ACS Publications. Most Trusted. Most Cited. Most Read
Improved Photoelectrical Properties of MoS2 Films after Laser Micromachining
My Activity
    Article

    Improved Photoelectrical Properties of MoS2 Films after Laser Micromachining
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542, Singapore
    Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 3 Research Link, Singapore 117602, Singapore
    § Graphene Research Centre, National University of Singapore, 6 Science Drive 2, Singapore 117546, Singapore
    Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
    *Address correspondence to [email protected]
    Other Access OptionsSupporting Information (1)

    ACS Nano

    Cite this: ACS Nano 2014, 8, 6, 6334–6343
    Click to copy citationCitation copied!
    https://doi.org/10.1021/nn501821z
    Published May 26, 2014
    Copyright © 2014 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Direct patterning of ultrathin MoS2 films with well-defined structures and controllable thickness is appealing since the properties of MoS2 sheets are sensitive to the number of layer and surface properties. In this work, we employed a facile, effective, and well-controlled technique to achieve micropatterning of MoS2 films with a focused laser beam. We demonstrated that a direct focused laser beam irradiation was able to achieve localized modification and thinning of as-synthesized MoS2 films. With a scanning laser beam, microdomains with well-defined structures and controllable thickness were created on the same film. We found that laser modification altered the photoelectrical property of the MoS2 films, and subsequently, photodetectors with improved performance have been fabricated and demonstrated using laser modified films.

    Copyright © 2014 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Optical images of large area MoS2 films with different layer numbers on different substrates, extended PL spectrum, schematic of fast photoresponsse rate measurement, and photoswitching behavior of the photodetectors. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 111 publications.

    1. Yuan Liu, Linhan Lin, Hong-Bo Sun. Optical Modification of Two-Dimensional Materials: From Atomic to Electronic Scale. The Journal of Physical Chemistry C 2024, 128 (6) , 2271-2290. https://doi.org/10.1021/acs.jpcc.3c08058
    2. Chung-Che Huang, He Wang, Yameng Cao, Ed Weatherby, Filipe Richheimer, Sebastian Wood, Shan Jiang, Daqing Wei, Yongkang Dong, Xiaosong Lu, Pengfei Wang, Tomas Polcar, Daniel W. Hewak. Facilitating Uniform Large-Scale MoS2, WS2 Monolayers, and Their Heterostructures through van der Waals Epitaxy. ACS Applied Materials & Interfaces 2022, 14 (37) , 42365-42373. https://doi.org/10.1021/acsami.2c12174
    3. Zhenzhen Shen, Chunchi Zhang, Yajing Meng, Zegao Wang. Highly Tunable, Broadband, and Negative Photoresponse MoS2 Photodetector Driven by Ion-Gel Gate Dielectrics. ACS Applied Materials & Interfaces 2022, 14 (28) , 32412-32419. https://doi.org/10.1021/acsami.2c08341
    4. Pei Zuo, Lan Jiang, Xin Li, Mengyao Tian, Le Ma, Chenyang Xu, Yongjiu Yuan, Xiaojie Li, Xiaozhe Chen, Misheng Liang. Phase-Reversed MoS2 Nanosheets Prepared through Femtosecond Laser Exfoliation and Chemical Doping. The Journal of Physical Chemistry C 2021, 125 (15) , 8304-8313. https://doi.org/10.1021/acs.jpcc.1c00235
    5. Zhaohui Li, Zhenzhen Jiang, Wenda Zhou, Mingyue Chen, Meixia Su, Xingfang Luo, Ting Yu, Cailei Yuan. MoS2 Nanoribbons with a Prolonged Photoresponse Lifetime for Enhanced Visible Light Photoelectrocatalytic Hydrogen Evolution. Inorganic Chemistry 2021, 60 (3) , 1991-1997. https://doi.org/10.1021/acs.inorgchem.0c03478
    6. Gyuchull Han, Manasa Kaniselvan, Youngki Yoon. Photoresponse of MoSe2 Transistors: A Fully Numerical Quantum Transport Simulation Study. ACS Applied Electronic Materials 2020, 2 (11) , 3765-3772. https://doi.org/10.1021/acsaelm.0c00795
    7. Christian Tessarek, Oleg Gridenco, Martin Wiesing, Jan Müssener, Stephan Figge, Kathrin Sebald, Jürgen Gutowski, Martin Eickhoff. Controlled Laser-Thinning of MoS2 Nanolayers and Transformation to Amorphous MoOx for 2D Monolayer Fabrication. ACS Applied Nano Materials 2020, 3 (8) , 7490-7498. https://doi.org/10.1021/acsanm.0c01104
    8. Ho-Jong Kim, Yong Ju Yun, Sam Nyung Yi, Soo Kyung Chang, Dong Han Ha. Changes in the Photoluminescence of Monolayer and Bilayer Molybdenum Disulfide during Laser Irradiation. ACS Omega 2020, 5 (14) , 7903-7909. https://doi.org/10.1021/acsomega.9b04202
    9. Foad Ghasemi, Ali Abdollahi, Shams Mohajerzadeh. Controlled Plasma Thinning of Bulk MoS2 Flakes for Photodetector Fabrication. ACS Omega 2019, 4 (22) , 19693-19704. https://doi.org/10.1021/acsomega.9b02367
    10. Pei Zuo, Lan Jiang, Xin Li, Mengyao Tian, Chenyang Xu, Yongjiu Yuan, Peng Ran, Bo Li, Yongfeng Lu. Maskless Micro/Nanopatterning and Bipolar Electrical Rectification of MoS2 Flakes Through Femtosecond Laser Direct Writing. ACS Applied Materials & Interfaces 2019, 11 (42) , 39334-39341. https://doi.org/10.1021/acsami.9b13059
    11. Hossein Ardekani, Robert Younts, Yiling Yu, Linyou Cao, Kenan Gundogdu. Reversible Photoluminescence Tuning by Defect Passivation via Laser Irradiation on Aged Monolayer MoS2. ACS Applied Materials & Interfaces 2019, 11 (41) , 38240-38246. https://doi.org/10.1021/acsami.9b10688
    12. Li Wang, Merranda Schmid, Zach N. Nilsson, Muhammad Tahir, Hua Chen, Justin B. Sambur. Laser Annealing Improves the Photoelectrochemical Activity of Ultrathin MoSe2 Photoelectrodes. ACS Applied Materials & Interfaces 2019, 11 (21) , 19207-19217. https://doi.org/10.1021/acsami.9b04785
    13. Juhong Park, Min Su Kim, Bumsu Park, Sang Ho Oh, Shrawan Roy, Jeongyong Kim, Wonbong Choi. Composition-Tunable Synthesis of Large-Scale Mo1–xWxS2 Alloys with Enhanced Photoluminescence. ACS Nano 2018, 12 (6) , 6301-6309. https://doi.org/10.1021/acsnano.8b03408
    14. Sujoy Das, Radhakanta Ghosh, Parimal Routh, Arnab Shit, Sanjoy Mondal, Aditi Panja, Arun K. Nandi. Conductive MoS2 Quantum Dot/Polyaniline Aerogel for Enhanced Electrocatalytic Hydrogen Evolution and Photoresponse Properties. ACS Applied Nano Materials 2018, 1 (5) , 2306-2316. https://doi.org/10.1021/acsanm.8b00373
    15. Mark A. Bissett, Andrew G. Hattle, Alexander J. Marsden, Ian A. Kinloch, Robert A. W. Dryfe. Enhanced Photoluminescence of Solution-Exfoliated Transition Metal Dichalcogenides by Laser Etching. ACS Omega 2017, 2 (2) , 738-745. https://doi.org/10.1021/acsomega.6b00294
    16. Changbong Yeon, Inyeal Lee, Gil-Ho Kim, and Sun Jin Yun . Unimer-Assisted Exfoliation for Highly Concentrated Aqueous Dispersion Solutions of Single- and Few-Layered van der Waals Materials. Langmuir 2017, 33 (5) , 1217-1226. https://doi.org/10.1021/acs.langmuir.6b04121
    17. Ashwin Venkatakrishnan, Hou Chua, Pinxi Tan, Zhenliang Hu, Hongwei Liu, Yanpeng Liu, Alexandra Carvalho, Junpeng Lu, and Chorng Haur Sow . Microsteganography on WS2 Monolayers Tailored by Direct Laser Painting. ACS Nano 2017, 11 (1) , 713-720. https://doi.org/10.1021/acsnano.6b07118
    18. Martha I. Serna, Seong H. Yoo, Salvador Moreno, Yang Xi, Juan Pablo Oviedo, Hyunjoo Choi, Husam N. Alshareef, Moon J. Kim, Majid Minary-Jolandan, and Manuel A. Quevedo-Lopez . Large-Area Deposition of MoS2 by Pulsed Laser Deposition with In Situ Thickness Control. ACS Nano 2016, 10 (6) , 6054-6061. https://doi.org/10.1021/acsnano.6b01636
    19. Jaehyun Yang, Hyena Kwak, Youngbin Lee, Yu-Seon Kang, Mann-Ho Cho, Jeong Ho Cho, Yong-Hoon Kim, Seong-Jun Jeong, Seongjun Park, Hoo-Jeong Lee, and Hyoungsub Kim . MoS2–InGaZnO Heterojunction Phototransistors with Broad Spectral Responsivity. ACS Applied Materials & Interfaces 2016, 8 (13) , 8576-8582. https://doi.org/10.1021/acsami.5b11709
    20. Bien Cuong Tran Khac, Ki-Joon Jeon, Seung Tae Choi, Yong Soo Kim, Frank W. DelRio, and Koo-Hyun Chung . Laser-Induced Particle Adsorption on Atomically Thin MoS2. ACS Applied Materials & Interfaces 2016, 8 (5) , 2974-2984. https://doi.org/10.1021/acsami.5b09382
    21. Lili Gong, Liangjun Wang, Junpeng Lu, Cheng Han, Wei Chen, and Chorng Haur Sow . Photocurrent Response in Multiwalled Carbon Nanotube Core–Molybdenum Disulfide Shell Heterostructures. The Journal of Physical Chemistry C 2015, 119 (43) , 24588-24596. https://doi.org/10.1021/acs.jpcc.5b06609
    22. Junpeng Lu, Jing Wu, Alexandra Carvalho, Angelo Ziletti, Hongwei Liu, Junyou Tan, Yifan Chen, A. H. Castro Neto, Barbaros Özyilmaz, and Chorng Haur Sow . Bandgap Engineering of Phosphorene by Laser Oxidation toward Functional 2D Materials. ACS Nano 2015, 9 (10) , 10411-10421. https://doi.org/10.1021/acsnano.5b04623
    23. Junpeng Lu, Alexandra Carvalho, Xinhui Kim Chan, Hongwei Liu, Bo Liu, Eng Soon Tok, Kian Ping Loh, A. H. Castro Neto, and Chorng Haur Sow . Atomic Healing of Defects in Transition Metal Dichalcogenides. Nano Letters 2015, 15 (5) , 3524-3532. https://doi.org/10.1021/acs.nanolett.5b00952
    24. Sarah L. Howell, Deep Jariwala, Chung-Chiang Wu, Kan-Sheng Chen, Vinod K. Sangwan, Junmo Kang, Tobin J. Marks, Mark C. Hersam, and Lincoln J. Lauhon . Investigation of Band-Offsets at Monolayer–Multilayer MoS2 Junctions by Scanning Photocurrent Microscopy. Nano Letters 2015, 15 (4) , 2278-2284. https://doi.org/10.1021/nl504311p
    25. Byungjin Cho, Ah Ra Kim, Youngjin Park, Jongwon Yoon, Young-Joo Lee, Sangchul Lee, Tae Jin Yoo, Chang Goo Kang, Byoung Hun Lee, Heung Cho Ko, Dong-Ho Kim, and Myung Gwan Hahm . Bifunctional Sensing Characteristics of Chemical Vapor Deposition Synthesized Atomic-Layered MoS2. ACS Applied Materials & Interfaces 2015, 7 (4) , 2952-2959. https://doi.org/10.1021/am508535x
    26. M. F. Khan, M. W. Iqbal, M. Z. Iqbal, M. A. Shehzad, Y. Seo, and Jonghwa Eom . Photocurrent Response of MoS2 Field-Effect Transistor by Deep Ultraviolet Light in Atmospheric and N2 Gas Environments. ACS Applied Materials & Interfaces 2014, 6 (23) , 21645-21651. https://doi.org/10.1021/am506716a
    27. Jiayuan Yan, Chunxia Wu, Yongxing Liu, Wangfei Shen, Xiaoliang Zhang, Ping Li, Guangshuo Wang, Zehu Wang, Hongwei Che, Yanming Wang. Synergetic enhancement of wear resistance of polyimide coatings through the integration of MoS2 nanoflowers and MXene nanosheets. Wear 2024, 558-559 , 205584. https://doi.org/10.1016/j.wear.2024.205584
    28. Rong Tan, Yuxin Liu, Yifeng Tu, Felix F. Loeffler. Flash phase engineering of MoS 2 nanofilms for enhanced photoelectrochemical performance. RSC Advances 2024, 14 (7) , 4730-4733. https://doi.org/10.1039/D3RA07759D
    29. Tuan-Hoang Tran, Raul D. Rodriguez, Nelson E. Villa, Sergey Shchadenko, Andrey Averkiev, Yang Hou, Tao Zhang, Aleksandar Matkovic, Evgeniya Sheremet. Laser-Induced photothermal activation of multilayer MoS2 with spatially controlled catalytic activity. Journal of Colloid and Interface Science 2024, 654 , 114-123. https://doi.org/10.1016/j.jcis.2023.10.027
    30. Si Min Chan, Eng Tuan Poh, Jin Feng Leong, Kuan Eng Johnson Goh, Chorng Haur Sow. Bolstering functionality in multilayer and bilayer WS2 via focused laser micro-engraving. Science China Information Sciences 2023, 66 (6) https://doi.org/10.1007/s11432-023-3764-7
    31. Kai Wang, Zhicheng Chen, Xu Wu, Changji Pan, Feifei Wang, Jiaxing Wang, Ke Zhang, Yang Yang, Jingya Sun. Ultrafast Mechanism of Material Removal in the Femtosecond Laser Ablation of WS2 and Its Diode Rectification Characteristics. Crystals 2023, 13 (5) , 832. https://doi.org/10.3390/cryst13050832
    32. Hanxin Wang, Manzhang Xu, Hongjia Ji, Tong He, Weiwei Li, Lu Zheng, Xuewen Wang. Laser-assisted synthesis of two-dimensional transition metal dichalcogenides: a mini review. Frontiers in Chemistry 2023, 11 https://doi.org/10.3389/fchem.2023.1195640
    33. Mouad Hachhach, Hanane Akram, Mounir Hanafi, Ouafae Achak, Tarik Chafik. Process design and economic assessment of large-scale production of molybdenum disulfide nanomaterials. Chemical Product and Process Modeling 2023, 18 (2) , 355-368. https://doi.org/10.1515/cppm-2022-0004
    34. B. Susmitha, K. Arjun, B. Karthikeyan. Raman spectral studies on phonon softening, surface temperature, fano resonance, and phase change in MoS2 nanoflakes. Applied Physics A 2023, 129 (4) https://doi.org/10.1007/s00339-023-06590-5
    35. Pei Zuo, Lan Jiang, Xin Li, MengYao Tian, YongJiu Yuan, WeiNa Han, Le Ma, LiFei Hu, ZhiCong He, Fang Li. MoS2 core-shell nanoparticles prepared through liquid-phase ablation and light exfoliation of femtosecond laser for chemical sensing. Science China Technological Sciences 2023, 66 (3) , 853-862. https://doi.org/10.1007/s11431-022-2270-9
    36. Basanta Roul, Arun Malla Chowdhury, Malti Kumari, Kishan Lal Kumawat, Sujit Das, K. K. Nanda, S. B. Krupanidhi. Reduced-graphene oxide decorated γ-In 2 Se 3 /Si heterostructure-based broadband photodetectors with enhanced figures-of-merit. Materials Advances 2023, 4 (2) , 596-606. https://doi.org/10.1039/D2MA00918H
    37. Zhigang He, Heyuan Guan, Xijie Liang, Junteng Chen, Manyan Xie, Kaiwen Luo, Ran An, Liang Ma, Fengkai Ma, Tiefeng Yang, Huihui Lu. Broadband, Polarization-Sensitive, and Self-Powered High-Performance Photodetection of Hetero-Integrated MoS 2 on Lithium Niobate. Research 2023, 6 https://doi.org/10.34133/research.0199
    38. Chenglin Wang, Qianqian Wu, Yang Ding, Zhengyang Cai, Shaoqing Xiao, Xiumei Zhang, Haiyan Nan, Xiaofeng Gu. The high-performance photodetector of MoS 2 homojunction based on laser etching engineering. Applied Physics Express 2023, 16 (1) , 015003. https://doi.org/10.35848/1882-0786/acac00
    39. Changhyun Ko. Area-Selective Defect-Related Modulation of Optical and Electrical Properties of Monolayer Molybdenum Disulfide by Focused-Laser Irradiation. Applied Sciences 2023, 13 (1) , 304. https://doi.org/10.3390/app13010304
    40. Nan Liu, Yi Cao, Yun-Long Tang, Yin-Lian Zhu, Yu-Jia Wang, Jia-Qi Liu, Heng Zhang, Chang-Ji Li, Si-Rui Zhang, Bing Yang, Hai-Ning Li, Xiu-Liang Ma. Significant photovoltaic enhancement in La-doped BiFeO3 achieved by engineering crystallographic facet arrays. Scripta Materialia 2022, 221 , 114961. https://doi.org/10.1016/j.scriptamat.2022.114961
    41. Mouad Hachhach, Hanane Akram, Achraf El Kasmi, Mounir Hanafi, Ouafae Achak, Tarik Chafik. Life cycle assessment of large-scale production of MoS2 nanomaterials through the solvothermal method. Journal of Nanoparticle Research 2022, 24 (9) https://doi.org/10.1007/s11051-022-05563-8
    42. Fatemeh Shahi, Parviz Parvin, Seyedeh Zahra Mortazavi, Ali Reyhani, Babak Soltannia, Mohtada Sadrzadeh, Hamed Moradi, Ali Ojaghloo, Ali Moafi. Synthesis, Characterization, and Typical Application of Nitrogen‐Doped MoS 2 Nanosheets Based on Pulsed Laser Ablation in Liquid Nitrogen. physica status solidi (a) 2022, 219 (14) https://doi.org/10.1002/pssa.202100677
    43. Y. Lv, P. Chen, J.J. Foo, J. Zhang, W. Qian, C. Chen, W.-J. Ong. Dimensionality-dependent MoS2 toward efficient photocatalytic hydrogen evolution: from synthesis to modifications in doping, surface and heterojunction engineering. Materials Today Nano 2022, 18 , 100191. https://doi.org/10.1016/j.mtnano.2022.100191
    44. Suvi‐Tuuli Marianne Akkanen, Henry Alexander Fernandez, Zhipei Sun. Optical Modification of 2D Materials: Methods and Applications. Advanced Materials 2022, 34 (19) https://doi.org/10.1002/adma.202110152
    45. Yajun Xu, Honglie Shen, Di Wu, Qichen Zhao, Zehui Wang, Jiawei Ge, Wei Zhang. Self-powered near-infrared MoS2/n-Si photodetectors with Al2O3 interface passivation. Journal of Alloys and Compounds 2022, 902 , 163878. https://doi.org/10.1016/j.jallcom.2022.163878
    46. Jie Xu, Eric Plum. Defect-induced nonlinearity in 2D nanoparticles. Optics Express 2022, 30 (5) , 7162. https://doi.org/10.1364/OE.443977
    47. Eng Tuan Poh, Sharon Xiaodai Lim, Chorng Haur Sow. Multifaceted Approaches to Engineer Fluorescence in Nanomaterials via a Focused Laser Beam. Light: Advanced Manufacturing 2022, 3 (1) , 1. https://doi.org/10.37188/lam.2022.004
    48. Lili Zhao, Zhen Liu, Duo Chen, Fan Liu, Zhiyuan Yang, Xiao Li, Haohai Yu, Hong Liu, Weijia Zhou. Laser Synthesis and Microfabrication of Micro/Nanostructured Materials Toward Energy Conversion and Storage. Nano-Micro Letters 2021, 13 (1) https://doi.org/10.1007/s40820-020-00577-0
    49. Omar Adnan Abbas, Adam Henry Lewis, Nikolaos Aspiotis, Chung-Che Huang, Ioannis Zeimpekis, Daniel W. Hewak, Pier Sazio, Sakellaris Mailis. Laser printed two-dimensional transition metal dichalcogenides. Scientific Reports 2021, 11 (1) https://doi.org/10.1038/s41598-021-81829-w
    50. Manzhang Xu, Jiuwei Gao, Juncai Song, Hanxin Wang, Lu Zheng, Yuan Wei, Yongmin He, Xuewen Wang, Wei Huang. Programmable patterned MoS2 film by direct laser writing for health-related signals monitoring. iScience 2021, 24 (11) , 103313. https://doi.org/10.1016/j.isci.2021.103313
    51. Nishant Tripathi, Vladimir Pavelyev, Prachi Sharma, Sunil Kumar, Anastasiia Rymzhina, Prabhash Mishra. Review of titanium trisulfide (TiS3): A novel material for next generation electronic and optical devices. Materials Science in Semiconductor Processing 2021, 127 , 105699. https://doi.org/10.1016/j.mssp.2021.105699
    52. Bhuvaneshwari Ezhilmaran, Abhinandan Patra, Stenny Benny, Sreelakshmi M. R., Akshay V. V., S. Venkataprasad Bhat, Chandra Sekhar Rout. Recent developments in the photodetector applications of Schottky diodes based on 2D materials. Journal of Materials Chemistry C 2021, 9 (19) , 6122-6150. https://doi.org/10.1039/D1TC00949D
    53. Mubashir A. Kharadi, Gul Faroz A. Malik, Farooq A. Khanday. Photo-Detectors Based on Two Dimensional Materials. 2021https://doi.org/10.5772/intechopen.95559
    54. Mikko T. Turunen, Eero Hulkko, Kamila K. Mentel, Xueyin Bai, Suvi‐Tuuli Akkanen, Mohammad Amini, Shisheng Li, Harri Lipsanen, Mika Pettersson, Zhipei Sun. Deterministic Modification of CVD Grown Monolayer MoS 2 with Optical Pulses. Advanced Materials Interfaces 2021, 8 (10) https://doi.org/10.1002/admi.202002119
    55. Hongrui Wang, Yongqiang Yu, Su You, Jie Meng, Mairman Muska, Qunxiang Li, Qing Yang. Low‐Temperature Growth of High‐Quality Ag 2 HgS 2 Crystals for Setup of Weak‐Light UV–Visible–NIR Photodetectors. Advanced Optical Materials 2021, 9 (10) https://doi.org/10.1002/adom.202002080
    56. Kamila K. Mentel, Jyrki Manninen, Vesa-Matti Hiltunen, Pasi Myllyperkiö, Andreas Johansson, Mika Pettersson. Shaping graphene with optical forging: from a single blister to complex 3D structures. Nanoscale Advances 2021, 3 (5) , 1431-1442. https://doi.org/10.1039/D0NA00832J
    57. Kai Wang, Jing-Ya Sun, Chang-Ji Pan, Fei-Fei Wang, Ke Zhang, Zhi-Cheng Chen, . Ultrafast dynamic response and temporal shaping modulation of tungsten disulfide irradiated by femtosecond laser. Acta Physica Sinica 2021, 70 (20) , 205201. https://doi.org/10.7498/aps.70.20210737
    58. Yan-Tao Shu, You-Wei Zhang, Shun Wang, , . Photodetectors based on homojunctions of transition metal dichalcogenides. Acta Physica Sinica 2021, 70 (17) , 177301. https://doi.org/10.7498/aps.70.20210859
    59. Luqi Tu, Rongrong Cao, Xudong Wang, Yan Chen, Shuaiqin Wu, Fang Wang, Zhen Wang, Hong Shen, Tie Lin, Peng Zhou, Xiangjian Meng, Weida Hu, Qi Liu, Jianlu Wang, Ming Liu, Junhao Chu. Ultrasensitive negative capacitance phototransistors. Nature Communications 2020, 11 (1) https://doi.org/10.1038/s41467-019-13769-z
    60. Yang Li, Jian Yang, ZhaoYao Zhan, Jumiati Wu, Hai Li, Liang Zhen, QiYuan He, ChengYan Xu. Few-layer WSe2 lateral homo- and hetero-junctions with superior optoelectronic performance by laser manufacturing. Science China Technological Sciences 2020, 63 (8) , 1531-1537. https://doi.org/10.1007/s11431-020-1627-0
    61. Chengbing Qin, Yan Gao, Lei Zhang, Xilong Liang, Wenjun He, Guofeng Zhang, Ruiyun Chen, Jianyong Hu, Liantuan Xiao, Suotang Jia. Flexible engineering of light emission in monolayer MoS2 via direct laser writing for multimode optical recording. AIP Advances 2020, 10 (4) https://doi.org/10.1063/1.5143611
    62. Dipjyoti Das, Junghak Park, Minho Ahn, Sungho Park, Jihyun Hur, Sanghun Jeon. Broad spectral responsivity in highly photoconductive InZnO/MoS 2 heterojunction phototransistor with ultrathin transparent metal electrode. Nanotechnology 2020, 31 (3) , 035201. https://doi.org/10.1088/1361-6528/ab4526
    63. Pavana Siddhartha Kollipara, Jingang Li, Yuebing Zheng. Optical Patterning of Two-Dimensional Materials. Research 2020, 2020 https://doi.org/10.34133/2020/6581250
    64. Ki Seok Kim, You Jin Ji, Ki Hyun Kim, Seunghyuk Choi, Dong-Ho Kang, Keun Heo, Seongjae Cho, Soonmin Yim, Sungjoo Lee, Jin-Hong Park, Yeon Sik Jung, Geun Young Yeom. Ultrasensitive MoS2 photodetector by serial nano-bridge multi-heterojunction. Nature Communications 2019, 10 (1) https://doi.org/10.1038/s41467-019-12592-w
    65. Li Wang, Merranda Schmid, Justin B. Sambur. Single nanoparticle photoelectrochemistry: What is next?. The Journal of Chemical Physics 2019, 151 (18) https://doi.org/10.1063/1.5124710
    66. Mengmeng Zhu, Guohua Li, Xueming Zhang, Siping Gan, Jiaxin Zhai, Xiao Song. High yield and concentration exfoliation of defect-free 2D nanosheets via gentle water freezing-thawing approach and stabilization with PVP. Materials Research Express 2019, 6 (11) , 1150c9. https://doi.org/10.1088/2053-1591/ab2de3
    67. Guang-Yi Zhao, Hua Deng, Nathaniel Tyree, Michael Guy, Abdellah Lisfi, Qing Peng, Jia-An Yan, Chundong Wang, Yucheng Lan. Recent Progress on Irradiation-Induced Defect Engineering of Two-Dimensional 2H-MoS2 Few Layers. Applied Sciences 2019, 9 (4) , 678. https://doi.org/10.3390/app9040678
    68. V. Karthik Nagareddy, Toby J. Octon, Nicola J. Townsend, Saverio Russo, Monica F. Craciun, C. David Wright. Humidity‐Controlled Ultralow Power Layer‐by‐Layer Thinning, Nanopatterning and Bandgap Engineering of MoTe 2. Advanced Functional Materials 2018, 28 (52) https://doi.org/10.1002/adfm.201804434
    69. Renyun Zhang, Magnus Hummelgård, Viviane Forsberg, Henrik Andersson, Magnus Engholm, Thomas Öhlund, Martin Olsen, Jonas Örtegren, Håkan Olin. Photoconductivity of acid exfoliated and flash-light-processed MoS2 films. Scientific Reports 2018, 8 (1) https://doi.org/10.1038/s41598-018-21688-0
    70. Ramesh Naidu Jenjeti, Rajat Kumar, Muthu P. Austeria, S. Sampath. Field Effect Transistor Based on Layered NiPS 3. Scientific Reports 2018, 8 (1) https://doi.org/10.1038/s41598-018-26522-1
    71. Tian-Jun Dai, Yu-Chen Liu, Xu-Dong Fan, Xing-Zhao Liu, Dan Xie, Yan-Rong Li. Synthesis of few-layer 2H-MoSe 2 thin films with wafer-level homogeneity for high-performance photodetector. Nanophotonics 2018, 7 (12) , 1959-1969. https://doi.org/10.1515/nanoph-2018-0153
    72. Lili Gong, Qi Zhang, Liangjun Wang, Jianfeng Wu, Cheng Han, Bo Lei, Wei Chen, Goki Eda, Kuan Eng Johnson Goh, Chorng Haur Sow. Emergence of photoluminescence on bulk MoS2 by laser thinning and gold particle decoration. Nano Research 2018, 11 (9) , 4574-4586. https://doi.org/10.1007/s12274-018-2037-5
    73. Matteo Ciprian, Peng Xu, Somboon Chaemchuen, Rong Tu, Serge Zhuiykov, Philippe M. Heynderickx, Francis Verpoort. MoO3 nanoparticle formation on zeolitic imidazolate framework-8 by rotary chemical vapor deposition. Microporous and Mesoporous Materials 2018, 267 , 185-191. https://doi.org/10.1016/j.micromeso.2018.03.028
    74. Peng Xiao, Jie Mao, Ke Ding, Wenjin Luo, Weida Hu, Xiujuan Zhang, Xiaohong Zhang, Jiansheng Jie. Solution‐Processed 3D RGO–MoS 2 /Pyramid Si Heterojunction for Ultrahigh Detectivity and Ultra‐Broadband Photodetection. Advanced Materials 2018, 30 (31) https://doi.org/10.1002/adma.201801729
    75. Zhen-Zhong Yan, Zhao-Han Jiang, Jun-Peng Lu, Zhen-Hua Ni. Interfacial charge transfer in WS2 monolayer/CsPbBr3 microplate heterostructure. Frontiers of Physics 2018, 13 (4) https://doi.org/10.1007/s11467-018-0785-z
    76. Gopinath Danda, Paul Masih Das, Marija Drndić. Laser-induced fabrication of nanoporous monolayer WS 2 membranes. 2D Materials 2018, 5 (3) , 035011. https://doi.org/10.1088/2053-1583/aabb73
    77. Honglian Song, Xiaofei Yu, Ming Chen, Mei Qiao, Tiejun Wang, Jing Zhang, Yong Liu, Peng Liu, Xuelin Wang. Modification of WS2 nanosheets with controllable layers via oxygen ion irradiation. Applied Surface Science 2018, 439 , 240-245. https://doi.org/10.1016/j.apsusc.2018.01.019
    78. Zhi Yang, Jinjuan Dou, Minqiang Wang. Graphene, Transition Metal Dichalcogenides, and Perovskite Photodetectors. 2018https://doi.org/10.5772/intechopen.74021
    79. Sunkook Kim, Jesse Maassen, Jiyoul Lee, Seung Min Kim, Gyuchull Han, Junyeon Kwon, Seongin Hong, Jozeph Park, Na Liu, Yun Chang Park, Inturu Omkaram, Jong‐Soo Rhyee, Young Ki Hong, Youngki Yoon. Interstitial Mo‐Assisted Photovoltaic Effect in Multilayer MoSe 2 Phototransistors. Advanced Materials 2018, 30 (12) https://doi.org/10.1002/adma.201705542
    80. Henrique G. Rosa, Lu Junpeng, Lídia C. Gomes, Manuel J. L. F. Rodrigues, Sow Chorng Haur, José C. V. Gomes. Second‐Harmonic Spectroscopy for Defects Engineering Monitoring in Transition Metal Dichalcogenides. Advanced Optical Materials 2018, 6 (5) https://doi.org/10.1002/adom.201701327
    81. Ridong Cong, Shuang Qiao, Jihong Liu, Jiansong Mi, Wei Yu, Baolai Liang, Guangsheng Fu, Caofeng Pan, Shufang Wang. Ultrahigh, Ultrafast, and Self‐Powered Visible‐Near‐Infrared Optical Position‐Sensitive Detector Based on a CVD‐Prepared Vertically Standing Few‐Layer MoS 2 /Si Heterojunction. Advanced Science 2018, 5 (2) https://doi.org/10.1002/advs.201700502
    82. Junpeng Lu, Hongwei Liu. A critical review on the carrier dynamics in 2D layered materials investigated using THz spectroscopy. Optics Communications 2018, 406 , 24-35. https://doi.org/10.1016/j.optcom.2017.06.069
    83. Hong-Sik Kim, Melvin David Kumar, Joondong Kim, Donggun Lim. Vertical growth of MoS2 layers by sputtering method for efficient photoelectric application. Sensors and Actuators A: Physical 2018, 269 , 355-362. https://doi.org/10.1016/j.sna.2017.11.050
    84. Wei Xu, Shiming Yan, Wen Qiao. Magnetism in monolayer 1T-MoS 2 and 1T-MoS 2 H tuned by strain. RSC Advances 2018, 8 (15) , 8435-8441. https://doi.org/10.1039/C7RA10304B
    85. Y. X. Fang, H. Zhang, F. Azad, S. P. Wang, F. C. C. Ling, S. C. Su. Band offset and an ultra-fast response UV-VIS photodetector in γ-In 2 Se 3 /p-Si heterojunction heterostructures. RSC Advances 2018, 8 (52) , 29555-29561. https://doi.org/10.1039/C8RA05677C
    86. Sainan Ma, Longlui Zeng, Lili Tao, Chun Yin Tang, Huiyu Yuan, Hui Long, Ping Kwong Cheng, Yang Chai, Chuansheng Chen, Kin Hung Fung, Xuming Zhang, Shu Ping Lau, Yuen Hong Tsang. Enhanced Photocatalytic Activity of WS2 Film by Laser Drilling to Produce Porous WS2/WO3 Heterostructure. Scientific Reports 2017, 7 (1) https://doi.org/10.1038/s41598-017-03254-2
    87. Meirong Yi, Chenhui Zhang. The synthesis of MoS2 particles with different morphologies for tribological applications. Tribology International 2017, 116 , 285-294. https://doi.org/10.1016/j.triboint.2017.06.045
    88. Belle Miaoer Sow, Junpeng Lu, Hongwei Liu, Kuan Eng Johnson Goh, Chorng Haur Sow. Enriched Fluorescence Emission from WS 2 Monoflake Empowered by Au Nanoexplorers. Advanced Optical Materials 2017, 5 (14) https://doi.org/10.1002/adom.201700156
    89. Junji Nozaki, Musashi Fukumura, Takaaki Aoki, Yutaka Maniwa, Yohei Yomogida, Kazuhiro Yanagi. Manipulation of local optical properties and structures in molybdenum-disulfide monolayers using electric field-assisted near-field techniques. Scientific Reports 2017, 7 (1) https://doi.org/10.1038/srep46004
    90. Veerendra Dhyani, Samaresh Das. High-Speed Scalable Silicon-MoS2 P-N Heterojunction Photodetectors. Scientific Reports 2017, 7 (1) https://doi.org/10.1038/srep44243
    91. Chao Xie, Chunhin Mak, Xiaoming Tao, Feng Yan. Photodetectors Based on Two‐Dimensional Layered Materials Beyond Graphene. Advanced Functional Materials 2017, 27 (19) https://doi.org/10.1002/adfm.201603886
    92. Young Ki Hong, Na Liu, Demin Yin, Seongin Hong, Dong Hak Kim, Sunkook Kim, Woong Choi, Youngki Yoon. Recent progress in high-mobility thin-film transistors based on multilayer 2D materials. Journal of Physics D: Applied Physics 2017, 50 (16) , 164001. https://doi.org/10.1088/1361-6463/aa5e8a
    93. Lili Gong, Sow Chorng Haur. On demand rapid patterning of colored amorphous molybdenum oxide using a focused laser beam. Journal of Materials Chemistry C 2017, 5 (8) , 2090-2097. https://doi.org/10.1039/C6TC04580D
    94. Guoqing Tong, Xiangshun Geng, Yongqiang Yu, Linwei Yu, Jun Xu, Yang Jiang, Yun Sheng, Yi Shi, Kunji Chen. Rapid, stable and self-powered perovskite detectors via a fast chemical vapor deposition process. RSC Advances 2017, 7 (30) , 18224-18230. https://doi.org/10.1039/C7RA01430A
    95. Wei-Chu Shen, Ruei-San Chen, Ying-Sheng Huang. Photoconductivities in MoS2 Nanoflake Photoconductors. Nanoscale Research Letters 2016, 11 (1) https://doi.org/10.1186/s11671-016-1331-y
    96. Lyudmyla O. Shyyko, Volodymyr O. Kotsyubynsky, Ivan M. Budzulyak, Piotr Sagan. MoS2/C Multilayer Nanospheres as an Electrode Base for Lithium Power Sources. Nanoscale Research Letters 2016, 11 (1) https://doi.org/10.1186/s11671-016-1451-4
    97. Sung Won Kim, Jeong Hyeon Na, Won Lyeol Choi, Hyun-Jong Chung, Sung Ho Jhang. Nonuniform current distribution between individual layers of multilayer MoS2, experimentally approached by using a laser thinning technique. Journal of the Korean Physical Society 2016, 69 (9) , 1497-1501. https://doi.org/10.3938/jkps.69.1497
    98. Chengbing Qin, Yan Gao, Zhixing Qiao, Liantuan Xiao, Suotang Jia. Atomic‐Layered MoS 2 as a Tunable Optical Platform. Advanced Optical Materials 2016, 4 (10) , 1429-1456. https://doi.org/10.1002/adom.201600323
    99. Jiu Li, Qingqing Ji, Saisai Chu, Yanfeng Zhang, Yan Li, Qihuang Gong, Kaihui Liu, Kebin Shi. Tuning the photo-response in monolayer MoS2 by plasmonic nano-antenna. Scientific Reports 2016, 6 (1) https://doi.org/10.1038/srep23626
    100. Junpeng Lu, Alexandra Carvalho, Jing Wu, Hongwei Liu, Eng Soon Tok, Antonio H. Castro Neto, Barbaros Özyilmaz, Chorng Haur Sow. Enhanced Photoresponse from Phosphorene–Phosphorene‐Suboxide Junction Fashioned by Focused Laser Micromachining. Advanced Materials 2016, 28 (21) , 4090-4096. https://doi.org/10.1002/adma.201506201
    Load all citations

    ACS Nano

    Cite this: ACS Nano 2014, 8, 6, 6334–6343
    Click to copy citationCitation copied!
    https://doi.org/10.1021/nn501821z
    Published May 26, 2014
    Copyright © 2014 American Chemical Society

    Article Views

    3718

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.