 Using Heavy Ion Irradiation. ACS Applied Materials & Interfaces 2018, 10 (49) , 42524-42533. https://doi.org/10.1021/acsami.8b17145
    68. Junmo Kang, Itamar Balla, Xiaolong Liu, Hadallia Bergeron, Soo Kim, Christopher Wolverton, Mark C. Hersam. Selective Transfer of Rotationally Commensurate MoS2 from an Epitaxially Grown van der Waals Heterostructure. Chemistry of Materials 2018, 30 (23) , 8495-8500. https://doi.org/10.1021/acs.chemmater.8b03128
    69. Tri Khoa Nguyen, Anh Duc Nguyen, Chinh Tam Le, Farman Ullah, Zeeshan Tahir, Kyo-in Koo, Eunah Kim, Dong-Wook Kim, Joon I. Jang, Yong Soo Kim. High Photoresponse in Conformally Grown Monolayer MoS2 on a Rugged Substrate. ACS Applied Materials & Interfaces 2018, 10 (47) , 40824-40830. https://doi.org/10.1021/acsami.8b15673
    70. Zhi Gen Yu, Boris I. Yakobson, Yong-Wei Zhang. Realizing Indirect-to-Direct Band Gap Transition in Few-Layer Two-Dimensional MX2 (M = Mo, W; X = S, Se). ACS Applied Energy Materials 2018, 1 (8) , 4115-4121. https://doi.org/10.1021/acsaem.8b00774
    71. Shrawan Roy, Wooseon Choi, Sera Jeon, Do-Hwan Kim, Hyun Kim, Seok Joon Yun, Yongjun Lee, Jaekwang Lee, Young-Min Kim, Jeongyong Kim. Atomic Observation of Filling Vacancies in Monolayer Transition Metal Sulfides by Chemically Sourced Sulfur Atoms. Nano Letters 2018, 18 (7) , 4523-4530. https://doi.org/10.1021/acs.nanolett.8b01714
    72. Michael J. Moody, Alex Henning, Titel Jurca, Ju Ying Shang, Hadallia Bergeron, Itamar Balla, Jack N. Olding, Emily A. Weiss, Mark C. Hersam, Tracy L. Lohr, Tobin J. Marks, Lincoln J. Lauhon. Atomic Layer Deposition of Molybdenum Oxides with Tunable Stoichiometry Enables Controllable Doping of MoS2. Chemistry of Materials 2018, 30 (11) , 3628-3632. https://doi.org/10.1021/acs.chemmater.8b01171
    73. Hsiang-Ting Lin, Chiao-Yun Chang, Pi-Ju Cheng, Ming-Yang Li, Chia-Chin Cheng, Shu-Wei Chang, Lance L. J. Li, Chih-Wei Chu, Pei-Kuen Wei, Min-Hsiung Shih. Circular Dichroism Control of Tungsten Diselenide (WSe2) Atomic Layers with Plasmonic Metamolecules. ACS Applied Materials & Interfaces 2018, 10 (18) , 15996-16004. https://doi.org/10.1021/acsami.8b01472
    74. Julien Chaste, Amine Missaoui, Si Huang, Hugo Henck, Zeineb Ben Aziza, Laurence Ferlazzo, Carl Naylor, Adrian Balan, Alan T. Charlie Johnson, Jr., Rémy Braive, Abdelkarim Ouerghi. Intrinsic Properties of Suspended MoS2 on SiO2/Si Pillar Arrays for Nanomechanics and Optics. ACS Nano 2018, 12 (4) , 3235-3242. https://doi.org/10.1021/acsnano.7b07689
    75. Xiangru Fang, Pei Wei, Lin Wang, Xiaoshan Wang, Bo Chen, Qiyuan He, Qiuyan Yue, Jindong Zhang, Weihao Zhao, Jialiang Wang, Gang Lu, Hua Zhang, Wei Huang, Xiao Huang, Hai Li. Transforming Monolayer Transition-Metal Dichalcogenide Nanosheets into One-Dimensional Nanoscrolls with High Photosensitivity. ACS Applied Materials & Interfaces 2018, 10 (15) , 13011-13018. https://doi.org/10.1021/acsami.8b01856
    76. Mathew J. Cherukara, Daniel S. Schulmann, Kiran Sasikumar, Andrew J. Arnold, Henry Chan, Sridhar Sadasivam, Wonsuk Cha, Jorg Maser, Saptarshi Das, Subramanian K.R.S. Sankaranarayanan, Ross J. Harder. Three-Dimensional Integrated X-ray Diffraction Imaging of a Native Strain in Multi-Layered WSe2. Nano Letters 2018, 18 (3) , 1993-2000. https://doi.org/10.1021/acs.nanolett.7b05441
    77. Jing Liang, Jin Zhang, Zhenzhu Li, Hao Hong, Jinhuan Wang, Zhihong Zhang, Xu Zhou, Ruixi Qiao, Jiyu Xu, Peng Gao, Zhirong Liu, Zhongfan Liu, Zhipei Sun, Sheng Meng, Kaihui Liu, and Dapeng Yu . Monitoring Local Strain Vector in Atomic-Layered MoSe2 by Second-Harmonic Generation. Nano Letters 2017, 17 (12) , 7539-7543. https://doi.org/10.1021/acs.nanolett.7b03476
    78. Haoqi Chen, Bin Li, and Jinlong Yang . Proximity Effect Induced Spin Injection in Phosphorene on Magnetic Insulator. ACS Applied Materials & Interfaces 2017, 9 (44) , 38999-39010. https://doi.org/10.1021/acsami.7b11454
    79. Mahfujur Rahaman, Raul D. Rodriguez, Gerd Plechinger, Stefan Moras, Christian Schüller, Tobias Korn, and Dietrich R. T. Zahn . Highly Localized Strain in a MoS2/Au Heterostructure Revealed by Tip-Enhanced Raman Spectroscopy. Nano Letters 2017, 17 (10) , 6027-6033. https://doi.org/10.1021/acs.nanolett.7b02322
    80. Zuocheng Zhang, Likai Li, Jason Horng, Nai Zhou Wang, Fangyuan Yang, Yijun Yu, Yu Zhang, Guorui Chen, Kenji Watanabe, Takashi Taniguchi, Xian Hui Chen, Feng Wang, and Yuanbo Zhang . Strain-Modulated Bandgap and Piezo-Resistive Effect in Black Phosphorus Field-Effect Transistors. Nano Letters 2017, 17 (10) , 6097-6103. https://doi.org/10.1021/acs.nanolett.7b02624
    81. Sheng-Wen Wang, Henry Medina, Kuo-Bin Hong, Chun-Chia Wu, Yindong Qu, Arumugam Manikandan, Teng-Yu Su, Po-Tsung Lee, Zhi-Quan Huang, Zhiming Wang, Feng-Chuan Chuang, Hao-Chung Kuo, and Yu-Lun Chueh . Thermally Strained Band Gap Engineering of Transition-Metal Dichalcogenide Bilayers with Enhanced Light–Matter Interaction toward Excellent Photodetectors. ACS Nano 2017, 11 (9) , 8768-8776. https://doi.org/10.1021/acsnano.7b02444
    82. Sangyeon Pak, Juwon Lee, Young-Woo Lee, A-Rang Jang, Seongjoon Ahn, Kyung Yeol Ma, Yuljae Cho, John Hong, Sanghyo Lee, Hu Young Jeong, Hyunsik Im, Hyeon Suk Shin, Stephen M. Morris, SeungNam Cha, Jung Inn Sohn, Jong Min Kim. Strain-Mediated Interlayer Coupling Effects on the Excitonic Behaviors in an Epitaxially Grown MoS2/WS2 van der Waals Heterobilayer. Nano Letters 2017, 17 (9) , 5634-5640. https://doi.org/10.1021/acs.nanolett.7b02513
    83. Sandhya Susarla, Vidya Kochat, Alex Kutana, Jordan A. Hachtel, Juan Carlos Idrobo, Robert Vajtai, Boris I. Yakobson, Chandra Sekhar Tiwary, and Pulickel M. Ajayan . Phase Segregation Behavior of Two-Dimensional Transition Metal Dichalcogenide Binary Alloys Induced by Dissimilar Substitution. Chemistry of Materials 2017, 29 (17) , 7431-7439. https://doi.org/10.1021/acs.chemmater.7b02407
    84. Rui Yang, Jaesung Lee, Souvik Ghosh, Hao Tang, R. Mohan Sankaran, Christian A. Zorman, and Philip X.-L. Feng . Tuning Optical Signatures of Single- and Few-Layer MoS2 by Blown-Bubble Bulge Straining up to Fracture. Nano Letters 2017, 17 (8) , 4568-4575. https://doi.org/10.1021/acs.nanolett.7b00730
    85. Sheng-shi Li, Wei-xiao Ji, Ping Li, Shu-jun Hu, Li Cai, Chang-wen Zhang, and Shi-shen Yan . Tunability of the Quantum Spin Hall Effect in Bi(110) Films: Effects of Electric Field and Strain Engineering. ACS Applied Materials & Interfaces 2017, 9 (25) , 21515-21523. https://doi.org/10.1021/acsami.7b02818
    86. Li Tao, Kun Chen, Zefeng Chen, Wenjun Chen, Xuchun Gui, Huanjun Chen, Xinming Li, and Jian-Bin Xu . Centimeter-Scale CVD Growth of Highly Crystalline Single-Layer MoS2 Film with Spatial Homogeneity and the Visualization of Grain Boundaries. ACS Applied Materials & Interfaces 2017, 9 (13) , 12073-12081. https://doi.org/10.1021/acsami.7b00420
    87. Ruoqi Ai, Xun Guan, Jia Li, Kangkang Yao, Peng Chen, Zhengwei Zhang, Xidong Duan, and Xiangfeng Duan . Growth of Single-Crystalline Cadmium Iodide Nanoplates, CdI2/MoS2 (WS2, WSe2) van der Waals Heterostructures, and Patterned Arrays. ACS Nano 2017, 11 (3) , 3413-3419. https://doi.org/10.1021/acsnano.7b01507
    88. Debora Pierucci, Hugo Henck, Zeineb Ben Aziza, Carl H. Naylor, Adrian Balan, Julien E. Rault, Mathieu G. Silly, Yannick J. Dappe, François Bertran, Patrick Le Fèvre, Fausto Sirotti, A. T. Charlie Johnson, and Abdelkarim Ouerghi . Tunable Doping in Hydrogenated Single Layered Molybdenum Disulfide. ACS Nano 2017, 11 (2) , 1755-1761. https://doi.org/10.1021/acsnano.6b07661
    89. Eric Singh, Ki Seok Kim, Geun Young Yeom, and Hari Singh Nalwa . Atomically Thin-Layered Molybdenum Disulfide (MoS2) for Bulk-Heterojunction Solar Cells. ACS Applied Materials & Interfaces 2017, 9 (4) , 3223-3245. https://doi.org/10.1021/acsami.6b13582
    90. Hye Min Oh, Hyun Jeong, Gang Hee Han, Hyun Kim, Jung Ho Kim, Si Young Lee, Seung Yol Jeong, Sooyeon Jeong, Doo Jae Park, Ki Kang Kim, Young Hee Lee, and Mun Seok Jeong . Modulating Electronic Properties of Monolayer MoS2 via Electron-Withdrawing Functional Groups of Graphene Oxide. ACS Nano 2016, 10 (11) , 10446-10453. https://doi.org/10.1021/acsnano.6b06319
    91. Honglin Li, Ke Yu, Zheng Tang, and Ziqiang Zhu . Experimental and First-Principles Investigation of MoWS2 with High Hydrogen Evolution Performance. ACS Applied Materials & Interfaces 2016, 8 (43) , 29442-29451. https://doi.org/10.1021/acsami.6b09620
    92. A. E. Yore, K. K. H. Smithe, W. Crumrine, A. Miller, J. A. Tuck, B. Redd, E. Pop, Bin Wang, and A. K. M. Newaz . Visualization of Defect-Induced Excitonic Properties of the Edges and Grain Boundaries in Synthesized Monolayer Molybdenum Disulfide. The Journal of Physical Chemistry C 2016, 120 (42) , 24080-24087. https://doi.org/10.1021/acs.jpcc.6b06828
    93. Masahiro Matsunaga, Ayaka Higuchi, Guanchen He, Tetsushi Yamada, Peter Krüger, Yuichi Ochiai, Yongji Gong, Robert Vajtai, Pulickel M. Ajayan, Jonathan P. Bird, and Nobuyuki Aoki . Nanoscale-Barrier Formation Induced by Low-Dose Electron-Beam Exposure in Ultrathin MoS2 Transistors. ACS Nano 2016, 10 (10) , 9730-9737. https://doi.org/10.1021/acsnano.6b05952
    94. Liyan Zhu, Shan-Shan Wang, Shan Guan, Ying Liu, Tingting Zhang, Guibin Chen, and Shengyuan A. Yang . Blue Phosphorene Oxide: Strain-Tunable Quantum Phase Transitions and Novel 2D Emergent Fermions. Nano Letters 2016, 16 (10) , 6548-6554. https://doi.org/10.1021/acs.nanolett.6b03208
    95. Angelica Azcatl, Xiaoye Qin, Abhijith Prakash, Chenxi Zhang, Lanxia Cheng, Qingxiao Wang, Ning Lu, Moon J. Kim, Jiyoung Kim, Kyeongjae Cho, Rafik Addou, Christopher L. Hinkle, Joerg Appenzeller, and Robert M. Wallace . Covalent Nitrogen Doping and Compressive Strain in MoS2 by Remote N2 Plasma Exposure. Nano Letters 2016, 16 (9) , 5437-5443. https://doi.org/10.1021/acs.nanolett.6b01853
    96. David Lloyd, Xinghui Liu, Jason W. Christopher, Lauren Cantley, Anubhav Wadehra, Brian L. Kim, Bennett B. Goldberg, Anna K. Swan, and J. Scott Bunch . Band Gap Engineering with Ultralarge Biaxial Strains in Suspended Monolayer MoS2. Nano Letters 2016, 16 (9) , 5836-5841. https://doi.org/10.1021/acs.nanolett.6b02615
    97. Yu-Kai Lin, Ruei-San Chen, Tsu-Chin Chou, Yi-Hsin Lee, Yang-Fang Chen, Kuei-Hsien Chen, and Li-Chyong Chen . Thickness-Dependent Binding Energy Shift in Few-Layer MoS2 Grown by Chemical Vapor Deposition. ACS Applied Materials & Interfaces 2016, 8 (34) , 22637-22646. https://doi.org/10.1021/acsami.6b06615
    98. Jorge Quereda, Pablo San-Jose, Vincenzo Parente, Luis Vaquero-Garzon, Aday J. Molina-Mendoza, Nicolás Agraït, Gabino Rubio-Bollinger, Francisco Guinea, Rafael Roldán, and Andres Castellanos-Gomez . Strong Modulation of Optical Properties in Black Phosphorus through Strain-Engineered Rippling. Nano Letters 2016, 16 (5) , 2931-2937. https://doi.org/10.1021/acs.nanolett.5b04670
    99. Yongmin He, Yang Yang, Zhuhua Zhang, Yongji Gong, Wu Zhou, Zhili Hu, Gonglan Ye, Xiang Zhang, Elisabeth Bianco, Sidong Lei, Zehua Jin, Xiaolong Zou, Yingchao Yang, Yuan Zhang, Erqing Xie, Jun Lou, Boris Yakobson, Robert Vajtai, Bo Li, and Pulickel Ajayan . Strain-Induced Electronic Structure Changes in Stacked van der Waals Heterostructures. Nano Letters 2016, 16 (5) , 3314-3320. https://doi.org/10.1021/acs.nanolett.6b00932
    100. Yong Wang, Jie Hu, Qianfen Zhuang, and Yongnian Ni . Label-Free Fluorescence Sensing of Lead(II) Ions and Sulfide Ions Based on Luminescent Molybdenum Disulfide Nanosheets. ACS Sustainable Chemistry & Engineering 2016, 4 (5) , 2535-2541. https://doi.org/10.1021/acssuschemeng.5b01639
    Load more citations

    ACS Nano

    Cite this: ACS Nano 2013, 7, 8, 7126–7131
    Click to copy citationCitation copied!
    https://doi.org/10.1021/nn4024834
    Published July 11, 2013
    Copyright © 2013 American Chemical Society

    Article Views

    13k

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.