ACS Publications. Most Trusted. Most Cited. Most Read
Fluorescent Imaging of Single Nanoparticles and Viruses on a Smart Phone
My Activity
    Article

    Fluorescent Imaging of Single Nanoparticles and Viruses on a Smart Phone
    Click to copy article linkArticle link copied!

    View Author Information
    † ‡ § Electrical Engineering Department, Bioengineering Department, §California NanoSystems Institute (CNSI), Department of Molecular and Medical Pharmacology, and Department of Chemistry and Biochemistry, University of California, Los Angeles (UCLA), California 90095, United States
    *Address correspondence to [email protected]
    Other Access OptionsSupporting Information (1)

    ACS Nano

    Cite this: ACS Nano 2013, 7, 10, 9147–9155
    Click to copy citationCitation copied!
    https://doi.org/10.1021/nn4037706
    Published September 9, 2013
    Copyright © 2013 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Optical imaging of nanoscale objects, whether it is based on scattering or fluorescence, is a challenging task due to reduced detection signal-to-noise ratio and contrast at subwavelength dimensions. Here, we report a field-portable fluorescence microscopy platform installed on a smart phone for imaging of individual nanoparticles as well as viruses using a lightweight and compact opto-mechanical attachment to the existing camera module of the cell phone. This hand-held fluorescent imaging device utilizes (i) a compact 450 nm laser diode that creates oblique excitation on the sample plane with an incidence angle of ∼75°, (ii) a long-pass thin-film interference filter to reject the scattered excitation light, (iii) an external lens creating 2× optical magnification, and (iv) a translation stage for focus adjustment. We tested the imaging performance of this smart-phone-enabled microscopy platform by detecting isolated 100 nm fluorescent particles as well as individual human cytomegaloviruses that are fluorescently labeled. The size of each detected nano-object on the cell phone platform was validated using scanning electron microscopy images of the same samples. This field-portable fluorescence microscopy attachment to the cell phone, weighing only ∼186 g, could be used for specific and sensitive imaging of subwavelength objects including various bacteria and viruses and, therefore, could provide a valuable platform for the practice of nanotechnology in field settings and for conducting viral load measurements and other biomedical tests even in remote and resource-limited environments.

    Copyright © 2013 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Spectrum of long-pass filter, spectrum and 2D intensity profile of laser diode, cell-phone-based fluorescence images of different sized PS beads and experimental validation of fluorescent staining/labeling of HCMVs. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 391 publications.

    1. Thanh Hoang Phuong Doan, Jasper P. Fried, Wenxian Tang, Daniel Everett Hagness, Ying Yang, Yanfang Wu, Richard D. Tilley, J. Justin Gooding. Nanopore Blockade Sensors for Quantitative Analysis Using an Optical Nanopore Assay. Nano Letters 2024, 24 (21) , 6218-6224. https://doi.org/10.1021/acs.nanolett.4c00530
    2. Swayandipta Dey, Mathias Dolci, Peter Zijlstra. Single-Molecule Optical Biosensing: Recent Advances and Future Challenges. ACS Physical Chemistry Au 2023, 3 (2) , 143-156. https://doi.org/10.1021/acsphyschemau.2c00061
    3. Bo Ning, Sutapa Chandra, Juniper Rosen, Evan Multala, Melvin Argrave, Lane Pierson, Ivy Trinh, Brittany Simone, Matthew David Escarra, Stacy Drury, Kevin J. Zwezdaryk, Elizabeth Norton, Christopher J. Lyon, Tony Hu. Evaluation of SARS-CoV-2-Specific T-Cell Activation with a Rapid On-Chip IGRA. ACS Nano 2023, 17 (2) , 1206-1216. https://doi.org/10.1021/acsnano.2c09018
    4. Maha Alafeef, Dipanjan Pan. Diagnostic Approaches For COVID-19: Lessons Learned and the Path Forward. ACS Nano 2022, 16 (8) , 11545-11576. https://doi.org/10.1021/acsnano.2c01697
    5. Sanjeev Kumar, Ritika Sharma, Bhawna, Akanksha Gupta, Prashant Singh, Susheel Kalia, Pankaj Thakur, Vinod Kumar. Prospects of Biosensors Based on Functionalized and Nanostructured Solitary Materials: Detection of Viral Infections and Other Risks. ACS Omega 2022, 7 (26) , 22073-22088. https://doi.org/10.1021/acsomega.2c01033
    6. Yuzhi Shi, Kim Truc Nguyen, Lip Ket Chin, Zhenyu Li, Limin Xiao, Hong Cai, Ruozhen Yu, Wei Huang, Shilun Feng, Peng Huat Yap, Jingquan Liu, Yi Zhang, Ai Qun Liu. Trapping and Detection of Single Viruses in an Optofluidic Chip. ACS Sensors 2021, 6 (9) , 3445-3450. https://doi.org/10.1021/acssensors.1c01350
    7. Per Niklas Hedde. miniSPIM—A Miniaturized Light-Sheet Microscope. ACS Sensors 2021, 6 (7) , 2654-2663. https://doi.org/10.1021/acssensors.1c00607
    8. Sijin Park, Juil Hwang, Hee-Jae Jeon, Woo Ri Bae, In-Kyung Jeong, Tae Gi Kim, Jaheon Kang, Young-Geun Han, Euiheon Chung, Dong Yun Lee. Cerium Oxide Nanoparticle-Containing Colorimetric Contact Lenses for Noninvasively Monitoring Human Tear Glucose. ACS Applied Nano Materials 2021, 4 (5) , 5198-5210. https://doi.org/10.1021/acsanm.1c00603
    9. Brigitta R. Sun, Alvin G. Zhou, Xiaochun Li, Hua-Zhong Yu. Development and Application of Mobile Apps for Molecular Sensing: A Review. ACS Sensors 2021, 6 (5) , 1731-1744. https://doi.org/10.1021/acssensors.1c00512
    10. Samer Doughan, Anna Shahmuradyan. At-Home Real-Life Sample Preparation and Colorimetric-Based Analysis: A Practical Experience outside the Laboratory. Journal of Chemical Education 2021, 98 (3) , 1031-1036. https://doi.org/10.1021/acs.jchemed.0c01299
    11. Aubin Samacoits, Pattaraporn Nimsamer, Oraphan Mayuramart, Naphat Chantaravisoot, Pitchaya Sitthi-amorn, Chajchawan Nakhakes, Lumrung Luangkamchorn, Phongsakhon Tongcham, Ugo Zahm, Suchada Suphanpayak, Natta Padungwattanachoke, Nutcha Leelarthaphin, Hathaichanok Huayhongthong, Trairak Pisitkun, Sunchai Payungporn, Pimkhuan Hannanta-anan. Machine Learning-Driven and Smartphone-Based Fluorescence Detection for CRISPR Diagnostic of SARS-CoV-2. ACS Omega 2021, 6 (4) , 2727-2733. https://doi.org/10.1021/acsomega.0c04929
    12. Adam M. Maley, Padric M. Garden, David R. Walt. Simplified Digital Enzyme-Linked Immunosorbent Assay Using Tyramide Signal Amplification and Fibrin Hydrogels. ACS Sensors 2020, 5 (10) , 3037-3042. https://doi.org/10.1021/acssensors.0c01661
    13. Nikhil Bhalla, Yuwei Pan, Zhugen Yang, Amir Farokh Payam. Opportunities and Challenges for Biosensors and Nanoscale Analytical Tools for Pandemics: COVID-19. ACS Nano 2020, 14 (7) , 7783-7807. https://doi.org/10.1021/acsnano.0c04421
    14. Connie Wu, Padric M. Garden, David R. Walt. Ultrasensitive Detection of Attomolar Protein Concentrations by Dropcast Single Molecule Assays. Journal of the American Chemical Society 2020, 142 (28) , 12314-12323. https://doi.org/10.1021/jacs.0c04331
    15. Travis Varra, Amy Simpson, Benton Roesler, Zach Nilsson, Duncan Ryan, Michael Van Erdewyk, Jennifer D. Schuttlefield Christus, Justin B. Sambur. A Homemade Smart Phone Microscope for Single-Particle Fluorescence Microscopy. Journal of Chemical Education 2020, 97 (2) , 471-478. https://doi.org/10.1021/acs.jchemed.9b00670
    16. Michael V. Tran, Kimihiro Susumu, Igor L. Medintz, W. Russ Algar. Supraparticle Assemblies of Magnetic Nanoparticles and Quantum Dots for Selective Cell Isolation and Counting on a Smartphone-Based Imaging Platform. Analytical Chemistry 2019, 91 (18) , 11963-11971. https://doi.org/10.1021/acs.analchem.9b02853
    17. Rupsa Gupta, William J. Peveler, Kelsi Lix, W. Russ Algar. Comparison of Semiconducting Polymer Dots and Semiconductor Quantum Dots for Smartphone-Based Fluorescence Assays. Analytical Chemistry 2019, 91 (17) , 10955-10960. https://doi.org/10.1021/acs.analchem.9b02881
    18. Xiao-Zhou Mou, Xiao-Yi Chen, Jianhao Wang, Zhaotian Zhang, Yanmei Yang, Zhang-Xuan Shou, Yue-Xing Tu, Xuancheng Du, Chun Wu, Yuan Zhao, Lin Qiu, Pengju Jiang, Chunying Chen, Dong-Sheng Huang, Yong-Qiang Li. Bacteria-Instructed Click Chemistry between Functionalized Gold Nanoparticles for Point-of-Care Microbial Detection. ACS Applied Materials & Interfaces 2019, 11 (26) , 23093-23101. https://doi.org/10.1021/acsami.9b09279
    19. Felix J. Hofmann, Maryna I. Bodnarchuk, Loredana Protesescu, Maksym V. Kovalenko, John M. Lupton, Jan Vogelsang. Exciton Gating and Triplet Deshelving in Single Dye Molecules Excited by Perovskite Nanocrystal FRET Antennae. The Journal of Physical Chemistry Letters 2019, 10 (5) , 1055-1062. https://doi.org/10.1021/acs.jpclett.9b00180
    20. Carolin Vietz, Max L. Schütte, Qingshan Wei, Lars Richter, Birka Lalkens, Aydogan Ozcan, Philip Tinnefeld, Guillermo P. Acuna. Benchmarking Smartphone Fluorescence-Based Microscopy with DNA Origami Nanobeads: Reducing the Gap toward Single-Molecule Sensitivity. ACS Omega 2019, 4 (1) , 637-642. https://doi.org/10.1021/acsomega.8b03136
    21. Zheng Li, Jon R. Askim, Kenneth S. Suslick. The Optoelectronic Nose: Colorimetric and Fluorometric Sensor Arrays. Chemical Reviews 2019, 119 (1) , 231-292. https://doi.org/10.1021/acs.chemrev.8b00226
    22. Tsung-Feng Wu, Yu-Chen Chen, Wei-Chung Wang, Yen-Chi Fang, Scott Fukuoka, David T. Pride, On Shun Pak. A Rapid and Low-Cost Pathogen Detection Platform by Using a Molecular Agglutination Assay. ACS Central Science 2018, 4 (11) , 1485-1494. https://doi.org/10.1021/acscentsci.8b00447
    23. Aashish Priye, Cameron S. Ball, Robert J. Meagher. Colorimetric-Luminance Readout for Quantitative Analysis of Fluorescence Signals with a Smartphone CMOS Sensor. Analytical Chemistry 2018, 90 (21) , 12385-12389. https://doi.org/10.1021/acs.analchem.8b03521
    24. David Poirot, Romain Platel, Thomas Alnasser, François Guerin, Etienne Palleau, Laurence Ressier. Smartphone-Identifiable Photoluminescent Nanoparticle-Based Multilevel Secured Tags by Electrical Microcontact Printing. ACS Applied Nano Materials 2018, 1 (10) , 5936-5943. https://doi.org/10.1021/acsanm.8b01634
    25. Stephan Eickelmann, José Danglad-Flores, Guoxiang Chen, Markus S. Miettinen, Hans Riegler. Meniscus Shape around Nanoparticles Embedded in Molecularly Thin Liquid Films. Langmuir 2018, 34 (38) , 11364-11373. https://doi.org/10.1021/acs.langmuir.8b02266
    26. Bence Nagy, Mohammed A. Al-Rawhani, Boon Chong Cheah, Michael P. Barrett, David R. S. Cumming. Immunoassay Multiplexing on a Complementary Metal Oxide Semiconductor Photodiode Array. ACS Sensors 2018, 3 (5) , 953-959. https://doi.org/10.1021/acssensors.7b00972
    27. Zachary S. Ballard, Calvin Brown, Aydogan Ozcan. Mobile Technologies for the Discovery, Analysis, and Engineering of the Global Microbiome. ACS Nano 2018, 12 (4) , 3065-3082. https://doi.org/10.1021/acsnano.7b08660
    28. Weili Chen, Hojeong Yu, Fu Sun, Akid Ornob, Ryan Brisbin, Anurup Ganguli, Vinay Vemuri, Piotr Strzebonski, Guangzhe Cui, Karen J. Allen, Smit A. Desai, Weiran Lin, David M. Nash, David L. Hirschberg, Ian Brooks, Rashid Bashir, and Brian T. Cunningham . Mobile Platform for Multiplexed Detection and Differentiation of Disease-Specific Nucleic Acid Sequences, Using Microfluidic Loop-Mediated Isothermal Amplification and Smartphone Detection. Analytical Chemistry 2017, 89 (21) , 11219-11226. https://doi.org/10.1021/acs.analchem.7b02478
    29. Heather D. Whitehead, Julia V. Waldman, Denise M. Wirth, and Gabriel LeBlanc . 3D Printed UV–Visible Cuvette Adapter for Low-Cost and Versatile Spectroscopic Experiments. ACS Omega 2017, 2 (9) , 6118-6122. https://doi.org/10.1021/acsomega.7b01310
    30. Adam B. Taylor and Peter Zijlstra . Single-Molecule Plasmon Sensing: Current Status and Future Prospects. ACS Sensors 2017, 2 (8) , 1103-1122. https://doi.org/10.1021/acssensors.7b00382
    31. Mario M. Alvarez, Joanna Aizenberg, Mostafa Analoui, Anne M. Andrews, Gili Bisker, Edward S. Boyden, Roger D. Kamm, Jeffrey M. Karp, David J. Mooney, Rahmi Oklu, Dan Peer, Michelle Stolzoff, Michael S. Strano, Grissel Trujillo-de Santiago, Thomas J. Webster, Paul S. Weiss, and Ali Khademhosseini . Emerging Trends in Micro- and Nanoscale Technologies in Medicine: From Basic Discoveries to Translation. ACS Nano 2017, 11 (6) , 5195-5214. https://doi.org/10.1021/acsnano.7b01493
    32. Ying Hong, Meiyan Wu, Guangwei Chen, Ziyang Dai, Yizhou Zhang, Guosong Chen, and Xiaochen Dong . 3D Printed Microfluidic Device with Microporous Mn2O3-Modified Screen Printed Electrode for Real-Time Determination of Heavy Metal Ions. ACS Applied Materials & Interfaces 2016, 8 (48) , 32940-32947. https://doi.org/10.1021/acsami.6b10464
    33. Oksana Ostroverkhova . Organic Optoelectronic Materials: Mechanisms and Applications. Chemical Reviews 2016, 116 (22) , 13279-13412. https://doi.org/10.1021/acs.chemrev.6b00127
    34. Zoltán Göröcs, Yair Rivenson, Hatice Ceylan Koydemir, Derek Tseng, Tamara L. Troy, Vasiliki Demas, and Aydogan Ozcan . Quantitative Fluorescence Sensing Through Highly Autofluorescent, Scattering, and Absorbing Media Using Mobile Microscopy. ACS Nano 2016, 10 (9) , 8989-8999. https://doi.org/10.1021/acsnano.6b05129
    35. S. Ekgasit, N. Kaewmanee, P. Jangtawee, C. Thammacharoen, and M. Donphoongpri . Elastomeric PDMS Planoconvex Lenses Fabricated by a Confined Sessile Drop Technique. ACS Applied Materials & Interfaces 2016, 8 (31) , 20474-20482. https://doi.org/10.1021/acsami.6b06305
    36. Julie S. Biteen, Paul C. Blainey, Zoe G. Cardon, Miyoung Chun, George M. Church, Pieter C. Dorrestein, Scott E. Fraser, Jack A. Gilbert, Janet K. Jansson, Rob Knight, Jeff F. Miller, Aydogan Ozcan, Kimberly A. Prather, Stephen R. Quake, Edward G. Ruby, Pamela A. Silver, Sharif Taha, Ger van den Engh, Paul S. Weiss, Gerard C. L. Wong, Aaron T. Wright, and Thomas D. Young . Tools for the Microbiome: Nano and Beyond. ACS Nano 2016, 10 (1) , 6-37. https://doi.org/10.1021/acsnano.5b07826
    37. Anastasiya Puchkova, Carolin Vietz, Enrico Pibiri, Bettina Wünsch, María Sanz Paz, Guillermo P. Acuna, and Philip Tinnefeld . DNA Origami Nanoantennas with over 5000-fold Fluorescence Enhancement and Single-Molecule Detection at 25 μM. Nano Letters 2015, 15 (12) , 8354-8359. https://doi.org/10.1021/acs.nanolett.5b04045
    38. Brandon Berg, Bingen Cortazar, Derek Tseng, Haydar Ozkan, Steve Feng, Qingshan Wei, Raymond Yan-Lok Chan, Jordi Burbano, Qamar Farooqui, Michael Lewinski, Dino Di Carlo, Omai B. Garner, and Aydogan Ozcan . Cellphone-Based Hand-Held Microplate Reader for Point-of-Care Testing of Enzyme-Linked Immunosorbent Assays. ACS Nano 2015, 9 (8) , 7857-7866. https://doi.org/10.1021/acsnano.5b03203
    39. Euan McLeod, Qingshan Wei, and Aydogan Ozcan . Democratization of Nanoscale Imaging and Sensing Tools Using Photonics. Analytical Chemistry 2015, 87 (13) , 6434-6445. https://doi.org/10.1021/acs.analchem.5b01381
    40. Gregory W. Bishop, Jennifer E. Satterwhite, Snehasis Bhakta, Karteek Kadimisetty, Kelsey M. Gillette, Eric Chen, and James F. Rusling . 3D-Printed Fluidic Devices for Nanoparticle Preparation and Flow-Injection Amperometry Using Integrated Prussian Blue Nanoparticle-Modified Electrodes. Analytical Chemistry 2015, 87 (10) , 5437-5443. https://doi.org/10.1021/acs.analchem.5b00903
    41. Aidan Wade, Pierre Lovera, Deirdre O’Carroll, Hugh Doyle, and Gareth Redmond . Luminescent Optical Detection of Volatile Electron Deficient Compounds by Conjugated Polymer Nanofibers. Analytical Chemistry 2015, 87 (8) , 4421-4428. https://doi.org/10.1021/acs.analchem.5b00309
    42. Euan McLeod, T. Umut Dincer, Muhammed Veli, Yavuz N. Ertas, Chau Nguyen, Wei Luo, Alon Greenbaum, Alborz Feizi, and Aydogan Ozcan . High-Throughput and Label-Free Single Nanoparticle Sizing Based on Time-Resolved On-Chip Microscopy. ACS Nano 2015, 9 (3) , 3265-3273. https://doi.org/10.1021/acsnano.5b00388
    43. Kevin Ming, Jisung Kim, Mia J. Biondi, Abdullah Syed, Kun Chen, Albert Lam, Mario Ostrowski, Anu Rebbapragada, Jordan J. Feld, and Warren C. W. Chan . Integrated Quantum Dot Barcode Smartphone Optical Device for Wireless Multiplexed Diagnosis of Infected Patients. ACS Nano 2015, 9 (3) , 3060-3074. https://doi.org/10.1021/nn5072792
    44. Jinsu Kim, Meena Adhikari, Sagar Dhamane, Anna E. V. Hagström, Katerina Kourentzi, Ulrich Strych, Richard C. Willson, and Jacinta C. Conrad . Detection of Viruses By Counting Single Fluorescent Genetically Biotinylated Reporter Immunophage Using a Lateral Flow Assay. ACS Applied Materials & Interfaces 2015, 7 (4) , 2891-2898. https://doi.org/10.1021/am5082556
    45. David M. Cate, Jaclyn A. Adkins, Jaruwan Mettakoonpitak, and Charles S. Henry . Recent Developments in Paper-Based Microfluidic Devices. Analytical Chemistry 2015, 87 (1) , 19-41. https://doi.org/10.1021/ac503968p
    46. Qingshan Wei, Wei Luo, Samuel Chiang, Tara Kappel, Crystal Mejia, Derek Tseng, Raymond Yan Lok Chan, Eddie Yan, Hangfei Qi, Faizan Shabbir, Haydar Ozkan, Steve Feng, and Aydogan Ozcan . Imaging and Sizing of Single DNA Molecules on a Mobile Phone. ACS Nano 2014, 8 (12) , 12725-12733. https://doi.org/10.1021/nn505821y
    47. Tushar Kumeria, Abel Santos, Mohammad Mahbubur Rahman, Josep Ferré-Borrull, Lluís F. Marsal, and Dusan Losic . Advanced Structural Engineering of Nanoporous Photonic Structures: Tailoring Nanopore Architecture to Enhance Sensing Properties. ACS Photonics 2014, 1 (12) , 1298-1306. https://doi.org/10.1021/ph500316u
    48. Faye M. Walker, Kareem M. Ahmad, Michael Eisenstein, and H. Tom Soh . Transformation of Personal Computers and Mobile Phones into Genetic Diagnostic Systems. Analytical Chemistry 2014, 86 (18) , 9236-9241. https://doi.org/10.1021/ac5022419
    49. Hojeong Yu, Yafang Tan, and Brian T. Cunningham . Smartphone Fluorescence Spectroscopy. Analytical Chemistry 2014, 86 (17) , 8805-8813. https://doi.org/10.1021/ac502080t
    50. Mustafa Balcioglu, Muhit Rana, Neil Robertson, and Mehmet V. Yigit . DNA-Length-Dependent Quenching of Fluorescently Labeled Iron Oxide Nanoparticles with Gold, Graphene Oxide and MoS2 Nanostructures. ACS Applied Materials & Interfaces 2014, 6 (15) , 12100-12110. https://doi.org/10.1021/am503553h
    51. Chloé Grazon, Jutta Rieger, Bernadette Charleux, Gilles Clavier, and Rachel Méallet-Renault . Ultrabright BODIPY-Tagged Polystyrene Nanoparticles: Study of Concentration Effect on Photophysical Properties. The Journal of Physical Chemistry C 2014, 118 (25) , 13945-13952. https://doi.org/10.1021/jp502790w
    52. George G. Daaboul, Carlos A. Lopez, Jyothsna Chinnala, Bennett B. Goldberg, John H. Connor, and M. Selim Ünlü . Digital Sensing and Sizing of Vesicular Stomatitis Virus Pseudotypes in Complex Media: A Model for Ebola and Marburg Detection. ACS Nano 2014, 8 (6) , 6047-6055. https://doi.org/10.1021/nn501312q
    53. Ritu Gupta, Ronald G. Reifenberger, and Giridhar U. Kulkarni . Cellphone Camera Imaging of a Periodically Patterned Chip as a Potential Method for Point-of-Care Diagnostics. ACS Applied Materials & Interfaces 2014, 6 (6) , 3923-3929. https://doi.org/10.1021/am4050426
    54. Eleonora Petryayeva and W. Russ Algar . Multiplexed Homogeneous Assays of Proteolytic Activity Using a Smartphone and Quantum Dots. Analytical Chemistry 2014, 86 (6) , 3195-3202. https://doi.org/10.1021/ac500131r
    55. Ka Young Kim, Sunhong Park, Sung Ho Jung, Shim Sung Lee, Ki-Min Park, Seiji Shinkai, and Jong Hwa Jung . Geometric Change of a Thiacalix[4]arene Supramolecular Gel with Volatile Gases and Its Chromogenic Detection for Rapid Analysis. Inorganic Chemistry 2014, 53 (6) , 3004-3011. https://doi.org/10.1021/ic402804p
    56. Qingshan Wei, Richie Nagi, Kayvon Sadeghi, Steve Feng, Eddie Yan, So Jung Ki, Romain Caire, Derek Tseng, and Aydogan Ozcan . Detection and Spatial Mapping of Mercury Contamination in Water Samples Using a Smart-Phone. ACS Nano 2014, 8 (2) , 1121-1129. https://doi.org/10.1021/nn406571t
    57. Sencer Ayas, Andi Cupallari, Okan Oner Ekiz, Yasin Kaya, and Aykutlu Dana . Counting Molecules with a Mobile Phone Camera Using Plasmonic Enhancement. ACS Photonics 2014, 1 (1) , 17-26. https://doi.org/10.1021/ph400108p
    58. Saumyakanti Khatua and Michel Orrit . Toward Single-Molecule Microscopy on a Smart Phone. ACS Nano 2013, 7 (10) , 8340-8343. https://doi.org/10.1021/nn405167q
    59. Izabela I. Rzeznicka, Achmad Syarif Hidayat, Hideyuki Horino, Baatshwana Caroline Ditlhakanyane, Venecio U. Ultra. Smartphone-enabled medical diagnostics and environmental monitoring for rural Africa. Talanta 2025, 288 , 127703. https://doi.org/10.1016/j.talanta.2025.127703
    60. Mehdi Kheirollahpour, Nader Shokoufi, Mohsen Lotfi. The Potential of Optical Technologies in Early Virus Detection; Prospects in Addressing Future Viral Outbreaks. Critical Reviews in Analytical Chemistry 2025, 11528 , 1-29. https://doi.org/10.1080/10408347.2025.2481406
    61. Yongqiang Zhang, Yuzhuo Yang, Shurong Ding, Xiao Zeng, Ting Li, Yongsheng Hu, Siyu Lu. Exploring Carbon Dots for Biological Lasers. Advanced Materials 2025, 4 https://doi.org/10.1002/adma.202418118
    62. Sandeep K. Vashist, John H.T. Luong. Smartphone-based immunoassays. 2025, 419-440. https://doi.org/10.1016/B978-0-323-95509-6.00017-3
    63. Yuhao Yan, Li Zeng, Jie Gao, Jiexia Cheng, Xuehan Zheng, Guangxuan Wang, Yun Ding, Jing Zhao, Hua Qin, Chao Zhao, Qian Luo, Runzeng Liu, Liqun Chen, Zongwei Cai, Bing Yan, Guangbo Qu, Guibin Jiang. Pushing the frontiers of micro/nano-plastic detection with portable instruments. TrAC Trends in Analytical Chemistry 2024, 181 , 118044. https://doi.org/10.1016/j.trac.2024.118044
    64. Aleksandr Barulin, Yeseul Kim, Dong Kyo Oh, Jaehyuck Jang, Hyemi Park, Junsuk Rho, Inki Kim. Dual-wavelength metalens enables Epi-fluorescence detection from single molecules. Nature Communications 2024, 15 (1) https://doi.org/10.1038/s41467-023-44407-4
    65. Mark Ferris, Gary Zabow. Quantitative, high-sensitivity measurement of liquid analytes using a smartphone compass. Nature Communications 2024, 15 (1) https://doi.org/10.1038/s41467-024-47073-2
    66. Shaghayegh Mirhosseini, Aryanaz Faghih Nasiri, Fatemeh Khatami, Akram Mirzaei, Seyed Mohammad Kazem Aghamir, Mohammadreza Kolahdouz. A digital image colorimetry system based on smart devices for immediate and simultaneous determination of enzyme-linked immunosorbent assays. Scientific Reports 2024, 14 (1) https://doi.org/10.1038/s41598-024-52931-6
    67. Alessandro Molani, Francesca Pennati, Samuele Ravazzani, Andrea Scarpellini, Federica Maria Storti, Gabriele Vegetali, Chiara Paganelli, Andrea Aliverti. Advances in Portable Optical Microscopy Using Cloud Technologies and Artificial Intelligence for Medical Applications. Sensors 2024, 24 (20) , 6682. https://doi.org/10.3390/s24206682
    68. , K.V. Kostyukevych. SPECTROMETERS WITH PRISM-TYPE EXCITATION OF SURFACE PLASMON RESONANCE: WAYS TO IMPROVE EFFICIENCY (REVIEW). Optoelektronìka ta napìvprovìdnikova tehnìka 2024, 59 , 76-98. https://doi.org/10.15407/iopt.2024.59.076
    69. Guang Liu, Yue Wu, Yutian Wang, Weihong Ye, Minyang Wu, Qingjun Liu. Smartphone‐Based Portable Sensing Systems for Point‐of‐Care Detections. 2024, 89-110. https://doi.org/10.1002/9783527841080.ch5
    70. Bingxin Huang, Lei Kang, Victor T. C. Tsang, Claudia T. K. Lo, Terence T. W. Wong. Deep learning-assisted smartphone-based quantitative microscopy for label-free peripheral blood smear analysis. Biomedical Optics Express 2024, 15 (4) , 2636. https://doi.org/10.1364/BOE.511384
    71. Deep Sekhar Biswas, Nina Melnychuk, Caterina Severi, Pascal Didier, Andrey S. Klymchenko. Giant Light‐Harvesting in Dye‐Loaded Nanoparticles Enhanced by Blank Hydrophobic Salts. Advanced Optical Materials 2024, 12 (4) https://doi.org/10.1002/adom.202301671
    72. Bakr Ahmed Taha, Qussay Al-Jubouri, Surjeet Chahal, Yousif Al Mashhadany, Sarvesh Rustagi, Vishal Chaudhary, Norhana Arsad. State-of-the-art telemodule-enabled intelligent optical nano-biosensors for proficient SARS-CoV-2 monitoring. Microchemical Journal 2024, 197 , 109774. https://doi.org/10.1016/j.microc.2023.109774
    73. Shuai Zhang, Xingxing Liu, Jincheng Xiong, Sihan Wang, Linqian Qin, Boyan Sun, Zile Wang, Yongjun Zheng, Haiyang Jiang. The role played by sensors consisting of smartphone and black box in analytical chemistry: Increase the achievability. Microchemical Journal 2024, 197 , 109838. https://doi.org/10.1016/j.microc.2023.109838
    74. Hary Kurniawan, Muhammad Akbar Andi Arief, Santosh Lohumi, Moon S. Kim, Insuck Baek, Byoung-Kwan Cho. Dual imaging technique for a real-time inspection system of foreign object detection in fresh-cut vegetables. Current Research in Food Science 2024, 9 , 100802. https://doi.org/10.1016/j.crfs.2024.100802
    75. A. V. Maslov, B. Jin, V. N. Astratov. Wave optics of imaging with contact ball lenses. Scientific Reports 2023, 13 (1) https://doi.org/10.1038/s41598-023-32826-8
    76. Mingwei Tang, Qing Yang. Spatial‐frequency‐shift Super‐resolution Imaging Based on Micro/nanomaterials. 2023, 175-213. https://doi.org/10.1002/9783527835201.ch6
    77. Hichem Moulahoum, Faezeh Ghorbanizamani, Tutku Beduk, Duygu Beduk, Ozge Ozufuklar, Emine Guler Celik, Suna Timur. Emerging trends in nanomaterial design for the development of point-of-care platforms and practical applications. Journal of Pharmaceutical and Biomedical Analysis 2023, 235 , 115623. https://doi.org/10.1016/j.jpba.2023.115623
    78. Vladyslav Mosiichuk, Ana Sampaio, Paula Viana, Tiago Oliveira, Luís Rosado. Improving Mobile-Based Cervical Cytology Screening: A Deep Learning Nucleus-Based Approach for Lesion Detection. Applied Sciences 2023, 13 (17) , 9850. https://doi.org/10.3390/app13179850
    79. Haotian Zong, Yunshan Zhang, Xingxing Liu, Zhongyuan Xu, Jing Ye, Shasha Lu, Xinyu Guo, Zhihao Yang, Xiaoyu Zhang, Mengyao Chai, Minzhi Fan, Yuheng Liao, Wenjian Yang, Yue Wu, Diming Zhang. Recent trends in smartphone‐based optical imaging biosensors for genetic testing: A review. VIEW 2023, 4 (4) https://doi.org/10.1002/VIW.20220062
    80. Ziao Jiao, Zhenya Zang, Quan Wang, Yu Chen, Dong Xiao, David Day Uei Li. PAIM (πM): Portable AI-enhanced fluorescence microscope for real-time target detection. Optics & Laser Technology 2023, 163 , 109356. https://doi.org/10.1016/j.optlastec.2023.109356
    81. Wei-Qun Lai, Ta-Chou Huang, Kung-Hao Liang, Yu-Fen Chang, De-Ming Yang. Portable sensing devices for smart healthcare and prevention of lead poisoning. Journal of the Chinese Medical Association 2023, 86 (5) , 459-464. https://doi.org/10.1097/JCMA.0000000000000904
    82. Caterina Serafinelli, Alessandro Fantoni, Elisabete C. B. A. Alegria, Manuela Vieira. Recent Progresses in Plasmonic Biosensors for Point-of-Care (POC) Devices: A Critical Review. Chemosensors 2023, 11 (5) , 303. https://doi.org/10.3390/chemosensors11050303
    83. Joshua Gu, Hannah Jian, Christine Wei, Jessica Shiu, Anand Ganesan, Weian Zhao, Per Niklas Hedde. A Low-Cost Modular Imaging System for Rapid, Multiplexed Immunofluorescence Detection in Clinical Tissues. International Journal of Molecular Sciences 2023, 24 (8) , 7008. https://doi.org/10.3390/ijms24087008
    84. Nikhil Bhalla, Amir Farokh Payam. Addressing the Silent Spread of Monkeypox Disease with Advanced Analytical Tools. Small 2023, 19 (9) https://doi.org/10.1002/smll.202206633
    85. Tina Naghdi, Sina Ardalan, Zeinab Asghari Adib, Amir Reza Sharifi, Hamed Golmohammadi. Moving toward smart biomedical sensing. Biosensors and Bioelectronics 2023, 223 , 115009. https://doi.org/10.1016/j.bios.2022.115009
    86. Hossein Najafiaghdam, Cassio C. S. Pedroso, Nicole A. Torquato, Bruce E. Cohen, Mekhail Anwar. Fully Integrated Ultra-thin Intraoperative Micro-imager for Cancer Detection Using Upconverting Nanoparticles. Molecular Imaging and Biology 2023, 25 (1) , 168-179. https://doi.org/10.1007/s11307-022-01710-8
    87. Kavyashree Puttananjegowda, Arash Takshi, Sylvia Thomas. Polymers for Biosensing Applications in Viral Detection and Diagnosis. 2023, 193-217. https://doi.org/10.1007/978-3-031-20537-8_9
    88. Guang Liu, Yanli Lu, Chen Cheng, Jie Xu, Qingjun Liu. Smartphone Interface and Wearable Biosensors for on-Site Diagnosis. 2023, 297-321. https://doi.org/10.1007/978-981-99-3025-8_13
    89. Bakr Ahmed Taha, Mohd Hadri Hafiz Mokhtar, Retna Apsari, Adawiya J. Haider, Rishi Kumar Talreja, Vishal Chaudhary, Norhana Arsad. Nanotools for Screening Neurodegenerative Diseases. 2023, 251-266. https://doi.org/10.1007/978-981-99-9510-3_11
    90. Abbas Afkhami, Tayyebeh Madrakian, Mazaher Ahmadi. Miniaturized spectrometric instruments. 2023, 187-209. https://doi.org/10.1016/B978-0-323-91741-4.00007-5
    91. Aisha Bibi, Ali Can, Udit Pant, Gary Hardiman, Daniel Hill, Christopher Elliott, Cuong Cao. A review on state-of-the-art detection techniques for micro- and nano-plastics with prospective use in point-of-site detection. 2023, 143-196. https://doi.org/10.1016/bs.coac.2022.11.003
    92. Jobie Budd, Benjamin S. Miller, Nicole E. Weckman, Dounia Cherkaoui, Da Huang, Alyssa Thomas Decruz, Noah Fongwen, Gyeo-Re Han, Marta Broto, Claudia S. Estcourt, Jo Gibbs, Deenan Pillay, Pam Sonnenberg, Robyn Meurant, Michael R. Thomas, Neil Keegan, Molly M. Stevens, Eleni Nastouli, Eric J. Topol, Anne M. Johnson, Maryam Shahmanesh, Aydogan Ozcan, James J. Collins, Marta Fernandez Suarez, Bill Rodriguez, Rosanna W. Peeling, Rachel A. McKendry. Lateral flow test engineering and lessons learned from COVID-19. Nature Reviews Bioengineering 2023, 1 (1) , 13-31. https://doi.org/10.1038/s44222-022-00007-3
    93. Xin Ye, Jiacheng Sun, Wei Jiang, Rongtao Yu, Chen Chen, Xingjian Xiao, Xiao Qian, Chunyu Huang, Yong Hu, Shining Zhu, Tao Li. Ultracompact Multimode Meta-Microscope Based on Both Spatial and Guided-Wave Illumination. Advanced Devices & Instrumentation 2023, 4 https://doi.org/10.34133/adi.0023
    94. Wenwen Jia, Ruiqing Fan, Jian Zhang, Ke Zhu, Shuang Gai, Huimin Nai, Haoqi Guo, Jingkun Wu, Yulin Yang. Home-made multifunctional auxiliary device for in-situ imaging detection and removal of quinclorac residues through MOF decorated gel refills. Chemical Engineering Journal 2022, 450 , 138303. https://doi.org/10.1016/j.cej.2022.138303
    95. Amani A. Hariri, Sharon S. Newman, Steven Tan, Dan Mamerow, Alexandra M. Adams, Nicolò Maganzini, Brian L. Zhong, Michael Eisenstein, Alexander R. Dunn, H. Tom Soh. Improved immunoassay sensitivity and specificity using single-molecule colocalization. Nature Communications 2022, 13 (1) https://doi.org/10.1038/s41467-022-32796-x
    96. Jamie Leonard, Hatice Ceylan Koydemir, Vera S. Koutnik, Derek Tseng, Aydogan Ozcan, Sanjay K Mohanty. Smartphone-enabled rapid quantification of microplastics. Journal of Hazardous Materials Letters 2022, 3 , 100052. https://doi.org/10.1016/j.hazl.2022.100052
    97. Lydia Skolrood, Yan Wang, Shengwei Zhang, Qingshan Wei. Single-molecule and particle detection on true portable microscopy platforms. Sensors and Actuators Reports 2022, 4 , 100063. https://doi.org/10.1016/j.snr.2021.100063
    98. Yinxu Bian, Tao Xing, Kerong Jiao, Qingqing Kong, Jiaxiong Wang, Xiaofei Yang, Shenmin Yang, Yannan Jiang, Renbing Shen, Hua Shen, Cuifang Kuang. Computational Portable Microscopes for Point-of-Care-Test and Tele-Diagnosis. Cells 2022, 11 (22) , 3670. https://doi.org/10.3390/cells11223670
    99. Abderrahman Lamaoui, Abdelhafid Karrat, Aziz Amine. Molecularly imprinted polymer integrated into paper-based analytical device for smartphone-based detection: Application for sulfamethoxazole. Sensors and Actuators B: Chemical 2022, 368 , 132122. https://doi.org/10.1016/j.snb.2022.132122
    100. Muhammad A. Sami, Muhammad Tayyab, Umer Hassan. Excitation modalities for enhanced micro and nanoparticle imaging in a smartphone coupled 3D printed fluorescent microscope. Lab on a Chip 2022, 22 (19) , 3755-3769. https://doi.org/10.1039/D2LC00589A
    Load more citations

    ACS Nano

    Cite this: ACS Nano 2013, 7, 10, 9147–9155
    Click to copy citationCitation copied!
    https://doi.org/10.1021/nn4037706
    Published September 9, 2013
    Copyright © 2013 American Chemical Society

    Article Views

    19k

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.