ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Resonant Plasmonic Enhancement of Single-Molecule Fluorescence by Individual Gold Nanorods

View Author Information
Huygens-Kamerlingh Onnes Laboratory, Universiteit Leiden, 2300 RA Leiden, The Netherlands
Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais 1, 1049-001 Lisboa, Portugal
§ Department of Applied Physics, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands
*Address correspondence to [email protected]
Cite this: ACS Nano 2014, 8, 5, 4440–4449
Publication Date (Web):March 31, 2014
https://doi.org/10.1021/nn406434y
Copyright © 2014 American Chemical Society

Article Views

6829

Altmetric

-

Citations

LEARN ABOUT THESE METRICS
Read OnlinePDF (2 MB)
Supporting Info (1)»

Abstract

Abstract Image

Enhancing the fluorescence of a weak emitter is important to further extend the reach of single-molecule fluorescence imaging to many unexplored systems. Here we study fluorescence enhancement by isolated gold nanorods and explore the role of the surface plasmon resonance (SPR) on the observed enhancements. Gold nanorods can be cheaply synthesized in large volumes, yet we find similar fluorescence enhancements as literature reports on lithographically fabricated nanoparticle assemblies. The fluorescence of a weak emitter, crystal violet, can be enhanced more than 1000-fold by a single nanorod with its SPR at 629 nm excited at 633 nm. This strong enhancement results from both an excitation rate enhancement of ∼130 and an effective emission enhancement of ∼9. The fluorescence enhancement, however, decreases sharply when the SPR wavelength moves away from the excitation laser wavelength or when the SPR has only a partial overlap with the emission spectrum of the fluorophore. The reported measurements of fluorescence enhancement by 11 nanorods with varying SPR wavelengths are consistent with numerical simulations.

Supporting Information

ARTICLE SECTIONS
Jump To

Figures S1–S10 and the theoretical description of fluorescence enhancement are available free of charge via the Internet at http://pubs.acs.org.

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Cited By

This article is cited by 230 publications.

  1. Qingnan Li, Wenzhi Qiang, Jie Yuan, Lehui Xiao. Nanoparticle-Coupled Single-Molecule Kinetic Fingerprinting for Enzymatic Activity Detection. Analytical Chemistry 2023, 95 (19) , 7796-7803. https://doi.org/10.1021/acs.analchem.3c01385
  2. Vishaldeep Kaur, Charanleen Kaur, Tapasi Sen. Single-Molecule Fluorescence Enhancement Based Detection of ATP Using DNA Origami-Assembled [email protected] Nanostar Optical Antennas. The Journal of Physical Chemistry C 2023, 127 (15) , 7308-7318. https://doi.org/10.1021/acs.jpcc.3c00020
  3. Kateryna Trofymchuk, Karol Kołątaj, Viktorija Glembockyte, Fangjia Zhu, Guillermo P. Acuna, Tim Liedl, Philip Tinnefeld. Gold Nanorod DNA Origami Antennas for 3 Orders of Magnitude Fluorescence Enhancement in NIR. ACS Nano 2023, 17 (2) , 1327-1334. https://doi.org/10.1021/acsnano.2c09577
  4. Jeanne Heintz, Francesca Legittimo, Sébastien Bidault. Dimers of Plasmonic Nanocubes to Reach Single-Molecule Strong Coupling with High Emission Yields. The Journal of Physical Chemistry Letters 2022, 13 (51) , 11996-12003. https://doi.org/10.1021/acs.jpclett.2c02872
  5. Lan Peng, Ye Liu, Jing Zhang, Zhe Zhang, Zhihe Liu, Xiaofeng Fang, Yingjie Wang, Changfeng Wu. Surface Plasmon-Enhanced NIR-II Fluorescence in a Multilayer Nanoprobe for Through-Skull Mouse Brain Imaging. ACS Applied Materials & Interfaces 2022, 14 (34) , 38575-38583. https://doi.org/10.1021/acsami.2c11218
  6. Xuxing Lu, Deep Punj, Michel Orrit. Two-Photon-Excited Single-Molecule Fluorescence Enhanced by Gold Nanorod Dimers. Nano Letters 2022, 22 (10) , 4215-4222. https://doi.org/10.1021/acs.nanolett.2c01219
  7. Ryo Kato, Mitsuhiro Uesugi, Yoshie Komatsu, Fusatoshi Okamoto, Takuo Tanaka, Fumihisa Kitawaki, Taka-aki Yano. Highly Stable Polymer Coating on Silver Nanoparticles for Efficient Plasmonic Enhancement of Fluorescence. ACS Omega 2022, 7 (5) , 4286-4292. https://doi.org/10.1021/acsomega.1c06010
  8. Jiapeng Zheng, Xizhe Cheng, Han Zhang, Xiaopeng Bai, Ruoqi Ai, Lei Shao, Jianfang Wang. Gold Nanorods: The Most Versatile Plasmonic Nanoparticles. Chemical Reviews 2021, 121 (21) , 13342-13453. https://doi.org/10.1021/acs.chemrev.1c00422
  9. Seiju Hasegawa, Keisuke Imaeda, Kohei Imura. Plasmon-Enhanced Fluorescence Near Single Gold Nanoplates Studied by Scanning Near-Field Two-Photon Excitation Microscopy. The Journal of Physical Chemistry C 2021, 125 (38) , 21070-21076. https://doi.org/10.1021/acs.jpcc.1c06466
  10. Milan Adelt, Donald A. MacLaren, David J. S. Birch, Yu Chen. Morphological Changes of Silica Shells Deposited on Gold Nanorods: Implications for Nanoscale Photocatalysts. ACS Applied Nano Materials 2021, 4 (8) , 7730-7738. https://doi.org/10.1021/acsanm.1c00977
  11. Quanbo Jiang, Prithu Roy, Jean-Benoît Claude, Jérôme Wenger. Single Photon Source from a Nanoantenna-Trapped Single Quantum Dot. Nano Letters 2021, 21 (16) , 7030-7036. https://doi.org/10.1021/acs.nanolett.1c02449
  12. Sunny Tiwari, Adarsh B. Vasista, Diptabrata Paul, Shailendra K. Chaubey, G. V. Pavan Kumar. Beaming Elastic and SERS Emission from Bent-Plasmonic Nanowire on a Mirror Cavity. The Journal of Physical Chemistry Letters 2021, 12 (28) , 6589-6595. https://doi.org/10.1021/acs.jpclett.1c01923
  13. Teresa Staniszewska, Maciej Szkulmowski, Seweryn Morawiec. Computational Optimization of the Size of Gold Nanorods for Single-Molecule Plasmonic Biosensors Operating in Scattering and Absorption Modes. The Journal of Physical Chemistry C 2021, 125 (27) , 14765-14777. https://doi.org/10.1021/acs.jpcc.1c02510
  14. Abhay Kotnala, Hongru Ding, Yuebing Zheng. Enhancing Single-Molecule Fluorescence Spectroscopy with Simple and Robust Hybrid Nanoapertures. ACS Photonics 2021, 8 (6) , 1673-1682. https://doi.org/10.1021/acsphotonics.1c00045
  15. Nyssa T. Emerson, Haw Yang. Reproducibly Measuring Plasmon-Enhanced Fluorescence in Bulk Solution Across a 20-Fold Range of Optical Densities. Analytical Chemistry 2021, 93 (22) , 8045-8053. https://doi.org/10.1021/acs.analchem.1c01210
  16. Rashad Baiyasi, Harrison J. Goldwyn, Lauren A. McCarthy, Claire A. West, Seyyed Ali Hosseini Jebeli, David J. Masiello, Stephan Link, Christy F. Landes. Coupled-Dipole Modeling and Experimental Characterization of Geometry-Dependent Trochoidal Dichroism in Nanorod Trimers. ACS Photonics 2021, 8 (4) , 1159-1168. https://doi.org/10.1021/acsphotonics.1c00073
  17. Chao Liang, Jingyi Luan, Zheyu Wang, Qisheng Jiang, Rohit Gupta, Sisi Cao, Keng-Ku Liu, Jeremiah J. Morrissey, Evan D. Kharasch, Rajesh R. Naik, Srikanth Singamaneni. Gold Nanorod Size-Dependent Fluorescence Enhancement for Ultrasensitive Fluoroimmunoassays. ACS Applied Materials & Interfaces 2021, 13 (9) , 11414-11423. https://doi.org/10.1021/acsami.0c20303
  18. Yuhuan Gao, Jun Wang, Weina Wang, Tingting Zhao, Yanyun Cui, Pingping Liu, Shenghao Xu, Xiliang Luo. More Symmetrical “Hot Spots” Ensure Stronger Plasmon-Enhanced Fluorescence: From Au Nanorods to Nanostars. Analytical Chemistry 2021, 93 (4) , 2480-2489. https://doi.org/10.1021/acs.analchem.0c04518
  19. David Renard, Shu Tian, Minhan Lou, Oara Neumann, Jian Yang, Aaron Bayles, David Solti, Peter Nordlander, Naomi J. Halas. UV-Resonant Al Nanocrystals: Synthesis, Silica Coating, and Broadband Photothermal Response. Nano Letters 2021, 21 (1) , 536-542. https://doi.org/10.1021/acs.nanolett.0c04020
  20. Soojin Jeong, Yang Liu, Yaxu Zhong, Xun Zhan, Yuda Li, Yi Wang, Phoebe M. Cha, Jun Chen, Xingchen Ye. Heterometallic Seed-Mediated Growth of Monodisperse Colloidal Copper Nanorods with Widely Tunable Plasmonic Resonances. Nano Letters 2020, 20 (10) , 7263-7271. https://doi.org/10.1021/acs.nanolett.0c02648
  21. Xuxing Lu, Gang Ye, Deep Punj, Ryan C. Chiechi, Michel Orrit. Quantum Yield Limits for the Detection of Single-Molecule Fluorescence Enhancement by a Gold Nanorod. ACS Photonics 2020, 7 (9) , 2498-2505. https://doi.org/10.1021/acsphotonics.0c00803
  22. Ashish Kar, Varsha Thambi, Diptiranjan Paital, Gayatri Joshi, Saumyakanti Khatua. Synthesis of Solution-Stable End-to-End Linked Gold Nanorod Dimers via pH-Dependent Surface Reconfiguration. Langmuir 2020, 36 (33) , 9894-9899. https://doi.org/10.1021/acs.langmuir.0c01516
  23. Te Wen, Xiao-Wei Zhang, Yuqing Cheng, Weidong Zhang, Lulu Ye, Hai Lin, Xin-Zheng Li, Qihuang Gong, Guowei Lu. Transient Spectral Fluctuations of Single Molecules Revealed using an Optical Antenna. The Journal of Physical Chemistry C 2020, 124 (33) , 18219-18225. https://doi.org/10.1021/acs.jpcc.0c05328
  24. Yuyang Wang, Matěj Horáček, Peter Zijlstra. Strong Plasmon Enhancement of the Saturation Photon Count Rate of Single Molecules. The Journal of Physical Chemistry Letters 2020, 11 (5) , 1962-1969. https://doi.org/10.1021/acs.jpclett.0c00155
  25. Xuejie Yang, Jialing Li, Liyun Deng, Di Su, Chaoqing Dong, Jicun Ren. Controllable “Clicked-to-Assembled” Plasmonic Core–Satellite Nanostructures and Its Surface-Enhanced Fluorescence in Living Cells. ACS Omega 2019, 4 (25) , 21161-21168. https://doi.org/10.1021/acsomega.9b02581
  26. Levi T. Hogan, Erik H. Horak, Jonathan M. Ward, Kassandra A. Knapper, Síle Nic Chormaic, Randall H. Goldsmith. Toward Real-Time Monitoring and Control of Single Nanoparticle Properties with a Microbubble Resonator Spectrometer. ACS Nano 2019, 13 (11) , 12743-12757. https://doi.org/10.1021/acsnano.9b04702
  27. Denis Garoli, Hirohito Yamazaki, Nicolò Maccaferri, Meni Wanunu. Plasmonic Nanopores for Single-Molecule Detection and Manipulation: Toward Sequencing Applications. Nano Letters 2019, 19 (11) , 7553-7562. https://doi.org/10.1021/acs.nanolett.9b02759
  28. Yuyang Wang, Karsten van Asdonk, Peter Zijlstra. A Robust and General Approach to Quantitatively Conjugate Enzymes to Plasmonic Nanoparticles. Langmuir 2019, 35 (41) , 13356-13363. https://doi.org/10.1021/acs.langmuir.9b01879
  29. Aleksandr Barulin, Jean-Benoît Claude, Satyajit Patra, Nicolas Bonod, Jérôme Wenger. Deep Ultraviolet Plasmonic Enhancement of Single Protein Autofluorescence in Zero-Mode Waveguides. Nano Letters 2019, 19 (10) , 7434-7442. https://doi.org/10.1021/acs.nanolett.9b03137
  30. Tiancheng Zuo, Harrison J. Goldwyn, Benjamin P. Isaacoff, David J. Masiello, Julie S. Biteen. Rotation of Single-Molecule Emission Polarization by Plasmonic Nanorods. The Journal of Physical Chemistry Letters 2019, 10 (17) , 5047-5054. https://doi.org/10.1021/acs.jpclett.9b02270
  31. Yang Zhang, Gengwu Zhang, Peng Yang, Basem Moosa, Niveen M. Khashab. Self-Immolative Fluorescent and Raman Probe for Real-Time Imaging and Quantification of γ-Glutamyl Transpeptidase in Living Cells. ACS Applied Materials & Interfaces 2019, 11 (31) , 27529-27535. https://doi.org/10.1021/acsami.9b07186
  32. Mingrui Yang, Pavel Moroz, Zhicheng Jin, Darya S. Budkina, Nida Sundrani, Dmitry Porotnikov, James Cassidy, Yuya Sugiyama, Alexander N. Tarnovsky, Hedi Mattoussi, Mikhail Zamkov. Delayed Photoluminescence in Metal-Conjugated Fluorophores. Journal of the American Chemical Society 2019, 141 (28) , 11286-11297. https://doi.org/10.1021/jacs.9b04697
  33. Xiuyun Feng, Ting Han, Yunfang Xiong, Sicheng Wang, Tianyue Dai, Jihua Chen, Xiaojun Zhang, Guangfeng Wang. Plasmon-Enhanced Electrochemiluminescence of Silver Nanoclusters for microRNA Detection. ACS Sensors 2019, 4 (6) , 1633-1640. https://doi.org/10.1021/acssensors.9b00413
  34. Assegid Mengistu Flatae, Francesco Tantussi, Gabriele C. Messina, Francesco De Angelis, Mario Agio. Plasmon-Assisted Suppression of Surface Trap States and Enhanced Band-Edge Emission in a Bare CdTe Quantum Dot. The Journal of Physical Chemistry Letters 2019, 10 (11) , 2874-2878. https://doi.org/10.1021/acs.jpclett.9b01083
  35. Alexandra P. Francisco, David Botequim, Duarte M. F. Prazeres, Vanda V. Serra, Sílvia M. B. Costa, César A. T. Laia, Pedro M. R. Paulo. Extreme Enhancement of Single-Molecule Fluorescence from Porphyrins Induced by Gold Nanodimer Antennas. The Journal of Physical Chemistry Letters 2019, 10 (7) , 1542-1549. https://doi.org/10.1021/acs.jpclett.9b00373
  36. Carolin Vietz, Max L. Schütte, Qingshan Wei, Lars Richter, Birka Lalkens, Aydogan Ozcan, Philip Tinnefeld, Guillermo P. Acuna. Benchmarking Smartphone Fluorescence-Based Microscopy with DNA Origami Nanobeads: Reducing the Gap toward Single-Molecule Sensitivity. ACS Omega 2019, 4 (1) , 637-642. https://doi.org/10.1021/acsomega.8b03136
  37. Varsha Thambi, Ashish Kar, Piue Ghosh, Saumyakanti Khatua. Light-Controlled in Situ Bidirectional Tuning and Monitoring of Gold Nanorod Plasmon via Oxidative Etching with FeCl3. The Journal of Physical Chemistry C 2018, 122 (43) , 24885-24890. https://doi.org/10.1021/acs.jpcc.8b06679
  38. Luke Henderson, Oara Neumann, Caterina Kaffes, Runmin Zhang, Valeria Marangoni, Murali K. Ravoori, Vikas Kundra, James Bankson, Peter Nordlander, Naomi J. Halas. Routes to Potentially Safer T1 Magnetic Resonance Imaging Contrast in a Compact Plasmonic Nanoparticle with Enhanced Fluorescence. ACS Nano 2018, 12 (8) , 8214-8223. https://doi.org/10.1021/acsnano.8b03368
  39. Yuyang Wang, Peter Zijlstra. Plasmon-Enhanced Single-Molecule Enzymology. ACS Photonics 2018, 5 (8) , 3073-3081. https://doi.org/10.1021/acsphotonics.8b00327
  40. Weichun Zhang, Martín Caldarola, Xuxing Lu, Michel Orrit. Plasmonic Enhancement of Two-Photon-Excited Luminescence of Single Quantum Dots by Individual Gold Nanorods. ACS Photonics 2018, 5 (7) , 2960-2968. https://doi.org/10.1021/acsphotonics.8b00306
  41. Katelyn S. Schramke, Yunxiang Qin, Jacob T. Held, K. Andre Mkhoyan, Uwe R. Kortshagen. Nonthermal Plasma Synthesis of Titanium Nitride Nanocrystals with Plasmon Resonances at Near-Infrared Wavelengths Relevant to Photothermal Therapy. ACS Applied Nano Materials 2018, 1 (6) , 2869-2876. https://doi.org/10.1021/acsanm.8b00505
  42. Gilad Haran, Lev Chuntonov. Artificial Plasmonic Molecules and Their Interaction with Real Molecules. Chemical Reviews 2018, 118 (11) , 5539-5580. https://doi.org/10.1021/acs.chemrev.7b00647
  43. Pedro M. R. Paulo, David Botequim, Agnieszka Jóskowiak, Sofia Martins, Duarte M. F. Prazeres, Peter Zijlstra, Sílvia M. B. Costa. Enhanced Fluorescence of a Dye on DNA-Assembled Gold Nanodimers Discriminated by Lifetime Correlation Spectroscopy. The Journal of Physical Chemistry C 2018, 122 (20) , 10971-10980. https://doi.org/10.1021/acs.jpcc.7b12622
  44. Stephan Block, Srdjan S. Aćimović, Nils Odebo Länk, Mikael Käll, Fredrik Höök. Antenna-Enhanced Fluorescence Correlation Spectroscopy Resolves Calcium-Mediated Lipid–Lipid Interactions. ACS Nano 2018, 12 (4) , 3272-3279. https://doi.org/10.1021/acsnano.7b07854
  45. Sabrina Simoncelli, Yi Li, Emiliano Cortés, Stefan A. Maier. Nanoscale Control of Molecular Self-Assembly Induced by Plasmonic Hot-Electron Dynamics. ACS Nano 2018, 12 (3) , 2184-2192. https://doi.org/10.1021/acsnano.7b08563
  46. Adam Taylor, René Verhoef, Michael Beuwer, Yuyang Wang, and Peter Zijlstra . All-Optical Imaging of Gold Nanoparticle Geometry Using Super-Resolution Microscopy. The Journal of Physical Chemistry C 2018, 122 (4) , 2336-2342. https://doi.org/10.1021/acs.jpcc.7b12473
  47. Pamina M. Winkler, Raju Regmi, Valentin Flauraud, Jürgen Brugger, Hervé Rigneault, Jérôme Wenger, and María F. García-Parajo . Optical Antenna-Based Fluorescence Correlation Spectroscopy to Probe the Nanoscale Dynamics of Biological Membranes. The Journal of Physical Chemistry Letters 2018, 9 (1) , 110-119. https://doi.org/10.1021/acs.jpclett.7b02818
  48. Łukasz Bujak, Kaishi Narushima, Dharmendar Kumar Sharma, Shuzo Hirata, and Martin Vacha . Plasmon Enhancement of Triplet Exciton Diffusion Revealed by Nanoscale Imaging of Photochemical Fluorescence Upconversion. The Journal of Physical Chemistry C 2017, 121 (45) , 25479-25486. https://doi.org/10.1021/acs.jpcc.7b08495
  49. Carolin Vietz, Birka Lalkens, Guillermo P. Acuna, and Philip Tinnefeld . Synergistic Combination of Unquenching and Plasmonic Fluorescence Enhancement in Fluorogenic Nucleic Acid Hybridization Probes. Nano Letters 2017, 17 (10) , 6496-6500. https://doi.org/10.1021/acs.nanolett.7b03844
  50. Adam B. Taylor and Peter Zijlstra . Single-Molecule Plasmon Sensing: Current Status and Future Prospects. ACS Sensors 2017, 2 (8) , 1103-1122. https://doi.org/10.1021/acssensors.7b00382
  51. Khulan Sergelen, Stefan Fossati, Aysegül Turupcu, Chris Oostenbrink, Bo Liedberg, Wolfgang Knoll, and Jakub Dostálek . Plasmon Field-Enhanced Fluorescence Energy Transfer for Hairpin Aptamer Assay Readout. ACS Sensors 2017, 2 (7) , 916-923. https://doi.org/10.1021/acssensors.7b00131
  52. Katherine A. Willets, Andrew J. Wilson, Vignesh Sundaresan, and Padmanabh B. Joshi . Super-Resolution Imaging and Plasmonics. Chemical Reviews 2017, 117 (11) , 7538-7582. https://doi.org/10.1021/acs.chemrev.6b00547
  53. Carolin Vietz, Izabela Kaminska, Maria Sanz Paz, Philip Tinnefeld, and Guillermo P. Acuna . Broadband Fluorescence Enhancement with Self-Assembled Silver Nanoparticle Optical Antennas. ACS Nano 2017, 11 (5) , 4969-4975. https://doi.org/10.1021/acsnano.7b01621
  54. Liang-Yan Hsu, Wendu Ding, George C. Schatz. Plasmon-Coupled Resonance Energy Transfer. The Journal of Physical Chemistry Letters 2017, 8 (10) , 2357-2367. https://doi.org/10.1021/acs.jpclett.7b00526
  55. A. Femius Koenderink . Single-Photon Nanoantennas. ACS Photonics 2017, 4 (4) , 710-722. https://doi.org/10.1021/acsphotonics.7b00061
  56. Md. Mahmud-Ul-Hasan, Pieter Neutens, Rita Vos, Liesbet Lagae, and Pol Van Dorpe . Suppression of Bulk Fluorescence Noise by Combining Waveguide-Based Near-Field Excitation and Collection. ACS Photonics 2017, 4 (3) , 495-500. https://doi.org/10.1021/acsphotonics.6b01016
  57. Valentin Flauraud, Raju Regmi, Pamina M. Winkler, Duncan T. L. Alexander, Hervé Rigneault, Niek F. van Hulst, María F. García-Parajo, Jérôme Wenger, and Jürgen Brugger . In-Plane Plasmonic Antenna Arrays with Surface Nanogaps for Giant Fluorescence Enhancement. Nano Letters 2017, 17 (3) , 1703-1710. https://doi.org/10.1021/acs.nanolett.6b04978
  58. Tomáš Riedel, Simone Hageneder, František Surman, Ognen Pop-Georgievski, Christa Noehammer, Manuela Hofner, Eduard Brynda, Cesar Rodriguez-Emmenegger, and Jakub Dostálek . Plasmonic Hepatitis B Biosensor for the Analysis of Clinical Saliva. Analytical Chemistry 2017, 89 (5) , 2972-2977. https://doi.org/10.1021/acs.analchem.6b04432
  59. Biswajit Pradhan, Saumyakanti Khatua, Ankur Gupta, Thijs Aartsma, Gerard Canters, and Michel Orrit . Gold-Nanorod-Enhanced Fluorescence Correlation Spectroscopy of Fluorophores with High Quantum Yield in Lipid Bilayers. The Journal of Physical Chemistry C 2016, 120 (45) , 25996-26003. https://doi.org/10.1021/acs.jpcc.6b07875
  60. Amit Kumar, Sungi Kim, and Jwa-Min Nam . Plasmonically Engineered Nanoprobes for Biomedical Applications. Journal of the American Chemical Society 2016, 138 (44) , 14509-14525. https://doi.org/10.1021/jacs.6b09451
  61. Juan de Torres, Mathieu Mivelle, Satish Babu Moparthi, Hervé Rigneault, Niek F. Van Hulst, María F. García-Parajó, Emmanuel Margeat, and Jérôme Wenger . Plasmonic Nanoantennas Enable Forbidden Förster Dipole–Dipole Energy Transfer and Enhance the FRET Efficiency. Nano Letters 2016, 16 (10) , 6222-6230. https://doi.org/10.1021/acs.nanolett.6b02470
  62. W. Elliott Martin, Bernadeta R. Srijanto, C. Patrick Collier, Tom Vosch, and Christopher I. Richards . A Comparison of Single-Molecule Emission in Aluminum and Gold Zero-Mode Waveguides. The Journal of Physical Chemistry A 2016, 120 (34) , 6719-6727. https://doi.org/10.1021/acs.jpca.6b03309
  63. Jochen Vogt, Chung Vu Hoang, Christian Huck, Frank Neubrech, and Annemarie Pucci . How Intrinsic Phonons Manifest in Infrared Plasmonic Resonances of Crystalline Lead Nanowires. The Journal of Physical Chemistry C 2016, 120 (34) , 19302-19307. https://doi.org/10.1021/acs.jpcc.6b05674
  64. Raju Regmi, Johann Berthelot, Pamina M. Winkler, Mathieu Mivelle, Julien Proust, Frédéric Bedu, Igor Ozerov, Thomas Begou, Julien Lumeau, Hervé Rigneault, María F. García-Parajó, Sébastien Bidault, Jérôme Wenger, and Nicolas Bonod . All-Dielectric Silicon Nanogap Antennas To Enhance the Fluorescence of Single Molecules. Nano Letters 2016, 16 (8) , 5143-5151. https://doi.org/10.1021/acs.nanolett.6b02076
  65. Lutz Langguth, Clara I. Osorio, and A. Femius Koenderink . Exact Analysis of Nanoantenna Enhanced Fluorescence Correlation Spectroscopy at a Mie Sphere. The Journal of Physical Chemistry C 2016, 120 (25) , 13684-13692. https://doi.org/10.1021/acs.jpcc.6b02186
  66. Johannes Ziegler, Christian Wörister, Cynthia Vidal, Calin Hrelescu, and Thomas A. Klar . Plasmonic Nanostars as Efficient Broadband Scatterers for Random Lasing. ACS Photonics 2016, 3 (6) , 919-923. https://doi.org/10.1021/acsphotonics.6b00111
  67. Sébastien Bidault, Alexis Devilez, Petru Ghenuche, Brian Stout, Nicolas Bonod, and Jérôme Wenger . Competition between Förster Resonance Energy Transfer and Donor Photodynamics in Plasmonic Dimer Nanoantennas. ACS Photonics 2016, 3 (5) , 895-903. https://doi.org/10.1021/acsphotonics.6b00148
  68. Ze Yin, Donglei Zhou, Wen Xu, Shaobo Cui, Xu Chen, He Wang, Shihan Xu, and Hongwei Song . Plasmon-Enhanced Upconversion Luminescence on Vertically Aligned Gold Nanorod Monolayer Supercrystals. ACS Applied Materials & Interfaces 2016, 8 (18) , 11667-11674. https://doi.org/10.1021/acsami.5b12075
  69. Emilie Wientjes, Jan Renger, Richard Cogdell, and Niek F. van Hulst . Pushing the Photon Limit: Nanoantennas Increase Maximal Photon Stream and Total Photon Number. The Journal of Physical Chemistry Letters 2016, 7 (9) , 1604-1609. https://doi.org/10.1021/acs.jpclett.6b00491
  70. Sébastien Bidault, Alexis Devilez, Vincent Maillard, Laurent Lermusiaux, Jean-Michel Guigner, Nicolas Bonod, and Jérôme Wenger . Picosecond Lifetimes with High Quantum Yields from Single-Photon-Emitting Colloidal Nanostructures at Room Temperature. ACS Nano 2016, 10 (4) , 4806-4815. https://doi.org/10.1021/acsnano.6b01729
  71. Alessandro Alabastri, Xiao Yang, Alejandro Manjavacas, Henry O. Everitt, and Peter Nordlander . Extraordinary Light-Induced Local Angular Momentum near Metallic Nanoparticles. ACS Nano 2016, 10 (4) , 4835-4846. https://doi.org/10.1021/acsnano.6b01851
  72. Ioannis H. Karampelas, Kai Liu, Fatema Alali, and Edward P. Furlani . Plasmonic Nanoframes for Photothermal Energy Conversion. The Journal of Physical Chemistry C 2016, 120 (13) , 7256-7264. https://doi.org/10.1021/acs.jpcc.5b12743
  73. Yuetao Zhao, Liping Tong, Yong Li, Haobo Pan, Wei Zhang, Min Guan, Weihao Li, Yixin Chen, Qing Li, Zhongjun Li, Huaiyu Wang, Xue-Feng Yu, and Paul K. Chu . Lactose-Functionalized Gold Nanorods for Sensitive and Rapid Serological Diagnosis of Cancer. ACS Applied Materials & Interfaces 2016, 8 (9) , 5813-5820. https://doi.org/10.1021/acsami.5b11192
  74. Liang Su, Haifeng Yuan, Gang Lu, Susana Rocha, Michel Orrit, Johan Hofkens, and Hiroshi Uji-i . Super-resolution Localization and Defocused Fluorescence Microscopy on Resonantly Coupled Single-Molecule, Single-Nanorod Hybrids. ACS Nano 2016, 10 (2) , 2455-2466. https://doi.org/10.1021/acsnano.5b07294
  75. Wonju Lee, Yoshiaki Kinosita, Youngjin Oh, Nagisa Mikami, Heejin Yang, Makoto Miyata, Takayuki Nishizaka, and Donghyun Kim . Three-Dimensional Superlocalization Imaging of Gliding Mycoplasma mobile by Extraordinary Light Transmission through Arrayed Nanoholes. ACS Nano 2015, 9 (11) , 10896-10908. https://doi.org/10.1021/acsnano.5b03934
  76. Naoki Murata, Ryosuke Hata, and Hajime Ishihara . Crossover between Energy Transparency Resonance and Rabi Splitting in Antenna–Molecule Coupled Systems. The Journal of Physical Chemistry C 2015, 119 (45) , 25493-25498. https://doi.org/10.1021/acs.jpcc.5b08590
  77. Xuan Zhou, Jérémie Wenger, Francesco N. Viscomi, Loïc Le Cunff, Jérémie Béal, Serguei Kochtcheev, Xuyong Yang, Gary P. Wiederrecht, Gérard Colas des Francs, Anu Singh Bisht, Safi Jradi, Roberto Caputo, Hilmi Volkan Demir, Richard D. Schaller, Jérôme Plain, Alexandre Vial, Xiao Wei Sun, and Renaud Bachelot . Two-Color Single Hybrid Plasmonic Nanoemitters with Real Time Switchable Dominant Emission Wavelength. Nano Letters 2015, 15 (11) , 7458-7466. https://doi.org/10.1021/acs.nanolett.5b02962
  78. Johannes Kern, Andreas Trügler, Iris Niehues, Johannes Ewering, Robert Schmidt, Robert Schneider, Sina Najmaei, Antony George, Jing Zhang, Jun Lou, Ulrich Hohenester, Steffen Michaelis de Vasconcellos, and Rudolf Bratschitsch . Nanoantenna-Enhanced Light–Matter Interaction in Atomically Thin WS2. ACS Photonics 2015, 2 (9) , 1260-1265. https://doi.org/10.1021/acsphotonics.5b00123
  79. Irene Vassalini, Enzo Rotunno, Laura Lazzarini, and Ivano Alessandri . “Stainless” Gold Nanorods: Preserving Shape, Optical Properties, and SERS Activity in Oxidative Environment. ACS Applied Materials & Interfaces 2015, 7 (33) , 18794-18802. https://doi.org/10.1021/acsami.5b07175
  80. Bing Fu, Jessica D. Flynn, Benjamin P. Isaacoff, David J. Rowland, and Julie S. Biteen . Super-Resolving the Distance-Dependent Plasmon-Enhanced Fluorescence of Single Dye and Fluorescent Protein Molecules. The Journal of Physical Chemistry C 2015, 119 (33) , 19350-19358. https://doi.org/10.1021/acs.jpcc.5b05154
  81. Deep Punj, Raju Regmi, Alexis Devilez, Robin Plauchu, Satish Babu Moparthi, Brian Stout, Nicolas Bonod, Hervé Rigneault, and Jérôme Wenger . Self-Assembled Nanoparticle Dimer Antennas for Plasmonic-Enhanced Single-Molecule Fluorescence Detection at Micromolar Concentrations. ACS Photonics 2015, 2 (8) , 1099-1107. https://doi.org/10.1021/acsphotonics.5b00152
  82. Kin W. Lei, X.-Y. Zhu, and D. L. Fan . Rational Fabrication of Arrays of Plasmonic Metal–Quantum Dot Sandwiched Nanodisks with Enhanced Förster Resonance Energy Transfer. The Journal of Physical Chemistry C 2015, 119 (28) , 16230-16238. https://doi.org/10.1021/acs.jpcc.5b03904
  83. Taishi Zhang, Nengyue Gao, Shuang Li, Matthew J. Lang, and Qing-Hua Xu . Single-Particle Spectroscopic Study on Fluorescence Enhancement by Plasmon Coupled Gold Nanorod Dimers Assembled on DNA Origami. The Journal of Physical Chemistry Letters 2015, 6 (11) , 2043-2049. https://doi.org/10.1021/acs.jpclett.5b00747
  84. Esther Wertz, Benjamin P. Isaacoff, Jessica D. Flynn, and Julie S. Biteen . Single-Molecule Super-Resolution Microscopy Reveals How Light Couples to a Plasmonic Nanoantenna on the Nanometer Scale. Nano Letters 2015, 15 (4) , 2662-2670. https://doi.org/10.1021/acs.nanolett.5b00319
  85. Saumyakanti Khatua and Michel Orrit . Probing, Sensing, and Fluorescence Enhancement with Single Gold Nanorods. The Journal of Physical Chemistry Letters 2014, 5 (17) , 3000-3006. https://doi.org/10.1021/jz501253j
  86. Nardine S. Abadeer, Marshall R. Brennan, William L. Wilson, and Catherine J. Murphy . Distance and Plasmon Wavelength Dependent Fluorescence of Molecules Bound to Silica-Coated Gold Nanorods. ACS Nano 2014, 8 (8) , 8392-8406. https://doi.org/10.1021/nn502887j
  87. Wenwen Yin, Jiajie Sui, Guozhong Cao, Dana Dabiri. Nanoparticle core size and spacer coating thickness-dependence on metal-enhanced luminescence in optical oxygen sensors. Talanta 2023, 259 , 123690. https://doi.org/10.1016/j.talanta.2022.123690
  88. Priyash Barya, Yanyu Xiong, Skye Shepherd, Rohit Gupta, Lucas D. Akin, Joseph Tibbs, Hankeun Lee, Srikanth Singamaneni, Brian T. Cunningham. Photonic‐Plasmonic Coupling Enhanced Fluorescence Enabling Digital‐Resolution Ultrasensitive Protein Detection. Small 2023, https://doi.org/10.1002/smll.202207239
  89. Sunny Tiwari, Prithu Roy, Jean‐Benoît Claude, Jérôme Wenger. Achieving High Temporal Resolution in Single‐Molecule Fluorescence Techniques Using Plasmonic Nanoantennas. Advanced Optical Materials 2023, 12 https://doi.org/10.1002/adom.202300168
  90. Min Liu, Lan Yu, Yanru Li, Ying Ma, Sha An, Juanjuan Zheng, Lixin Liu, Ke Lin, Peng Gao. Bionic Plasmonic Nanoarrays Excited by Radially Polarized Vector Beam for Metal-Enhanced Fluorescence. Nanomaterials 2023, 13 (7) , 1237. https://doi.org/10.3390/nano13071237
  91. Rachith Shanivarasanthe Nithyananda Kumar, Maarten Eerdekens, Yovan de Coene, Veda Sandeep Nagaraja, Shabnam Ahadzadeh, Melissa Van landeghem, Thierry Verbiest, Wim Deferme. Plasmon enhanced fluorescence from meticulously positioned gold nanoparticles, deposited by ultra sonic spray coating on organic light emitting diodes. Nanoscale Advances 2023, 5 (6) , 1750-1759. https://doi.org/10.1039/D2NA00753C
  92. Jiamian Wang, Qingrong Chen, Caixia Xu, Yuehan Cao, Tianwei Song, Ting Li, Xiaohui Xu, Ping Chen, Long Xu. Low-threshold green and red random lasing emission in inorganic halide lead perovskite microcrystals with plasmonic and interferential enhancement. Ceramics International 2023, 49 (6) , 9185-9190. https://doi.org/10.1016/j.ceramint.2022.11.081
  93. Shunsuke Murai, Feifei Zhang, Koki Aichi, Katsuhisa Tanaka. Photoluminescence engineering with nanoantenna phosphors. Journal of Materials Chemistry C 2023, 11 (2) , 472-479. https://doi.org/10.1039/D2TC03076D
  94. Aleksandr Barulin, Prithu Roy, Jean-Benoît Claude, Jérôme Wenger. Ultraviolet optical horn antennas for label-free detection of single proteins. Nature Communications 2022, 13 (1) https://doi.org/10.1038/s41467-022-29546-4
  95. Mingcai Xie, Hanyu Liu, Sushu Wan, Xuxing Lu, Daocheng Hong, Yu Du, Weiqing Yang, Zhihong Wei, Susu Fang, Chen-Lei Tao, Dan Xu, Boyang Wang, Siyu Lu, Xue-Jun Wu, Weigao Xu, Michel Orrit, Yuxi Tian. Ultrasensitive detection of local acoustic vibrations at room temperature by plasmon-enhanced single-molecule fluorescence. Nature Communications 2022, 13 (1) https://doi.org/10.1038/s41467-022-30955-8
  96. Luke Henderson, Oara Neumann, Yara Kadria-Vili, Burak Gerislioglu, James Bankson, Peter Nordlander, Naomi J Halas, . Plasmonic gadolinium oxide nanomatryoshkas: bifunctional magnetic resonance imaging enhancers for photothermal cancer therapy. PNAS Nexus 2022, 1 (4) https://doi.org/10.1093/pnasnexus/pgac140
  97. Jiangtao Lv, Minghui Chang, Qiongchan Gu, Yu Ying, Guangyuan Si. Plasmon-Enhanced Fluorescence Emission of an Electric Dipole Modulated by a Nanoscale Silver Hemisphere. Nanomaterials 2022, 12 (17) , 3070. https://doi.org/10.3390/nano12173070
  98. Elizabeth Mariam Thomas, Cristian L. Cortes, Livin Paul, Stephen K. Gray, K. George Thomas. Combined effects of emitter–emitter and emitter–plasmonic surface separations dictate photoluminescence enhancement in a plasmonic field. Physical Chemistry Chemical Physics 2022, 24 (28) , 17250-17262. https://doi.org/10.1039/D2CP01681H
  99. Dandan Ge, Ali Issa, Safi Jradi, Christophe Couteau, Sylvie Marguet, Renaud Bachelot. Advanced hybrid plasmonic nano-emitters using smart photopolymer. Photonics Research 2022, 10 (7) , 1552. https://doi.org/10.1364/PRJ.455712
  100. Daedu Lee, Junghyun Song, Gyounghyun Song, Yoonsoo Pang. Metal-enhanced fluorescence of dyes with quadrupole surface plasmon resonance of silver nanoparticles. Nanoscale Advances 2022, 4 (13) , 2794-2805. https://doi.org/10.1039/D1NA00837D
Load more citations

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect