ACS Publications. Most Trusted. Most Cited. Most Read
Ultrafast Transient Terahertz Conductivity of Monolayer MoS2 and WSe2 Grown by Chemical Vapor Deposition
My Activity
  • Open Access
Article

Ultrafast Transient Terahertz Conductivity of Monolayer MoS2 and WSe2 Grown by Chemical Vapor Deposition
Click to copy article linkArticle link copied!

View Author Information
Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford OX1 3PU, U.K.
Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
§ Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 115, Taiwan
*Address correspondence to [email protected]
Open PDFSupporting Information (1)

ACS Nano

Cite this: ACS Nano 2014, 8, 11, 11147–11153
Click to copy citationCitation copied!
https://doi.org/10.1021/nn5034746
Published October 27, 2014

Copyright © 2014 American Chemical Society. This publication is licensed under CC-BY.

Abstract

Click to copy section linkSection link copied!

We have measured ultrafast charge carrier dynamics in monolayers and trilayers of the transition metal dichalcogenides MoS2 and WSe2 using a combination of time-resolved photoluminescence and terahertz spectroscopy. We recorded a photoconductivity and photoluminescence response time of just 350 fs from CVD-grown monolayer MoS2, and 1 ps from trilayer MoS2 and monolayer WSe2. Our results indicate the potential of these materials as high-speed optoelectronic materials.

Copyright © 2014 American Chemical Society

For the past three decades, technological advances toward terahertz speed electronic and optoelectronic devices have relied on the staple materials of low-temperature grown gallium arsenide (LT-GaAs) and ion implanted semiconductors. (1-5) The combination of high initial mobility and rapid charge lifetimes required for ultrafast devices is achieved in these materials by introducing trapping sites into the bulk material. (1, 6-8) The emergence of new two-dimensional materials, (9) however, offers the prospect of novel, cheap materials for high speed applications, without the need for difficult ion implantation procedures.
Transition metal dichalcogenides (TMDs) consist of transition metal atoms covalently bonded to chalcogens (S, Se or Te) to form atomic trilayers. (10-13) The trilayers stack via weak van der Waals interactions to form a 3-dimensional solid. TMDs have the potential to become the building blocks of a wide range of future electronic devices as they act as semiconductors, semimetals or metals depending on the choice of transition metal. (12)
Molybdenum disulfide (MoS2) and tungsten diselenide (WSe2) are semiconducting TMDs that have been well studied (10, 12, 14) in their multilayer (3D) form. MoS2 is extensively used in industry as a dry lubricant (15) and as a catalyst for the hydrodesulphurisation of petroleum. (16) Only recently has truly monolayer (2D) MoS2 been experimentally realized, exposing a wealth of new photophysics. (9, 17-21) For instance, while MoS2 is an indirect bandgap semiconductor in the bulk (multilayer) form, it has a direct bandgap as a monolayer and thus exhibits greatly enhanced photoluminescence yield. (17, 18) Furthermore, negative trions, which are quasiparticles consisting of two electrons and a hole, have been discovered in monolayer MoS2. (22, 23)
As a result of these discoveries, MoS2 is already showing promise for use in electronic and photonic devices, (11) such as field effect transistors, (9, 24-28) photodiodes (29) and memory applications. (30) However, the observed low electron mobility in MoS2 (31-33) is problematic for the further development of these devices, particularly those that require high frequency operation. While the reason for low electron mobility in MoS2 (31-33) is a matter of debate, it is clear that a better understanding of the fundamental optical and electrical properties of TMDs is required in order to realize high performance devices.

Figure 1

Figure 1. Characterization of monolayer MoS2 (a–d), trilayer MoS2 (e–h), and monolayer WSe2 samples. (a), (e), (i) Schematic representation of the samples. (b), (f), (j) Raman spectroscopy of the samples. The splitting between the E2G1 and A1G peaks is indicative of layer number. (c), (g), (k) AFM images of the samples. Height profiles are overlaid at the position they were taken. The step heights again confirm the layer number identification. (d), (h), (l) Optical transmission spectrum of the samples. Absorption features associated with the “A” and “B” excitons are labeled.

The predominantly n-type nature of MoS2 makes the development of electronic devices requiring p-type charge transport challenging. Another TMD, tungsten diselenide (WSe2) offers a possible solution to this problem as it is an intrinsic semiconductor possessing ambipolar charge transport. (34, 35) WSe2 shows many of the properties that make MoS2 interesting, becoming a direct gap semiconductor in its monolayer form, and exhibiting trions. (36) Thus, WSe2 in its own right and layers of WSe2 combined with MoS2 show promise as key materials for future optoelectronic devices. However, to date there have been few studies on the photophysics of WSe2. (36, 37)
Most studies and devices reported to date have utilized mechanically exfoliated MoS2 and WSe2, using the “scotch tape” method pioneered in early graphene research. (38-41) Unfortunately this method of producing monolayers of layered materials is not well suited to large-scale industrial production. Recently, MoS2 and WSe2 have been produced using chemical vapor deposition (CVD). (35, 42-44) This bottom-up technique is compatible with current commercial production technologies and is also the method currently favored for the production of graphene. (45)
Previous time-resolved photophysical studies of MoS2 have utilized photoluminescence (PL) spectroscopy, (46) electroluminescence, (47) optical pump–probe spectroscopy (48) and transient absorption (49) to investigate exciton dynamics in mechanically exfoliated few- and monolayer MoS2. These studies generally observed a relaxation of photoexcited species on two distinct time scales: a fast, few picosecond decay followed by a slower component on the scale of several tens of picoseconds. However, these studies were not able to probe directly the conductive species that are of interest for optoelectronic devices. To our knowledge, no time-resolved studies of monolayer WSe2 have so far been published.
Here, we present studies of monolayer and trilayer CVD-grown MoS2 and WSe2 using terahertz time domain spectroscopy (THz TDS) and PL spectroscopy. Together, these techniques allowed us to observe the behavior of free carriers and excitons in photoexcited MoS2. We observed a photoconductivity response in CVD-grown MoS2 of just 350 fs. Such an ultrafast response time is particularly promising for the future use of TMDs in high-speed (>1 THz) photodetectors, emitters and transistors. However, many challenges still remain to realize such devices, such as obtaining materials with very high charge carrier mobility. The possibility of tuning the conductivity lifetime in MoS2via substrate interactions and film thickness offers the option of producing cost-effective optoelectronic materials with tunable charge carrier lifetimes. Further measurements suggest the observation of trions in monolayer MoS2 and WSe2.

Sample Preparation and Characterization

Predominantly monolayer MoS2, trilayer MoS2, and monolayer WSe2 films were grown directly onto sapphire substrates by chemical vapor deposition. More detail about the growth methodologies may be found in refs 42−44 and in the Methods section.
The number of layers in each sample was determined by Raman spectroscopy and atomic force microscopy (AFM). Figure 1 (b) and (f) show the Raman spectra of the monolayer and trilayer samples, respectively. The splitting between the E2G1 and A1G peaks in the Raman spectrum of the monolayer (trilayer) MoS2 was 18 cm–1 (23 cm–1), which is indicative of single (tri)layer growth. (50) The AFM images of intentionally scratched samples are presented in Figure 1 (c), (g), and (k). They show step heights of 0.7, 2.3 and 0.73 nm, which confirm that the samples consist of monolayer MoS2, trilayer MoS2, and monolayer WSe2, respectively. Figure 1 (d) and Figure 1 (h) show the optical transmission spectra of monolayer and trilayer MoS2, respectively. The two absoprtion features at 1.89 and 2.04 eV are characteristic of MoS2 and are known as the “A” and “B” excitions. Similarly, the features at 1.65 and 2.06 eV of Figure 1 (l) correspond to the “A” and “B” excitons of WSe2.
Electron double layer transistors (EDLTs) were fabricated to assess the sheet charge carrier density in the layers. The MoS2 layers were found to be predominately n-type, while the WSe2 layers were found to be ambipolar (see Supporting Information Figures S1 and S2).

Results

Click to copy section linkSection link copied!

We used a combination of photoluminescence (PL) and THz conductivity spectroscopy to observe the dynamics of photoexcited charge species in the samples. Here we use the term “charge species” to refer to free electrons and holes as well as correlation between charges such as excitons, charged excitons (trions) and plasmons. PL is sensitive only to the subset of photoinjected charge species that recombine radiatively. In contrast THz conductivity spectroscopy is sensitive to any conductive or polarizable charge species independent of whether the excitation relaxes radiatively or nonradiatively. (51) Furthermore, THz spectra can be used to identify types of charge species and how they evolve on picosecond time scales. For example excitons, plasmons and free charges have distinct spectral signatures at THz frequencies. (52) Therefore, together time-resolved PL and THz spectroscopy allow complicated charge dynamics involving more than one type of charge species to be interpreted.

Figure 2

Figure 2. Photodynamics of monolayer MoS2 measured by optical pump–THz probe spectroscopy and PL upconversion spectroscopy. (a) The blue circles show the normalized THz photoconductivity, ΔσTHz, of monolayer MoS2 as a function of time after photoexcitation by 3.1 eV photons (absorbed fluence ∼7 × 1013 cm–2/pulse). The black crosses show the normalized PL emitted at 1.86 eV as a function of time after photoexcitation by 3 eV photons (absorbed fluence ∼6.9 × 1012 cm–2/pulse). Solid lines are biexponential fits to the data. (b) Similar ΔσTHz (blue circles) and PL (black crosses) measurements following photoexcitation on resonance with the direct gap excitons (1.9 eV photons with absorbed fluence ∼1.2 × 1014 cm–2 for ΔσTHz, and 2.1 eV photons with absorbed fluence ∼3.5 × 1012 cm–2 for PL).

Figure 2a shows the photoluminescence recorded at 1.86 eV arising from monolayer MoS2 as a function of time after photoexcitation with 3.0 eV photons. The energy of the absorbed photons are significantly above the MoS2 bandgap and hence should photoinject electron–hole pairs with significant kinetic energy (i.e., “hot” carriers). Overlaid on this graph is the THz photoconductivity ΔσTHz(t) of the same sample as a function of time after photoexcitation with similar energy (3.1 eV) photons. The THz photoconductivity was found by measuring the change of transmission of the peak of the THz pulse through the sample after photoexcitation by a pump pulse. (51) Note that only the amplitude of the signal changed as a function of time after photoexcitation, not the phase. The full photoconductivity spectrum is discussed later (see Figure 5). The pump fluence dependence of this photoexcitation is linear, as shown in the Supporting Information. Photoexcitation of the sample leads to a sharp (instrument response limited) rise in both THz photoconductivity and PL emission followed by an ultrashort 350 fs exponential decay of both signals. The exponential decays of the photoconductivity and PL signals suggest that monomolecular charge recombination dominates over bimolecular recombination of electron–hole pairs. (53) The observed monomolecular recombination could result from exciton recombination, charge-carrier trapping or (if the system is doped) from recombination of minority charge carriers. After a few picoseconds the PL signal disappears; however, a significant persistent THz photoconductivity is still evident 10 ps after photoexcitation.

Figure 3

Figure 3. Normalized photodynamics of monolayer WSe2 measured by optical pump-THz probe spectroscopy. The blue crosses show the THz photoconductivity of WSe2, ΔσTHz, as a function of time after photoexcitation by 35 fs pulses of above-gap photons with energy of 3.1 eV. The absorbed photon fluence was ∼4.2 × 1013 cm–2/pulse. The red squares show ΔσTHz of WSe2 photoexcited resonantly with the “A” exciton at a photon energy of 1.65 eV. The fluence absorbed in the WSe2 layer was ∼3.3 × 1013 cm–2/pulse. Solid lines are biexponential fits to the data.

To understand more about the origin of the persistent photoconductivity in monolayer MoS2 we also resonantly photoexcited the “A” and “B” excitons and recorded the THz conductivity and PL dynamics. Figure 2b shows that upon resonant photoexcitation the early time PL and σTHz(t) dynamics are remarkably similar to the case of above-bandgap photoexcitation. At later times (<3 ps) however the persistent photoconductivity signal is far less pronounced than for the nonresonant case and the PL is quenched even more effectively. There are a number of possible explanations for these observations. Nonresonant excitation may for example photoinject charge carriers to indirect-gap side valleys, leading to quenched PL but persistent conductivity. Alternatively, nonresonant excitation may lead to an increased probability of forming dark excitons via intersystem crossing, which would have a THz photoconductivity response without emitting PL.

Figure 4

Figure 4. Comparison of THz photoconductivity, ΔσTHz, in trilayer (green crosses) and monolayer (blue squares) MoS2 as a function of time after photoexcitation by 175 μJ cm–2 35 fs pulses of 3.1 eV photons. The absorbed fluence of photons were ∼1.4 × 1014 cm–2/pulse in the trilayer sample and ∼7 × 1013 cm–2/pulse in the monolayer sample. Solid lines show biexponential fits to the data. Fit parameters are listed in Supporting Information Table 1. Additional reflections due to the thinness of the substrate have been removed from the trilayer data for clarity (see Supporting Information).

Together, these results indicate that there is a rapid quenching of both PL and photoconductivity in monolayer MoS2 within 350 fs photoexcitation. This quenching is independent of whether excitons are created resonantly or a hot electron–hole population is photoinjected into the sample. The fast quenching may be a result of (i) fast surface trapping, (ii) surface–substrate interactions for monolayer MoS2, and/or (iii) extrinsic charge carrier mediated recombination.
To gain insight into the contribution of extrinsic charge carriers to the recombination dynamics, we compare the density of injected electron–hole pairs in our photoconductivity experiments with the areal concentration of extrinsic charge carriers (i.e., doping level) in our MoS2 monolayers. EDLTs fabricated from the MoS2 monolayers were found to be n-type with sheet electron density of 2–3 × 1013 cm–2 (Supporting Information Figure S1). In comparison, the maximum absorbed photon fluences in our photoconductivity experiments were significantly higher (7–12 × 1013 cm–2). The exponential decay rate of photoconductivity quenching was found to be invariant as the absorbed fluence was lowered. Such invariance is expected for either trap or extrinsic carrier dominated quenching only under the condition that the absorbed fluence is significantly smaller than the areal trap or doping density. (54) Thus, we speculate that the recombination dynamics are probably dominated by an areal trap density higher than 12 × 1013 cm–2.

Figure 5

Figure 5. THz complex photoconductivity spectra, Δσ(ν). (a) Monolayer MoS2 1.5 ps after photoexcitation with 3 eV (squares) and 1.9 eV (crosses) photons. A low energy resonance at ∼18 meV (4.5 THz) is apparent. (b) Trilayer MoS2, 1.5 ps after photoexcitation by 1.9 eV photons. (c) Monolayer WSe2, 1 ps after photoexcitation on resonance with the WSe2 “A” exciton at 1.65 eV. Solid lines show possible fits to the data, detailed in the Supporting Information.

Time resolved photocurrent measurements were also performed on monolayer WSe2, which as found to be ambipolar (Supporting Information Figure S1). The THz photoconductivity of WSe2 is presented in Figure 3. Above gap photoexcitation was provided by a 3.1 eV pump beam, as for the MoS2 measurements. For excitation resonant with the excitons in WSe2, however, a lower energy pump of 1.65 eV was used, matching the lower energy of the “A” exciton in WSe2 compared to that in MoS2.
As was observed for MoS2, upon photoexcitation of WSe2 by either pump energy, the THz photoconductivity rises sharply, but with a slower rise time than for MoS2 (∼700 fs compared to an instrument limited rise time of 350 fs in MoS2). The photoconductivity then decays with a fast exponential lifetime of 1 ps followed by a slower fall over ∼15 ps. For both photoexcitation energies the time constants in WSe2 are noticeably longer than those in monolayer MoS2. A full understanding of the differences in rise and fall times between MoS2 and WSe2 is beyond the scope of this study, but these results provide a basis for future theoretical works.
In nanoscale materials the influence of surface trapping can be assessed by observing changes in transient photoconductivity as a function of the surface-area-to-volume ratio of the sample. (-55, 56) We compared the photoconductivity dynamics of monolayer MoS2 with the trilayer sample to gauge the importance of the surface-area-to-volume ratio on conductivity dynamics. As can be seen in Figure 4 and the exponential fit parameters displayed in Table S1 of the Supporting Information, the photoconductivity decays three times slower in the trilayer samples compared with the monolayer. It is notable that even in high-quality bulk crystals of MoS2, DC photoconductivity measurements are dominated by surface trapping effects. (57) Thus, for our CVD-grown monolayer samples we expect surface trapping to be the dominant mechanism of ultrafast PL and THz conductivity quenching.
Further information can also be gained from the complex THz photoconductivity spectrum, Δσ(ω). In Figure 5 we present the photoinduced THz conductivity for mono and trilayer MoS2 taken at 1.5 ps after photoexcitation, and for monolayer WSe2 at 1 ps after photoexcitation. All three samples appear to have a small free-carrier (Drude type) response combined with stronger Lorentzian resonances (see Supporting Information Table S2). This tends to suggest the presence of a small component of free charge carriers in addition to excitonic species. Trilayer MoS2, however, exhibits noticeably different behavior to both monolayer MoS2 and WSe2. The photoconductivity of trilayer MoS2 appears to show a resonance far beyond the bandwidth of the experiment, consistent with the behavior expected from excitons of binding energy ∼100 meV. In contrast, the monolayer samples show a resonance at ∼15 meV. The solid lines in Figure 5 represent potential models of these data, detailed in the Supporting Information.
Recently trions, quasiparticles consisting of two electrons and a hole or two holes and an electron, have been observed in PL spectra from MoS2 and WSe2 with binding energies of 18 and 24 meV, respectively. (22, 36) The similarity of these values to the monolayer resonance energies suggests the direct observation of trions in the monolayer samples. However, the signal-to-noise ratio in the spectrum is not high enough to draw firm conclusions.

Conclusion

Click to copy section linkSection link copied!

In summary, we have observed ultrafast photoconductivity responses in monolayer MoS2 and WSe2, which we attribute to charge trapping at surface states. A monolayer semiconductor with such a fast response is likely to be a key component of future high-frequency optoelectronic devices including photoreceivers, emitters, modulators as well as microwave and THz switches. The low-cost and scalable CVD production of these monolayers, and their easy integration into devices, make them particularly attractive materials for such devices.

Methods

Click to copy section linkSection link copied!

Sample Preparation

Predominantly monolayer and trilayer MoS2 films were grown directly onto sapphire substrates. Briefly, (0001)-oriented sapphire substrates (Tera Xtal technology Corp.) were cleaned with a H2SO4/H2O2 (70:30) solution at 100 °C for 1 h. For monolayer growth, the substrate was then placed at the center of a 2-in. tubular furnace on a quartz holder. Precursors of 0.3 g of MoO3 (Sigma-Aldrich, 99.5%) in an Al2O3 crucible and S powder (Sigma-Aldrich, 99.5%) were placed at an upstream position in the reaction chamber. The furnace was first heated to 150 °C and annealed for 30 min with 70 sccm of Ar at 10 Torr, followed by heating at 650 °C for 10 min. The furnace was subsequently cooled slowly to room temperature. Trilayers were grown by a two-step thermolysis of the precursor (NH4)2MoS4. (44) The sapphire substrate was immersed in a solution of the (NH4)2MoS4 precursor dissolved in 20 mL of dimethylformamide. The substrate was slowly removed from the solution, leaving a thin (NH4)2MoS4 film, and baked at 120 °C for 30 min. A two-step annealing process was performed to transform the precursor film to trilayer MoS2.
Monolayer WSe2 was prepared similarly on sapphire substrates. WO3 powders (0.3 g) were heated to 925 °C at a ramping rate of 25 °C/min with Se powder in the furnace. The sapphire substrates were put at the downstream side, where the Se and WO3 vapors were delivered by an Ar/H2 flowing gas (Ar = 80 sccm, H2 = 20 sccm, chamber pressure = 1 Torr). After reaching 925 °C, the heating zone was kept for 15 min, and the furnace was then naturally cooled to room temperature. Additional details about the growth methodologies may be found in refs 42−44.

Photoluminescence Spectroscopy

Photoluminescence measurements were carried out using an 80 MHz 100 fs pulsed Ti:sapphire excitation source. For all experiments the excitation fluence was set to 15 μJ/cm2/pulse. Time-resolved photoluminescence was measured using photoluminescence up-conversion spectroscopy as described in ref 58.

THz Spectroscopy

An optical pump THz-TDS probe spectrometer was used to measure the photoconductivity ΔσTHz(t,ν) of MoS2 and WSe2 as a function of frequency ν and time t after photoexcitation. Details of the spectrometer and a description of how photoconductivity was extracted from the raw data has been described previously. (-55, 59) Briefly, the spectrometer was driven by a Ti:sapphire laser amplifier, which generated 35 fs duration, 0.8 mJ pulses of 800 nm light at 5 kHz repetition rate. THz probe pulses were generated by optical rectification in a 2 mm thick (110)-GaP crystal and detected via electro-optic sampling in a 0.2 mm-thick (110)-GaP crystal. A typical THz pulse can be seen in Supporting Information Figure S4. For the pump–probe measurements in Figures 24, the change in transmission due to photoexcitation of the peak of the THz electric field was measured, whereas for the photoconductivity spectra in Figure 5 the whole THz pulse was measured, with each part of the pulse measured at a fixed time after photoexcitation. (51) Samples were photoexcited by 35 fs laser pulses (typical fluence 175 μJ/cm2/pulse) at selected wavelengths using an optical parametric amplifier, or by frequency doubling pulses in a 0.2 mm-thick Type I BBO crystal. All measurements reported here were performed in a vacuum (<10–3 mbar) at room temperature.

Supporting Information

Click to copy section linkSection link copied!

detailing the pump fluence and pump energy dependence of the THz spectroscopy measurements, as well as information above removing reflections from the trilayer THz photoconductivity. This material is available free of charge via the Internet at http://pubs.acs.org.

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Author Information

Click to copy section linkSection link copied!

  • Corresponding Author
    • Michael B. Johnston - Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford OX1 3PU, U.K. Email: [email protected]
  • Authors
    • Callum J. Docherty - Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford OX1 3PU, U.K.
    • Patrick Parkinson - Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford OX1 3PU, U.K.
    • Hannah J. Joyce - Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford OX1 3PU, U.K.
    • Ming-Hui Chiu - Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
    • Chang-Hsiao Chen - Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 115, Taiwan
    • Ming-Yang Lee - Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 115, Taiwan
    • Lain-Jong Li - Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
    • Laura M. Herz - Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford OX1 3PU, U.K.
  • Notes
    The authors declare no competing financial interest.

Acknowledgment

Click to copy section linkSection link copied!

We would like to thank A. Prabakaran and N. Grobert for performing Raman mapping measurments on the samples after the THz measurments were completed. The authors would like to thank the EPSRC (UK), Academia Sinica (IAMS and Nano program) and National Science Council Taiwan (NSC-99-2112-M-001-021-MY3) for financial support.

References

Click to copy section linkSection link copied!

This article references 59 other publications.

  1. 1
    Smith, F. W.; Le, H. Q.; Diadiuk, V.; Hollis, M. A.; Calawa, A. R.; Gupta, S.; Frankel, M.; Dykaar, D. R.; Mourou, G. A.; Hsiang, T. Y. Picosecond GaAs-based Photoconductive Optoelectronic Detectors Appl. Phys. Lett. 1989, 54, 890 892
  2. 2
    Nolte, D. D. Semi-insulating Semiconductor Heterostructures: Optoelectronic Properties and Applications J. Appl. Phys. 1999, 85, 6259 6289
  3. 3
    Krotkus, A. Semiconductors for Terahertz Photonics Applications J. Phys. D: Appl. Phys. 2010, 43, 273001
  4. 4
    Loka, H. S.; Benjamin, S. D.; Smith, P. W. E. Optical Characterization of Low-temperature-grown GaAs for Ultrafast All-optical Switching Devices IEEE J. Quantum Electron. 1998, 34, 1426 1437
  5. 5
    Shen, Y. C.; Upadhya, P. C.; Linfield, E. H.; Beere, H. E.; Davies, A. G. Ultrabroadband Terahertz Radiation from Low-temperature-grown GaAs Photoconductive Emitters Appl. Phys. Lett. 2003, 83, 3117 3119
  6. 6
    Ferguson, B.; Zhang, X.-C. Materials for Terahertz Science and Technology Nat. Mater. 2002, 1, 26 33
  7. 7
    Castro-Camus, E.; Lloyd-Hughes, J.; Fu, L.; Tan, H. H.; Jagadish, C.; Johnston, M. B. An Ion-implanted InP Receiver for Polarization Resolved Terahertz Spectroscopy Opt. Express 2007, 15, 7047 7057
  8. 8
    Mangeney, J. THz Photoconductive Antennas Made from Ion-bombarded Semiconductors J. Infrared, Millimeter, Terahertz Waves 2012, 33, 455 473
  9. 9
    Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich, V. V.; Morozov, S. V.; Geim, A. K. Two-dimensional Atomic Crystals Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 10451 10453
  10. 10
    Friend, R. H.; Yoffe, A. D. Electronic-properties of Intercalation Complexes of the Transition-metal Dichalcogenides Adv. Phys. 1987, 36, 1 94
  11. 11
    Wang, Q. H.; Kalantar-zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and Optoelectronics of Two-dimensional Transition Metal Dichalcogenides Nat. Nanotechnol. 2012, 7, 699 712
  12. 12
    Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L. J.; Loh, K. P.; Zhang, H. The Chemistry of Two-dimensional Layered Transition Metal Dichalcogenide Nanosheets Nat. Chem. 2013, 5, 263 275
  13. 13
    Jariwala, D.; Sangwan, V. K.; Lauhon, L. J.; Marks, T. J.; Hersam, M. C. Emerging Device Applications for Semiconducting Two-dimensional Transition Metal Dichalcogenides ACS Nano 2014, 8, 1102 1120
  14. 14
    Coehoorn, R.; Haas, C.; Degroot, R. A. Electronic-structure of MoSe2, MoS2, and WSe2. II The Nature of the Optical Band-gaps Phys. Rev. B: Condens. Matter Mater. Phys. 1987, 35, 6203 6206
  15. 15
    Kim, Y.; Huang, J. L.; Lieber, C. M. Characterization of Nanometer Scale Wear and Oxidation of Transition-metal Dichalcogenide Lubricants by Atomic Force Microscopy Appl. Phys. Lett. 1991, 59, 3404 3406
  16. 16
    Karunadasa, H. I.; Montalvo, E.; Sun, Y. J.; Majda, M.; Long, J. R.; Chang, C. J. A Molecular MoS2 Edge Site Mimic for Catalytic Hydrogen Generation Science 2012, 335, 698 702
  17. 17
    Splendiani, A.; Sun, L.; Zhang, Y. B.; Li, T. S.; Kim, J.; Chim, C. Y.; Galli, G.; Wang, F. Emerging Photoluminescence in Monolayer MoS2 Nano Lett. 2010, 10, 1271 1275
  18. 18
    Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically Thin MoS2: A New Direct-gap Semiconductor Phys. Rev. Lett. 2010, 105, 136805
  19. 19
    Yin, Z. Y.; Li, H.; Li, H.; Jiang, L.; Shi, Y. M.; Sun, Y. H.; Lu, G.; Zhang, Q.; Chen, X. D.; Zhang, H. Single-layer MoS2 Phototransistors ACS Nano 2012, 6, 74 80
  20. 20
    Choi, W.; Cho, M. Y.; Konar, A.; Lee, J. H.; Cha, G. B.; Hong, S. C.; Kim, S.; Kim, J.; Jena, D.; Joo, J.et al. High-detectivity Multilayer MoS2 Phototransistors with Spectral Response from Ultraviolet to Infrared Adv. Mater. 2012, 24, 5832 5836
  21. 21
    Lopez-Sanchez, O.; Lembke, D.; Kayci, M.; Radenovic, A.; Kis, A. Ultrasensitive Photodetectors Based on Monolayer MoS2 Nat. Nanotechnol. 2013, 8, 497 501
  22. 22
    Mak, K. F.; He, K. L.; Lee, C.; Lee, G. H.; Hone, J.; Heinz, T. F.; Shan, J. Tightly Bound Trions in Monolayer MoS2 Nat. Mater. 2013, 12, 207 211
  23. 23
    Coleman, J. N.; Lotya, M.; O’Neill, A.; Bergin, S. D.; King, P. J.; Khan, U.; Young, K.; Gaucher, A.; De, S.; Smith, R. J.et al. Two-dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials Science 2011, 331, 568 571
  24. 24
    Wang, H.; Yu, L. L.; Lee, Y. H.; Shi, Y. M.; Hsu, A.; Chin, M. L.; Li, L. J.; Dubey, M.; Kong, J.; Palacios, T. Integrated Circuits Based on Bilayer MoS2 Transistors Nano Lett. 2012, 12, 4674 4680
  25. 25
    Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 Transistors Nat. Nanotechnol. 2011, 6, 147 150
  26. 26
    Alam, K.; Lake, R. K. Monolayer MoS2 Transistors beyond the Technology Road Map IEEE Trans. Electron Devices 2012, 59, 3250 3254
  27. 27
    Radisavljevic, B.; Whitwick, M. B.; Kis, A. Small-signal Amplifier Based On Single-layer MoS2 Appl. Phys. Lett. 2012, 101, 043103
  28. 28
    Radisavljevic, B.; Kis, A. Mobility Engineering and a Metal-insulator Transition in Monolayer MoS2 Nat. Mater. 2013, 12, 815 820
  29. 29
    Zhang, W. J.; Chuu, C. P.; Huang, J. K.; Chen, C. H.; Tsai, M. L.; Chang, Y. H.; Liang, C. T.; Chen, Y. Z.; Chueh, Y. L.; He, J. H.et al. Ultrahigh-gain Photodetectors Based on Atomically Thin Graphene-MoS2 Heterostructures Sci. Rep. 2014, 4, 3826
  30. 30
    Bertolazzi, S.; Krasnozhon, D.; Kis, A.; Nonvolatile Memory Cells Based On MoS2/Graphene Heterostructures ACS Nano 2013, 7, 3246 3252
  31. 31
    Kaasbjerg, K.; Thygesen, K. S.; Jacobsen, K. W. Phonon-limited Mobility In N-type Single-layer MoS2 from First Principles Phys. Rev. B: Condens. Matter Mater. Phys. 2012, 85, 115317
  32. 32
    Das, S.; Chen, H. Y.; Penumatcha, A. V.; Appenzeller, J. High Performance Multilayer MoS2 Transistors with Scandium Contacts Nano Lett. 2013, 13, 100 105
  33. 33
    Shi, H.; Pan, H.; Zhang, Y. W.; Yakobson, B. I. Quasiparticle Band Structures and Optical Properties of Strained Monolayer MoS2 and WS2 Phys. Rev. B: Condens. Matter Mater. Phys. 2013, 87, 155304
  34. 34
    Allain, A.; Kis, A. Electron and Hole Mobilities in Single-layer WSe2 ACS Nano 2014, 8, 7180 7185
  35. 35
    Huang, J. K.; Pu, J.; Hsu, C. L.; Chiu, M. H.; Juang, Z. Y.; Chang, Y. H.; Chang, W. H.; Iwasa, Y.; Takenobu, T.; Li, L. J. Large-area Synthesis of Highly Crystalline WSe2 Mono Layers and Device Applications ACS Nano 2014, 8, 923 930
  36. 36
    Jones, A. M.; Yu, H. Y.; Ghimire, N. J.; Wu, S. F.; Aivazian, G.; Ross, J. S.; Zhao, B.; Yan, J. Q.; Mandrus, D. G.; Xiao, D.et al. Optical Generation of Excitonic Valley Coherence in Monolayer WSe2 Nat. Nanotechnol. 2013, 8, 634
  37. 37
    Yoshida, S.; Terada, Y.; Yokota, M.; Takeuchi, O.; Meray, Y.; Shigekawa, H. Direct Probing of Transient Photocurrent Dynamics in P-WSe2 By Time-resolved Scanning Tunneling Microscopy Appl. Phys. Express 2013, 6, 016601
  38. 38
    Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric Field Effect In Atomically Thin Carbon Films Science 2004, 306, 666 669
  39. 39
    Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Katsnelson, M. I.; Grigorieva, I. V.; Dubonos, S. V.; Firsov, A. A. Two-dimensional Gas of Massless Dirac Fermions in Graphene Nature 2005, 438, 197 200
  40. 40
    Tonndorf, P.; Schmidt, R.; Bottger, P.; Zhang, X.; Borner, J.; Liebig, A.; Albrecht, M.; Kloc, C.; Gordan, O.; Zahn, D. R. T.et al. Photoluminescence Emission and Raman Response of Monolayer MoS2, MoSe2, And WSe2 Opt. Express 2013, 21, 4908 4916
  41. 41
    Zhao, W. J.; Ghorannevis, Z.; Chu, L. Q.; Toh, M. L.; Kloc, C.; Tan, P. H.; Eda, G. Evolution of Electronic Structure in Atomically Thin Sheets of WS2 and WSe2 ACS Nano 2013, 7, 791 797
  42. 42
    Lee, Y. H.; Zhang, X. Q.; Zhang, W. J.; Chang, M. T.; Lin, C. T.; Chang, K. D.; Yu, Y. C.; Wang, J. T. W.; Chang, C. S.; Li, L. J.et al. Synthesis of Large-area MoS2 Atomic Layers with Chemical Vapor Deposition Adv. Mater. 2012, 24, 2320 2325
  43. 43
    Lee, Y. H.; Yu, L.; Wang, H.; Fang, W.; I Ling, X.; Shi, Y.; Lin, C. T.; Huang, J. K.; Chang, M. T.; Chang, C. S.et al. Synthesis and Transfer of Single-layer Transition Metal Disulfides on Diverse Surfaces Nano Lett. 2013, 13, 1852
  44. 44
    Liu, K. K.; Zhang, W. J.; Lee, Y. H.; Lin, Y. C.; Chang, M. T.; Su, C.; Chang, C. S.; Li, H.; Shi, Y. M.; Zhang, H.et al. Growth of Large-area And Highly Crystalline MoS2 Thin Layers on Insulating Substrates Nano Lett. 2012, 12, 1538 1544
  45. 45
    Li, X. S.; Cai, W. W.; An, J. H.; Kim, S.; Nah, J.; Yang, D. X.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E.et al. Large-area Synthesis of High-quality and Uniform Graphene Films on Copper Foils Science 2009, 324, 1312 1314
  46. 46
    Korn, T.; Heydrich, S.; Hirmer, M.; Schmutzler, J.; Schuller, C. Low-temperature Photocarrier Dynamics in Monolayer MoS2 Appl. Phys. Lett. 2011, 99, 102109
  47. 47
    Sundaram, R.; Engel, M.; Lombardo, A.; Krupke, R.; Ferrari, A.; H Avouris, P.; Steiner, M. Electroluminescence in Single Layer MoS2 Nano Lett. 2013, 13, 1416 1421
  48. 48
    Wang, R.; Ruzicka, B. A.; Kumar, N.; Bellus, M. Z.; Chiu, H. Y.; Zhao, H. Ultrafast and Spatially Resolved Studies of Charge Carriers in Atomically Thin Molybdenum Disulfide Phys. Rev. B: Condens. Matter Mater. Phys. 2012, 86, 045406
  49. 49
    Shi, H. Y.; Yan, R. S.; Bertolazzi, S.; Brivio, J.; Gao, B.; Kis, A.; Jena, D.; Xing, H. G.; Huang, L. B. Exciton Dynamics in Suspended Mono Layer And Few-layer MoS2 2D Crystals ACS Nano 2013, 7, 1072 1080
  50. 50
    Lee, C.; Yan, H.; Brus, L. E.; Heinz, T. F.; Hone, J.; Ryu, S. Anomalous Lattice Vibrations of Single- and Few-layer MoS2 ACS Nano 2010, 4, 2695 2700
  51. 51
    Ulbricht, R.; Hendry, E.; Shan, J.; Heinz, T. F.; Bonn, M. Carrier Dynamics In Semiconductors Studied with Time-resolved Terahertz Spectroscopy Rev. Mod. Phys. 2011, 83, 543 586
  52. 52
    Lloyd-Hughes, J.; Jeon, T.-I. A Review of the Terahertz Conductivity of Bulk and Nano-materials J. Infrared, Millimeter, Terahertz Waves 2012, 33, 871
  53. 53
    Grabtchak, S. Y.; Cocivera, M. Contactless Microwave Study of Dispersive Transport in Thin Film CdSe J. Appl. Phys. 1996, 79, 786 793
  54. 54
    Parkinson, P.; Joyce, H. J.; Gao, Q.; Tan, H. H.; Zhang, X.; Zou, J.; Jagadish, C.; Herz, L. M.; Johnston, M. B. Carrier Lifetime and Mobility Enhancement in Nearly Defect-free Core-shell Nanowires Measured Using Time-resolved Terahertz Spectroscopy Nano Lett. 2009, 9, 3349 3353
  55. 55
    Joyce, H. J.; Wong-Leung, J.; Yong, C.; Docherty, C. J.; Paiman, S.; Gao, Q.; Tan, H. H.; Jagadish, C.; Lloyd-Hughes, J.; Herz, L. M.et al. Ultra-low Surface Recombination Velocity in InP Nanowires Probed by Terahertz Spectroscopy Nano Lett. 2012, 12, 5325 5330
  56. 56
    Joyce, H. J.; Docherty, C. J.; Gao, Q.; Tan, H. H.; Jagadish, C.; Lloyd-Hughes, J.; Herz, L. M.; Johnston, M. B. Electronic Properties of GaAs, Inas and InP Nanowires Studied by Terahertz Spectroscopy Nanotechnology 2013, 24, 214006
  57. 57
    Fortin, E.; Raga, F. Excitons in Molybdenum-disulfide Phys. Rev. B: Solid State 1975, 11, 905 912
  58. 58
    Yong, C. K.; Joyce, H. J.; Lloyd-Hughes, J.; Gao, Q.; Tan, H. H.; Jagadish, C.; Johnston, M. B.; Herz, L. M. Ultrafast Dynamics of Exciton Formation In Semiconductor Nanowires Small 2012, 8, 1725 1731
  59. 59
    Docherty, C. J.; Lin, C.; Joyce, H. J.; Nicholas, R. J.; Herz, L. M.; Li, L.; Johnston, M. B. Extreme Sensitivity of Graphene Photoconductivity To Environmental Gases Nat. Commun. 2012, 3, 1228

Cited By

Click to copy section linkSection link copied!
Citation Statements
Explore this article's citation statements on scite.ai

This article is cited by 195 publications.

  1. Lukas Rieland, Julian Wagner, Robin Bernhardt, Tianyi Wang, Omar Abdul-Aziz, Philipp Stein, Eva A. A. Pogna, Stefano Dal Conte, Giulio Cerullo, Hamoon Hedayat, Paul H. M. van Loosdrecht. Ultrafast Optical Control of Exciton Diffusion in WSe2/Graphene Heterostructures Revealed by Heterodyne Transient Grating Spectroscopy. Nano Letters 2024, 24 (32) , 9824-9831. https://doi.org/10.1021/acs.nanolett.4c01516
  2. Xiaofan Wei, Zihan Wang, Ziyu Wang, Yue Lu, Qingqing Ji, Weimin Liu. Unveiling Spatiotemporal Diffusion of Hot Carriers Influenced by Spatial Nonuniform Hot Phonon Bottleneck Effect in Monolayer MoS2. Nano Letters 2024, 24 (30) , 9269-9275. https://doi.org/10.1021/acs.nanolett.4c02059
  3. Xiuxiu Han, Xiaoli Ma, Qing Miao, Xiaoxian Zhang, Dawei He, Xiaohui Yu, Yongsheng Wang. Tunable Photocarrier Dynamics in CuS Nanoflakes under Pressure Modulation. ACS Omega 2024, 9 (20) , 22248-22255. https://doi.org/10.1021/acsomega.4c01294
  4. Matt D. Capobianco, Josephine A. Jayworth, Bo Shang, Nia J. Harmon, Hailiang Wang, Gary W. Brudvig. Effect of Synthesis Temperature on Transient Photoconductivity of g-C3N4 from Urea. Chemistry of Materials 2023, 35 (22) , 9747-9755. https://doi.org/10.1021/acs.chemmater.3c02277
  5. Jie Ji, Yingqiu Zhou, Binbin Zhou, Eva Desgué, Pierre Legagneux, Peter Uhd Jepsen, Peter Bøggild. Probing Carrier Dynamics in Large-Scale MBE-Grown PtSe2 Films by Terahertz Spectroscopy. ACS Applied Materials & Interfaces 2023, 15 (44) , 51319-51329. https://doi.org/10.1021/acsami.3c09792
  6. Meysam Raoufi, Sreelakshmi Chandrabose, Rongbin Wang, Bowen Sun, Nicolas Zorn Morales, Safa Shoaee, Sylke Blumstengel, Norbert Koch, Emil List-Kratochvil, Dieter Neher. Influence of the Energy Level Alignment on Charge Transfer and Recombination at the Monolayer-MoS2/Organic Hybrid Interface. The Journal of Physical Chemistry C 2023, 127 (12) , 5866-5875. https://doi.org/10.1021/acs.jpcc.2c08186
  7. Stan E.T. ter Huurne, Adonai Rodrigues Da Cruz, Niels van Hoof, Rasmus H. Godiksen, Sara A. Elrafei, Alberto G. Curto, Michael E. Flatté, Jaime Gómez Rivas. High-Frequency Sheet Conductance of Nanolayered WS2 Crystals for Two-Dimensional Nanodevices. ACS Applied Nano Materials 2022, 5 (10) , 15557-15562. https://doi.org/10.1021/acsanm.2c03517
  8. Matt D. Capobianco, Sabrina M. Younan, Uriel Tayvah, Brian Pattengale, Jens Neu, Jing Gu, Gary W. Brudvig. Terahertz Conductivity of Semiconducting 2H and Metallic 1T Phases of Molybdenum Disulfide. The Journal of Physical Chemistry Letters 2022, 13 (35) , 8319-8326. https://doi.org/10.1021/acs.jpclett.2c02283
  9. Zhemiao Xie, Jiaqi Wang, John T. W. Yeow. Doped Polyaniline/Graphene Composites for Photothermoelectric Detectors. ACS Applied Nano Materials 2022, 5 (6) , 7967-7973. https://doi.org/10.1021/acsanm.2c01039
  10. Jiawei Chang, He Wang, Zhen Lei, Wanyi Du, Yuanyuan Huang, Yixuan Zhou, Lipeng Zhu, Xinlong Xu. Coherent Elliptically Polarized Terahertz Wave Generation in WSe2 by Linearly Polarized Femtosecond Laser Excitation. The Journal of Physical Chemistry Letters 2021, 12 (41) , 10068-10078. https://doi.org/10.1021/acs.jpclett.1c02770
  11. Xiuxiu Han, Xingyao Liang, Dawei He, Liying Jiao, Yongsheng Wang, Hui Zhao. Photocarrier Dynamics in MoTe2 Nanofilms with 2H and Distorted 1T Lattice Structures. ACS Applied Materials & Interfaces 2021, 13 (37) , 44703-44710. https://doi.org/10.1021/acsami.1c09698
  12. Jon K. Gustafson, Daniel Wines, Ellen Gulian, Can Ataca, L. Michael Hayden. Positive and Negative Photoconductivity in Monolayer MoS2 as a Function of Physisorbed Oxygen. The Journal of Physical Chemistry C 2021, 125 (16) , 8712-8718. https://doi.org/10.1021/acs.jpcc.1c01550
  13. Ce Xu, Hui Wen Yong, Jinlu He, Run Long, Alisson R. Cadore, Ioannis Paradisanos, Anna K. Ott, Giancarlo Soavi, Sefaattin Tongay, Giulio Cerullo, Andrea C. Ferrari, Oleg V. Prezhdo, Zhi-Heng Loh. Weak Distance Dependence of Hot-Electron-Transfer Rates at the Interface between Monolayer MoS2 and Gold. ACS Nano 2021, 15 (1) , 819-828. https://doi.org/10.1021/acsnano.0c07350
  14. Jacob A. Spies, Jens Neu, Uriel T. Tayvah, Matt D. Capobianco, Brian Pattengale, Sarah Ostresh, Charles A. Schmuttenmaer. Terahertz Spectroscopy of Emerging Materials. The Journal of Physical Chemistry C 2020, 124 (41) , 22335-22346. https://doi.org/10.1021/acs.jpcc.0c06344
  15. Matt D. Capobianco, Brian Pattengale, Jens Neu, Charles A. Schmuttenmaer. Single Copper Atoms Enhance Photoconductivity in g-C3N4. The Journal of Physical Chemistry Letters 2020, 11 (20) , 8873-8879. https://doi.org/10.1021/acs.jpclett.0c02756
  16. Andrés Burgos-Caminal, Etienne Socie, Marine E. F. Bouduban, Jacques-E. Moser. Exciton and Carrier Dynamics in Two-Dimensional Perovskites. The Journal of Physical Chemistry Letters 2020, 11 (18) , 7692-7701. https://doi.org/10.1021/acs.jpclett.0c02425
  17. Maria G. Burdanova, Reza J. Kashtiban, Yongjia Zheng, Rong Xiang, Shohei Chiashi, Jack Matthew Woolley, Michael Staniforth, Emily Sakamoto-Rablah, Xue Xie, Matthew Broome, Jeremy Sloan, Anton Anisimov, Esko I. Kauppinen, Shigeo Maruyama, James Lloyd-Hughes. Ultrafast Optoelectronic Processes in 1D Radial van der Waals Heterostructures: Carbon, Boron Nitride, and MoS2 Nanotubes with Coexisting Excitons and Highly Mobile Charges. Nano Letters 2020, 20 (5) , 3560-3567. https://doi.org/10.1021/acs.nanolett.0c00504
  18. Yaolong Li, Wei Liu, Yunkun Wang, Zhaohang Xue, Yu-Chen Leng, Aiqin Hu, Hong Yang, Ping-Heng Tan, Yunquan Liu, Hiroaki Misawa, Quan Sun, Yunan Gao, Xiaoyong Hu, Qihuang Gong. Ultrafast Electron Cooling and Decay in Monolayer WS2 Revealed by Time- and Energy-Resolved Photoemission Electron Microscopy. Nano Letters 2020, 20 (5) , 3747-3753. https://doi.org/10.1021/acs.nanolett.0c00742
  19. Silvan Kretschmer, Tibor Lehnert, Ute Kaiser, Arkady V. Krasheninnikov. Formation of Defects in Two-Dimensional MoS2 in the Transmission Electron Microscope at Electron Energies below the Knock-on Threshold: The Role of Electronic Excitations. Nano Letters 2020, 20 (4) , 2865-2870. https://doi.org/10.1021/acs.nanolett.0c00670
  20. Xing He, Mazhar Chebl, Ding-Shyue Yang. Cross-Examination of Ultrafast Structural, Interfacial, and Carrier Dynamics of Supported Monolayer MoS2. Nano Letters 2020, 20 (3) , 2026-2033. https://doi.org/10.1021/acs.nanolett.9b05344
  21. Jihan Chen, Connor S. Bailey, Dingzhou Cui, Yu Wang, Bo Wang, Haotian Shi, Zhi Cai, Eric Pop, Chongwu Zhou, Stephen B. Cronin. Stacking Independence and Resonant Interlayer Excitation of Monolayer WSe2/MoSe2 Heterostructures for Photocatalytic Energy Conversion. ACS Applied Nano Materials 2020, 3 (2) , 1175-1181. https://doi.org/10.1021/acsanm.9b01898
  22. Jeffrey L. Blackburn, Hanyu Zhang, Alexis R. Myers, Jeremy R. Dunklin, David C. Coffey, Rebecca N. Hirsch, Derek Vigil-Fowler, Seok Joon Yun, Byeong Wook Cho, Young Hee Lee, Elisa M. Miller, Garry Rumbles, Obadiah G. Reid. Measuring Photoexcited Free Charge Carriers in Mono- to Few-Layer Transition-Metal Dichalcogenides with Steady-State Microwave Conductivity. The Journal of Physical Chemistry Letters 2020, 11 (1) , 99-107. https://doi.org/10.1021/acs.jpclett.9b03117
  23. Jon K. Gustafson, Paul D. Cunningham, Kathleen M. McCreary, Berend T. Jonker, L. Michael Hayden. Ultrafast Carrier Dynamics of Monolayer WS2 via Broad-Band Time-Resolved Terahertz Spectroscopy. The Journal of Physical Chemistry C 2019, 123 (50) , 30676-30683. https://doi.org/10.1021/acs.jpcc.9b08483
  24. Linqiu Li, Ming-Fu Lin, Xiang Zhang, Alexander Britz, Aravind Krishnamoorthy, Ruru Ma, Rajiv K. Kalia, Aiichiro Nakano, Priya Vashishta, Pulickel Ajayan, Matthias C. Hoffmann, David M. Fritz, Uwe Bergmann, Oleg V. Prezhdo. Phonon-Suppressed Auger Scattering of Charge Carriers in Defective Two-Dimensional Transition Metal Dichalcogenides. Nano Letters 2019, 19 (9) , 6078-6086. https://doi.org/10.1021/acs.nanolett.9b02005
  25. Peng Fan, Biyuan Zheng, Xingxia Sun, Weihao Zheng, Zheyuan Xu, Cuihuan Ge, Yong Liu, Xiujuan Zhuang, Dong Li, Xiao Wang, Xiaoli Zhu, Ying Jiang, Anlian Pan. Trion-Induced Distinct Transient Behavior and Stokes Shift in WS2 Monolayers. The Journal of Physical Chemistry Letters 2019, 10 (13) , 3763-3772. https://doi.org/10.1021/acs.jpclett.9b01422
  26. Pieter Schiettecatte, Pieter Geiregat, Zeger Hens. Ultrafast Carrier Dynamics in Few-Layer Colloidal Molybdenum Disulfide Probed by Broadband Transient Absorption Spectroscopy. The Journal of Physical Chemistry C 2019, 123 (16) , 10571-10577. https://doi.org/10.1021/acs.jpcc.9b01494
  27. Lin Wang, Ce Xu, Ming-Yang Li, Lain-Jong Li, Zhi-Heng Loh. Unraveling Spatially Heterogeneous Ultrafast Carrier Dynamics of Single-Layer WSe2 by Femtosecond Time-Resolved Photoemission Electron Microscopy. Nano Letters 2018, 18 (8) , 5172-5178. https://doi.org/10.1021/acs.nanolett.8b02103
  28. Renhao Dong, Tao Zhang, Xinliang Feng. Interface-Assisted Synthesis of 2D Materials: Trend and Challenges. Chemical Reviews 2018, 118 (13) , 6189-6235. https://doi.org/10.1021/acs.chemrev.8b00056
  29. Yuanyuan Huang, Lipeng Zhu, Zehan Yao, Longhui Zhang, Chuan He, Qiyi Zhao, Jintao Bai, and Xinlong Xu . Terahertz Surface Emission from Layered MoS2 Crystal: Competition between Surface Optical Rectification and Surface Photocurrent Surge. The Journal of Physical Chemistry C 2018, 122 (1) , 481-488. https://doi.org/10.1021/acs.jpcc.7b09723
  30. Yifei Yu, Guoqing Li, Lujun Huang, Andrew Barrette, Yong-Qing Cai, Yiling Yu, Kenan Gundogdu, Yong-Wei Zhang, and Linyou Cao . Enhancing Multifunctionalities of Transition-Metal Dichalcogenide Monolayers via Cation Intercalation. ACS Nano 2017, 11 (9) , 9390-9396. https://doi.org/10.1021/acsnano.7b04880
  31. Xiao Xing, Litao Zhao, Zeyu Zhang, Xiankuan Liu, Kailin Zhang, Yang Yu, Xian Lin, Hua Ying Chen, Jin Quan Chen, Zuanming Jin, Jianhua Xu, and Guo-hong Ma . Role of Photoinduced Exciton in the Transient Terahertz Conductivity of Few-Layer WS2 Laminate. The Journal of Physical Chemistry C 2017, 121 (37) , 20451-20457. https://doi.org/10.1021/acs.jpcc.7b05345
  32. Chaoliang Tan, Xiehong Cao, Xue-Jun Wu, Qiyuan He, Jian Yang, Xiao Zhang, Junze Chen, Wei Zhao, Shikui Han, Gwang-Hyeon Nam, Melinda Sindoro, and Hua Zhang . Recent Advances in Ultrathin Two-Dimensional Nanomaterials. Chemical Reviews 2017, 117 (9) , 6225-6331. https://doi.org/10.1021/acs.chemrev.6b00558
  33. Yuanyuan Huang, Lipeng Zhu, Qiyi Zhao, Yaohui Guo, Zhaoyu Ren, Jintao Bai, and Xinlong Xu . Surface Optical Rectification from Layered MoS2 Crystal by THz Time-Domain Surface Emission Spectroscopy. ACS Applied Materials & Interfaces 2017, 9 (5) , 4956-4965. https://doi.org/10.1021/acsami.6b13961
  34. Demetra Tsokkou, Xiaoyun Yu, Kevin Sivula, and Natalie Banerji . The Role of Excitons and Free Charges in the Excited-State Dynamics of Solution-Processed Few-Layer MoS2 Nanoflakes. The Journal of Physical Chemistry C 2016, 120 (40) , 23286-23292. https://doi.org/10.1021/acs.jpcc.6b09267
  35. Paul D. Cunningham, Kathleen M. McCreary, Aubrey T. Hanbicki, Marc Currie, Berend T. Jonker, and L. Michael Hayden . Charge Trapping and Exciton Dynamics in Large-Area CVD Grown MoS2. The Journal of Physical Chemistry C 2016, 120 (10) , 5819-5826. https://doi.org/10.1021/acs.jpcc.6b00647
  36. Chad Lunceford, Emanuel Borcean, and Jeff Drucker . Uniform and Repeatable Cold-Wall Chemical Vapor Deposition Synthesis of Single-Layer MoS2. Crystal Growth & Design 2016, 16 (2) , 988-995. https://doi.org/10.1021/acs.cgd.5b01540
  37. Srabani Kar, Y. Su, R. R. Nair, and A. K. Sood . Probing Photoexcited Carriers in a Few-Layer MoS2 Laminate by Time-Resolved Optical Pump–Terahertz Probe Spectroscopy. ACS Nano 2015, 9 (12) , 12004-12010. https://doi.org/10.1021/acsnano.5b04804
  38. Kyle J. Czech, Blaise J. Thompson, Schuyler Kain, Qi Ding, Melinda J. Shearer, Robert J. Hamers, Song Jin, and John C. Wright . Measurement of Ultrafast Excitonic Dynamics of Few-Layer MoS2 Using State-Selective Coherent Multidimensional Spectroscopy. ACS Nano 2015, 9 (12) , 12146-12157. https://doi.org/10.1021/acsnano.5b05198
  39. Haining Wang, Changjian Zhang, and Farhan Rana . Surface Recombination Limited Lifetimes of Photoexcited Carriers in Few-Layer Transition Metal Dichalcogenide MoS2. Nano Letters 2015, 15 (12) , 8204-8210. https://doi.org/10.1021/acs.nanolett.5b03708
  40. Miguel A. Pérez-Osorio, Rebecca L. Milot, Marina R. Filip, Jay B. Patel, Laura M. Herz, Michael B. Johnston, and Feliciano Giustino . Vibrational Properties of the Organic–Inorganic Halide Perovskite CH3NH3PbI3 from Theory and Experiment: Factor Group Analysis, First-Principles Calculations, and Low-Temperature Infrared Spectra. The Journal of Physical Chemistry C 2015, 119 (46) , 25703-25718. https://doi.org/10.1021/acs.jpcc.5b07432
  41. Hyun Jeong, Seungho Bang, Hye Min Oh, Hyeon Jun Jeong, Sung-Jin An, Gang Hee Han, Hyun Kim, Ki Kang Kim, Jin Cheol Park, Young Hee Lee, Gilles Lerondel, and Mun Seok Jeong . Semiconductor–Insulator–Semiconductor Diode Consisting of Monolayer MoS2, h-BN, and GaN Heterostructure. ACS Nano 2015, 9 (10) , 10032-10038. https://doi.org/10.1021/acsnano.5b04233
  42. Zhaogang Nie, Run Long, Jefri S. Teguh, Chung-Che Huang, Daniel W. Hewak, Edwin K. L. Yeow, Zexiang Shen, Oleg V. Prezhdo, and Zhi-Heng Loh . Ultrafast Electron and Hole Relaxation Pathways in Few-Layer MoS2. The Journal of Physical Chemistry C 2015, 119 (35) , 20698-20708. https://doi.org/10.1021/acs.jpcc.5b05048
  43. Joohoon Kang, Joshua D. Wood, Spencer A. Wells, Jae-Hyeok Lee, Xiaolong Liu, Kan-Sheng Chen, and Mark C. Hersam . Solvent Exfoliation of Electronic-Grade, Two-Dimensional Black Phosphorus. ACS Nano 2015, 9 (4) , 3596-3604. https://doi.org/10.1021/acsnano.5b01143
  44. Haining Wang, Changjian Zhang, and Farhan Rana . Ultrafast Dynamics of Defect-Assisted Electron–Hole Recombination in Monolayer MoS2. Nano Letters 2015, 15 (1) , 339-345. https://doi.org/10.1021/nl503636c
  45. Saloni Sharma, Divyansh Pratap Singh, Shreeya Rane, Jishnu Murukeshan, Tymofii S. Pieshkov, Shubhda Srivastava, Soumyabrata Roy, Anand B. Puthirath, Guanhui Gao, Ruturaj Puranik, Utkarsh Pandey, Snehal Haldankar, Vibhavari Parkar, Fatimath Faseela, S. S. Prabhu, Dibakar Roychowdhury, Pulickel M. Ajayan, Bipin Kumar Gupta. Temperature dependent trion induced tunability of terahertz signal response enabled by intraband transitions in monolayer WS2. Journal of Materials Chemistry C 2025, https://doi.org/10.1039/D4TC04218B
  46. Linlu Qiu, Yifan Zhao, Jieyu Jiang, Fei Lou, Shuaiyi Zhang, He Yang, Baitao Zhang, Xia Wang, Jingliang He. III–V semiconductor wires for optical switches in solid-state lasers. Journal of Materials Chemistry C 2025, 393 https://doi.org/10.1039/D4TC04975F
  47. Zhongyi Yu, Weibao He, Siyang Hu, Ziheng Ren, Shun Wan, Xiang'ai Cheng, Yuze Hu, Tian Jiang. Creating Anti‐Chiral Exceptional Points in Non‐Hermitian Metasurfaces for Efficient Terahertz Switching. Advanced Science 2024, 11 (28) https://doi.org/10.1002/advs.202402615
  48. Umberto Celano, Daniel Schmidt, Carlos Beitia, George Orji, Albert V. Davydov, Yaw Obeng. Metrology for 2D materials: a perspective review from the international roadmap for devices and systems. Nanoscale Advances 2024, 6 (9) , 2260-2269. https://doi.org/10.1039/D3NA01148H
  49. Enen Li, Jincheng Wei, Tianyu Zhang, Hujie Wan, Yuguang Cheng, Jiafeng Xie, Hong Li, Kai Zhang, Jingyin Xu, Jinkang Hu, Qiye Wen, Xu Xiao, Tao Zhao, Min Hu, Fuhai Su, Tianwu Wang, Guangyou Fang. Charge Carriers Localization Effect Revealed through Terahertz Spectroscopy of MXene: Ti 3 C 2 T x . Small 2024, 20 (16) https://doi.org/10.1002/smll.202306200
  50. Eleonora Pavoni, Elaheh Mohebbi, Gian Marco Zampa, Pierluigi Stipa, Luca Pierantoni, Emiliano Laudadio, Davide Mencarelli. First principles study of WSe 2 and the effect of V doping on the optical and electronic properties. Materials Advances 2024, 5 (6) , 2230-2237. https://doi.org/10.1039/D3MA00940H
  51. Satoshi Kusaba, Haw-Wei Lin, Ryo Tamaki, Ikufumi Katayama, Jun Takeda, Geoffrey A. Blake. Terahertz sum-frequency excitation of coherent optical phonons in the two-dimensional semiconductor WSe2. Applied Physics Letters 2024, 124 (12) https://doi.org/10.1063/5.0191558
  52. Qiong Wu, Qiangwei Yin, Sijie Zhang, Tianchen Hu, Dong Wu, Li Yue, Bohan Li, Shuxiang Xu, Rongsheng Li, Qiaomei Liu, Hechang Lei, Tao Dong, Nanlin Wang. Pump‐Induced Terahertz Conductivity Response and Peculiar Bound State in Mn 3 Si 2 Te 6. Advanced Optical Materials 2024, 12 (9) https://doi.org/10.1002/adom.202301863
  53. Taketo Handa, Madisen Holbrook, Nicholas Olsen, Luke N. Holtzman, Lucas Huber, Hai I. Wang, Mischa Bonn, Katayun Barmak, James C. Hone, Abhay N. Pasupathy, Xiaoyang Zhu. Spontaneous exciton dissociation in transition metal dichalcogenide monolayers. Science Advances 2024, 10 (5) https://doi.org/10.1126/sciadv.adj4060
  54. Partha Pratim Bag, Dev Kumar Thapa, Govind Pratap Singh, Arnab Maity, Anup Gurung. Exploring modern developments in diverse 2D photocatalysts for water oxidation. Journal of Porous Materials 2024, 31 (1) , 1-32. https://doi.org/10.1007/s10934-023-01516-1
  55. Eugenio Cinquanta, Eva Arianna Aurelia Pogna, Lorenzo Gatto, Salvatore Stagira, Caterina Vozzi. Charge carrier dynamics in 2D materials probed by ultrafast THzspectroscopy. Advances in Physics: X 2023, 8 (1) https://doi.org/10.1080/23746149.2022.2120416
  56. Saloni Sharma, Pooja Chauhan, Shreeya Rane, Utkarsh Raj, Shubhda Srivastava, Z. A. Ansari, Dibakar Roy Chowdhury, Bipin Kumar Gupta. New insights into APCVD grown monolayer MoS2 using time-domain terahertz spectroscopy. Scientific Reports 2023, 13 (1) https://doi.org/10.1038/s41598-023-31102-z
  57. Neetesh Dhakar, Sandeep Kumar, Anand Nivedan, Sunil Kumar. An interplay between optical rectification and transient photocurrent effect on THz pulse generation from bulk MoS 2 layered crystal. Journal of Physics D: Applied Physics 2023, 56 (43) , 435105. https://doi.org/10.1088/1361-6463/ace4d9
  58. S. Mitra, L. Avazpour, I. Knezevic. Terahertz conductivity of monolayer MoS$$_2$$. Journal of Computational Electronics 2023, 22 (5) , 1319-1326. https://doi.org/10.1007/s10825-023-02023-x
  59. Abdullah Alharbi, Naif Alshamrani, Hadba Hussain, Mohammed Alhamdan, Salman Alfihed. Two-Dimensional Materials for Terahertz Emission. 2023https://doi.org/10.5772/intechopen.110878
  60. Enen Li, Jin Yang, Kai Zhang, Hong Li, Ying Xu, Fuhai Su, Tianwu Wang, Guangyou Fang. Systematic Study of Two-Color Air Plasma Broadband THz-TDS. IEEE Transactions on Terahertz Science and Technology 2023, 13 (5) , 476-484. https://doi.org/10.1109/TTHZ.2023.3292547
  61. Eswari Elango, Veera Prabu Kannan, Sridharan Madangurusamy, Rakesh Kumar Karn, Devasish Chowdhury, Chandan Upadhyay, Asha Yadav. Magnetron-Sputtered Silver Nanoparticles for Surface Plasmons for Terahertz Sensors. Journal of Electronic Materials 2023, 52 (7) , 4289-4294. https://doi.org/10.1007/s11664-023-10211-5
  62. Stan E. T. ter Huurne, Niels J. J. van Hoof, Jaime Gómez Rivas. Thickness-dependent Auger scattering in a single WS 2 microcrystal probed with time-resolved terahertz near-field microscopy. Optics Letters 2023, 48 (3) , 708. https://doi.org/10.1364/OL.477389
  63. Yuze Hu, Mingyu Tong, Siyang Hu, Weibao He, Xiang'ai Cheng, Tian Jiang. Reassessing Fano Resonance for Broadband, High‐Efficiency, and Ultrafast Terahertz Wave Switching. Advanced Science 2023, 10 (2) https://doi.org/10.1002/advs.202204494
  64. Fulin Zhuo, Jie Wu, Binhong Li, Moyang Li, Chee Leong Tan, Zhongzhong Luo, Huabin Sun, Yong Xu, Zhihao Yu. Modifying the Power and Performance of 2-Dimensional MoS 2 Field Effect Transistors. Research 2023, 6 https://doi.org/10.34133/research.0057
  65. 张泽亮 Zhang Zeliang, 齐鹏飞 Qi Pengfei, 郭兰军 Guo Lanjun, 张楠 Zhang Nan, 林列 Lin Lie, 刘伟伟 Liu Weiwei. 太赫兹超分辨近场成像方法研究综述. Acta Optica Sinica 2023, 43 (6) , 0600001. https://doi.org/10.3788/AOS221632
  66. Yikai Zheng, Harikrishnan Ravichandran, Thomas F. Schranghamer, Nicholas Trainor, Joan M. Redwing, Saptarshi Das. Hardware implementation of Bayesian network based on two-dimensional memtransistors. Nature Communications 2022, 13 (1) https://doi.org/10.1038/s41467-022-33053-x
  67. Xingfang Luo, Peiwen Xiang, Heming Yu, Shan Huang, Ting Yu, Yuan-Feng Zhu. Terahertz Metamaterials Broadband Perfect Absorber Based on Molybdenum Disulfide. IEEE Photonics Technology Letters 2022, 34 (20) , 1100-1103. https://doi.org/10.1109/LPT.2022.3202991
  68. Jiwon Jung, Jae Whan Park, Jaeyoung Kim, Han Woong Yeom. Surface enhanced electron correlation on the trivial quasi-two-dimensional bulk insulator 1 T − TaS 2 . Physical Review B 2022, 106 (15) https://doi.org/10.1103/PhysRevB.106.155406
  69. Shuva Mitra, Irena Knezevic. Simulation of ac conductivity of monolayer MoS 2 at terahertz frequencies. 2022, 101-102. https://doi.org/10.1109/NUSOD54938.2022.9894759
  70. Changwon Seo, Teun-Teun Kim. Terahertz near-field spectroscopy for various applications. Journal of the Korean Physical Society 2022, 81 (6) , 549-561. https://doi.org/10.1007/s40042-022-00404-2
  71. Raul Perea-Causin, Samuel Brem, Ermin Malic. Trion-phonon interaction in atomically thin semiconductors. Physical Review B 2022, 106 (11) https://doi.org/10.1103/PhysRevB.106.115407
  72. Jing Chen, Fan Wu, Ping Li, Jianguo Hu, He Tian, Xiao-Ming Wu, Yi Yang, Tian-Ling Ren. The α-In 2 Se 3 THz Photodetector. IEEE Transactions on Electron Devices 2022, 69 (8) , 4371-4376. https://doi.org/10.1109/TED.2022.3184621
  73. Xiao Xing, Zeyu Zhang, Chenjing Quan, Litao Zhao, Chunwei Wang, Tingyuan Jia, Junfeng Ren, Juan Du, Yuxin Leng. Tunable ultrafast electron transfer in WSe 2 –graphene heterostructures enabled by atomic stacking order. Nanoscale 2022, 14 (19) , 7418-7425. https://doi.org/10.1039/D1NR07698A
  74. Qiao-Lu Lin, Zheng-Fang Qian, Xiang-Yu Dai, Yi-Ling Sun, Ren-Heng Wang. Regulation of electronic structure of monolayer MoS2 by pressure. Rare Metals 2022, 41 (5) , 1761-1770. https://doi.org/10.1007/s12598-021-01888-w
  75. M.J. Ambrosio, E. Plesiat, P. Decleva, P.M. Echenique, R. Díez Muiño, F. Martín. Cluster approach to scattering in MoS2 photoemission. Chemical Physics 2022, 557 , 111476. https://doi.org/10.1016/j.chemphys.2022.111476
  76. Madhura Ghosh Dastidar, Immanuel Thekkooden, Pramoda K. Nayak, Vidya Praveen Bhallamudi. Quantum emitters and detectors based on 2D van der Waals materials. Nanoscale 2022, 14 (14) , 5289-5313. https://doi.org/10.1039/D1NR08193D
  77. Artur P. Herman, Szymon J. Zelewski, Kamil Misztal, Robert Kudrawiec. Probing the long-lived photo-generated charge carriers in transition metal dichalcogenides by time-resolved microwave photoconductivity. Nanophotonics 2022, 11 (7) , 1335-1344. https://doi.org/10.1515/nanoph-2021-0741
  78. Qirui Liu, Ke Wei, Yuxiang Tang, Zhongjie Xu, Xiang'ai Cheng, Tian Jiang. Visualizing Hot‐Carrier Expansion and Cascaded Transport in WS 2 by Ultrafast Transient Absorption Microscopy. Advanced Science 2022, 9 (10) https://doi.org/10.1002/advs.202105746
  79. S. Kar, J. Lake, S.O. Adeyemo, T.S. Santra, H.J. Joyce. The physics of terahertz negative photoconductivity in low-dimensional materials. Materials Today Physics 2022, 23 , 100631. https://doi.org/10.1016/j.mtphys.2022.100631
  80. Xiongzhi Zeng, Wei Hu, Xiao Zheng, Jin Zhao, Zhenyu Li, Jinlong Yang. Computational characterization of nanosystems. Chinese Journal of Chemical Physics 2022, 35 (1) , 1-15. https://doi.org/10.1063/1674-0068/cjcp2111233
  81. Govindan Kutty Rajendran Nair, Zhaowei Zhang, Fuchen Hou, Ali Abdelaziem, Xiaodong Xu, Steve Wu Qing Yang, Nan Zhang, Weiqi Li, Chao Zhu, Yao Wu, Heng Weiling, Lixing Kang, Teddy Salim, Jiadong Zhou, Lin Ke, Junhao Lin, Xingji Li, Weibo Gao, Zheng Liu. Phase-pure two-dimensional FexGeTe2 magnets with near-room-temperature TC. Nano Research 2022, 15 (1) , 457-464. https://doi.org/10.1007/s12274-021-3502-0
  82. Abdoalbaset Abohmra, Zia Ullah Khan, Hasan T. Abbas, Nosherwan Shoaib, Muhammad A. Imran, Qammer H. Abbasi. Two-Dimensional Materials for Future Terahertz Wireless Communications. IEEE Open Journal of Antennas and Propagation 2022, 3 , 217-228. https://doi.org/10.1109/OJAP.2022.3143994
  83. Alka Jakhar, Prabhat Kumar, Sajid Husain, Veerendra Dhyani, Abhilasha Chouksey, Prashant Kumar Rai, J S Rawat, Samaresh Das. Bilayer MoS 2 on silicon for higher terahertz amplitude modulation. Nano Express 2021, 2 (4) , 040004. https://doi.org/10.1088/2632-959X/ac1ef6
  84. Basant Chitara, Kunyan Zhang, Martha Y. Garcia Cervantes, Tej B. Limbu, Bikram Adhikari, Shengxi Huang, Fei Yan. Probing charge transfer in 2D MoS2/tellurene type-II p–n heterojunctions. MRS Communications 2021, 11 (6) , 868-872. https://doi.org/10.1557/s43579-021-00117-w
  85. Ziming Wang, Jie Qiao, Shuqi Zhao, Shilei Wang, Chuan He, Xutang Tao, Shanpeng Wang. Recent progress in terahertz modulation using photonic structures based on two‐dimensional materials. InfoMat 2021, 3 (10) , 1110-1133. https://doi.org/10.1002/inf2.12236
  86. Sunil Kumar, Arvind Singh, Anand Nivedan, Sandeep Kumar, Seok Joon Yun, Young Hee Lee, Marc Tondusson, Jérôme Degert, Jean Oberle, Eric Freysz. Sub‐bandgap activated charges transfer in a graphene‐MoS 2 ‐graphene heterostructure. Nano Select 2021, 2 (10) , 2019-2028. https://doi.org/10.1002/nano.202000159
  87. Shuo Liu, Rui Ma, Yuanwei Li, Linwan Zhao, Yuanqin Xia, Xiaolong Dong, Yajun Pang. D-shaped surface plasmon resonance biosensor based on MoS 2 in terahertz band. Optical Fiber Technology 2021, 66 , 102631. https://doi.org/10.1016/j.yofte.2021.102631
  88. Zexin Li, Dongyan Li, Haoyun Wang, Ping Chen, Lejing Pi, Xing Zhou, Tianyou Zhai. Intercalation Strategy in 2D Materials for Electronics and Optoelectronics. Small Methods 2021, 5 (9) https://doi.org/10.1002/smtd.202100567
  89. Stan ter Huurne, Niels van Hoof, Rasmus Godiksen, Sara ElRafey, Alberto G. Curto, Jaime Gomez Rivas. THz microscopy on a single WS 2 microcrystal. 2021, 1-2. https://doi.org/10.1109/IRMMW-THz50926.2021.9567372
  90. Haoxuan Jiao, Xulei Qin, Ye Li, Guozheng Wang. Refractive index and optical-pump THz-probe measurement of ReSe2. Infrared Physics & Technology 2021, 116 , 103752. https://doi.org/10.1016/j.infrared.2021.103752
  91. Berardi Sensale‐Rodriguez. Advanced Devices Using Two‐Dimensional Layer Technology. 2021, 251-284. https://doi.org/10.1002/9781119460749.ch7
  92. Young‐Mi Bahk, Minah Seo. Ultrasensitive Terahertz Nano‐Probing for Semiconductors Using Nanogap Structures. 2021, 1-15. https://doi.org/10.1002/3527600434.eap839
  93. Zheng Liu, Shujuan Xu, Binhe Xie, Yuanyuan Luo, Hongying Mei, Huachao Jiang, Zhi Zeng, Guangtao Fei, Fuhai Su. Ultrafast dynamics of photoconductivity in lead sulfide nanocrystals in terahertz region. Journal of Alloys and Compounds 2021, 867 , 158873. https://doi.org/10.1016/j.jallcom.2021.158873
  94. Dana B. Sulas-Kern, Hanyu Zhang, Zhaodong Li, Jeffrey L. Blackburn. Interplay between microstructure, defect states, and mobile charge generation in transition metal dichalcogenide heterojunctions. Nanoscale 2021, 13 (17) , 8188-8198. https://doi.org/10.1039/D1NR00384D
  95. Qi Song, Lu Chai, Junqi Chen, Weining Liu, Qing Ma, Yanfeng Li, Minglie Hu. Optically Tuned Wide-Band Terahertz Modulation, Charge Carrier Dynamics and Photoconductivity of Femtosecond Laser Ablated Titanium Disulfide Nanosheet Devices. IEEE Journal of Selected Topics in Quantum Electronics 2021, 27 (3) , 1-6. https://doi.org/10.1109/JSTQE.2020.2996248
  96. Lei Gao, Zhenliang Hu, Junpeng Lu, Hongwei Liu, Zhenhua Ni. Defect-related dynamics of photoexcited carriers in 2D transition metal dichalcogenides. Physical Chemistry Chemical Physics 2021, 23 (14) , 8222-8235. https://doi.org/10.1039/D1CP00006C
  97. I Nevinskas, R Norkus, A Geižutis, L Kulyuk, A Miku, K Sushkevich, A Krotkus. Terahertz pulse emission from photoexcited bulk crystals of transition metal dichalcogenides. Journal of Physics D: Applied Physics 2021, 54 (11) , 115105. https://doi.org/10.1088/1361-6463/abcc26
  98. Shuai Fu, Indy du Fossé, Xiaoyu Jia, Jingyin Xu, Xiaoqing Yu, Heng Zhang, Wenhao Zheng, Sven Krasel, Zongping Chen, Zhiming M. Wang, Klaas-Jan Tielrooij, Mischa Bonn, Arjan J. Houtepen, Hai I. Wang. Long-lived charge separation following pump-wavelength–dependent ultrafast charge transfer in graphene/WS 2 heterostructures. Science Advances 2021, 7 (9) https://doi.org/10.1126/sciadv.abd9061
  99. Martin Mittendorff, Stephan Winnerl, Thomas E. Murphy. 2D THz Optoelectronics. Advanced Optical Materials 2021, 9 (3) https://doi.org/10.1002/adom.202001500
  100. A. V. Gorbatova, D. I. Khusyainov, A. M. Buryakov. Generation of the THz radiation in Mo0.5W0.5S2 solid solution. 2021, 020009. https://doi.org/10.1063/5.0055454
Load all citations

ACS Nano

Cite this: ACS Nano 2014, 8, 11, 11147–11153
Click to copy citationCitation copied!
https://doi.org/10.1021/nn5034746
Published October 27, 2014

Copyright © 2014 American Chemical Society. This publication is licensed under CC-BY.

Article Views

14k

Altmetric

-

Citations

Learn about these metrics

Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.

  • Abstract

    Figure 1

    Figure 1. Characterization of monolayer MoS2 (a–d), trilayer MoS2 (e–h), and monolayer WSe2 samples. (a), (e), (i) Schematic representation of the samples. (b), (f), (j) Raman spectroscopy of the samples. The splitting between the E2G1 and A1G peaks is indicative of layer number. (c), (g), (k) AFM images of the samples. Height profiles are overlaid at the position they were taken. The step heights again confirm the layer number identification. (d), (h), (l) Optical transmission spectrum of the samples. Absorption features associated with the “A” and “B” excitons are labeled.

    Figure 2

    Figure 2. Photodynamics of monolayer MoS2 measured by optical pump–THz probe spectroscopy and PL upconversion spectroscopy. (a) The blue circles show the normalized THz photoconductivity, ΔσTHz, of monolayer MoS2 as a function of time after photoexcitation by 3.1 eV photons (absorbed fluence ∼7 × 1013 cm–2/pulse). The black crosses show the normalized PL emitted at 1.86 eV as a function of time after photoexcitation by 3 eV photons (absorbed fluence ∼6.9 × 1012 cm–2/pulse). Solid lines are biexponential fits to the data. (b) Similar ΔσTHz (blue circles) and PL (black crosses) measurements following photoexcitation on resonance with the direct gap excitons (1.9 eV photons with absorbed fluence ∼1.2 × 1014 cm–2 for ΔσTHz, and 2.1 eV photons with absorbed fluence ∼3.5 × 1012 cm–2 for PL).

    Figure 3

    Figure 3. Normalized photodynamics of monolayer WSe2 measured by optical pump-THz probe spectroscopy. The blue crosses show the THz photoconductivity of WSe2, ΔσTHz, as a function of time after photoexcitation by 35 fs pulses of above-gap photons with energy of 3.1 eV. The absorbed photon fluence was ∼4.2 × 1013 cm–2/pulse. The red squares show ΔσTHz of WSe2 photoexcited resonantly with the “A” exciton at a photon energy of 1.65 eV. The fluence absorbed in the WSe2 layer was ∼3.3 × 1013 cm–2/pulse. Solid lines are biexponential fits to the data.

    Figure 4

    Figure 4. Comparison of THz photoconductivity, ΔσTHz, in trilayer (green crosses) and monolayer (blue squares) MoS2 as a function of time after photoexcitation by 175 μJ cm–2 35 fs pulses of 3.1 eV photons. The absorbed fluence of photons were ∼1.4 × 1014 cm–2/pulse in the trilayer sample and ∼7 × 1013 cm–2/pulse in the monolayer sample. Solid lines show biexponential fits to the data. Fit parameters are listed in Supporting Information Table 1. Additional reflections due to the thinness of the substrate have been removed from the trilayer data for clarity (see Supporting Information).

    Figure 5

    Figure 5. THz complex photoconductivity spectra, Δσ(ν). (a) Monolayer MoS2 1.5 ps after photoexcitation with 3 eV (squares) and 1.9 eV (crosses) photons. A low energy resonance at ∼18 meV (4.5 THz) is apparent. (b) Trilayer MoS2, 1.5 ps after photoexcitation by 1.9 eV photons. (c) Monolayer WSe2, 1 ps after photoexcitation on resonance with the WSe2 “A” exciton at 1.65 eV. Solid lines show possible fits to the data, detailed in the Supporting Information.

  • References


    This article references 59 other publications.

    1. 1
      Smith, F. W.; Le, H. Q.; Diadiuk, V.; Hollis, M. A.; Calawa, A. R.; Gupta, S.; Frankel, M.; Dykaar, D. R.; Mourou, G. A.; Hsiang, T. Y. Picosecond GaAs-based Photoconductive Optoelectronic Detectors Appl. Phys. Lett. 1989, 54, 890 892
    2. 2
      Nolte, D. D. Semi-insulating Semiconductor Heterostructures: Optoelectronic Properties and Applications J. Appl. Phys. 1999, 85, 6259 6289
    3. 3
      Krotkus, A. Semiconductors for Terahertz Photonics Applications J. Phys. D: Appl. Phys. 2010, 43, 273001
    4. 4
      Loka, H. S.; Benjamin, S. D.; Smith, P. W. E. Optical Characterization of Low-temperature-grown GaAs for Ultrafast All-optical Switching Devices IEEE J. Quantum Electron. 1998, 34, 1426 1437
    5. 5
      Shen, Y. C.; Upadhya, P. C.; Linfield, E. H.; Beere, H. E.; Davies, A. G. Ultrabroadband Terahertz Radiation from Low-temperature-grown GaAs Photoconductive Emitters Appl. Phys. Lett. 2003, 83, 3117 3119
    6. 6
      Ferguson, B.; Zhang, X.-C. Materials for Terahertz Science and Technology Nat. Mater. 2002, 1, 26 33
    7. 7
      Castro-Camus, E.; Lloyd-Hughes, J.; Fu, L.; Tan, H. H.; Jagadish, C.; Johnston, M. B. An Ion-implanted InP Receiver for Polarization Resolved Terahertz Spectroscopy Opt. Express 2007, 15, 7047 7057
    8. 8
      Mangeney, J. THz Photoconductive Antennas Made from Ion-bombarded Semiconductors J. Infrared, Millimeter, Terahertz Waves 2012, 33, 455 473
    9. 9
      Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich, V. V.; Morozov, S. V.; Geim, A. K. Two-dimensional Atomic Crystals Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 10451 10453
    10. 10
      Friend, R. H.; Yoffe, A. D. Electronic-properties of Intercalation Complexes of the Transition-metal Dichalcogenides Adv. Phys. 1987, 36, 1 94
    11. 11
      Wang, Q. H.; Kalantar-zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and Optoelectronics of Two-dimensional Transition Metal Dichalcogenides Nat. Nanotechnol. 2012, 7, 699 712
    12. 12
      Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L. J.; Loh, K. P.; Zhang, H. The Chemistry of Two-dimensional Layered Transition Metal Dichalcogenide Nanosheets Nat. Chem. 2013, 5, 263 275
    13. 13
      Jariwala, D.; Sangwan, V. K.; Lauhon, L. J.; Marks, T. J.; Hersam, M. C. Emerging Device Applications for Semiconducting Two-dimensional Transition Metal Dichalcogenides ACS Nano 2014, 8, 1102 1120
    14. 14
      Coehoorn, R.; Haas, C.; Degroot, R. A. Electronic-structure of MoSe2, MoS2, and WSe2. II The Nature of the Optical Band-gaps Phys. Rev. B: Condens. Matter Mater. Phys. 1987, 35, 6203 6206
    15. 15
      Kim, Y.; Huang, J. L.; Lieber, C. M. Characterization of Nanometer Scale Wear and Oxidation of Transition-metal Dichalcogenide Lubricants by Atomic Force Microscopy Appl. Phys. Lett. 1991, 59, 3404 3406
    16. 16
      Karunadasa, H. I.; Montalvo, E.; Sun, Y. J.; Majda, M.; Long, J. R.; Chang, C. J. A Molecular MoS2 Edge Site Mimic for Catalytic Hydrogen Generation Science 2012, 335, 698 702
    17. 17
      Splendiani, A.; Sun, L.; Zhang, Y. B.; Li, T. S.; Kim, J.; Chim, C. Y.; Galli, G.; Wang, F. Emerging Photoluminescence in Monolayer MoS2 Nano Lett. 2010, 10, 1271 1275
    18. 18
      Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically Thin MoS2: A New Direct-gap Semiconductor Phys. Rev. Lett. 2010, 105, 136805
    19. 19
      Yin, Z. Y.; Li, H.; Li, H.; Jiang, L.; Shi, Y. M.; Sun, Y. H.; Lu, G.; Zhang, Q.; Chen, X. D.; Zhang, H. Single-layer MoS2 Phototransistors ACS Nano 2012, 6, 74 80
    20. 20
      Choi, W.; Cho, M. Y.; Konar, A.; Lee, J. H.; Cha, G. B.; Hong, S. C.; Kim, S.; Kim, J.; Jena, D.; Joo, J.et al. High-detectivity Multilayer MoS2 Phototransistors with Spectral Response from Ultraviolet to Infrared Adv. Mater. 2012, 24, 5832 5836
    21. 21
      Lopez-Sanchez, O.; Lembke, D.; Kayci, M.; Radenovic, A.; Kis, A. Ultrasensitive Photodetectors Based on Monolayer MoS2 Nat. Nanotechnol. 2013, 8, 497 501
    22. 22
      Mak, K. F.; He, K. L.; Lee, C.; Lee, G. H.; Hone, J.; Heinz, T. F.; Shan, J. Tightly Bound Trions in Monolayer MoS2 Nat. Mater. 2013, 12, 207 211
    23. 23
      Coleman, J. N.; Lotya, M.; O’Neill, A.; Bergin, S. D.; King, P. J.; Khan, U.; Young, K.; Gaucher, A.; De, S.; Smith, R. J.et al. Two-dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials Science 2011, 331, 568 571
    24. 24
      Wang, H.; Yu, L. L.; Lee, Y. H.; Shi, Y. M.; Hsu, A.; Chin, M. L.; Li, L. J.; Dubey, M.; Kong, J.; Palacios, T. Integrated Circuits Based on Bilayer MoS2 Transistors Nano Lett. 2012, 12, 4674 4680
    25. 25
      Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 Transistors Nat. Nanotechnol. 2011, 6, 147 150
    26. 26
      Alam, K.; Lake, R. K. Monolayer MoS2 Transistors beyond the Technology Road Map IEEE Trans. Electron Devices 2012, 59, 3250 3254
    27. 27
      Radisavljevic, B.; Whitwick, M. B.; Kis, A. Small-signal Amplifier Based On Single-layer MoS2 Appl. Phys. Lett. 2012, 101, 043103
    28. 28
      Radisavljevic, B.; Kis, A. Mobility Engineering and a Metal-insulator Transition in Monolayer MoS2 Nat. Mater. 2013, 12, 815 820
    29. 29
      Zhang, W. J.; Chuu, C. P.; Huang, J. K.; Chen, C. H.; Tsai, M. L.; Chang, Y. H.; Liang, C. T.; Chen, Y. Z.; Chueh, Y. L.; He, J. H.et al. Ultrahigh-gain Photodetectors Based on Atomically Thin Graphene-MoS2 Heterostructures Sci. Rep. 2014, 4, 3826
    30. 30
      Bertolazzi, S.; Krasnozhon, D.; Kis, A.; Nonvolatile Memory Cells Based On MoS2/Graphene Heterostructures ACS Nano 2013, 7, 3246 3252
    31. 31
      Kaasbjerg, K.; Thygesen, K. S.; Jacobsen, K. W. Phonon-limited Mobility In N-type Single-layer MoS2 from First Principles Phys. Rev. B: Condens. Matter Mater. Phys. 2012, 85, 115317
    32. 32
      Das, S.; Chen, H. Y.; Penumatcha, A. V.; Appenzeller, J. High Performance Multilayer MoS2 Transistors with Scandium Contacts Nano Lett. 2013, 13, 100 105
    33. 33
      Shi, H.; Pan, H.; Zhang, Y. W.; Yakobson, B. I. Quasiparticle Band Structures and Optical Properties of Strained Monolayer MoS2 and WS2 Phys. Rev. B: Condens. Matter Mater. Phys. 2013, 87, 155304
    34. 34
      Allain, A.; Kis, A. Electron and Hole Mobilities in Single-layer WSe2 ACS Nano 2014, 8, 7180 7185
    35. 35
      Huang, J. K.; Pu, J.; Hsu, C. L.; Chiu, M. H.; Juang, Z. Y.; Chang, Y. H.; Chang, W. H.; Iwasa, Y.; Takenobu, T.; Li, L. J. Large-area Synthesis of Highly Crystalline WSe2 Mono Layers and Device Applications ACS Nano 2014, 8, 923 930
    36. 36
      Jones, A. M.; Yu, H. Y.; Ghimire, N. J.; Wu, S. F.; Aivazian, G.; Ross, J. S.; Zhao, B.; Yan, J. Q.; Mandrus, D. G.; Xiao, D.et al. Optical Generation of Excitonic Valley Coherence in Monolayer WSe2 Nat. Nanotechnol. 2013, 8, 634
    37. 37
      Yoshida, S.; Terada, Y.; Yokota, M.; Takeuchi, O.; Meray, Y.; Shigekawa, H. Direct Probing of Transient Photocurrent Dynamics in P-WSe2 By Time-resolved Scanning Tunneling Microscopy Appl. Phys. Express 2013, 6, 016601
    38. 38
      Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric Field Effect In Atomically Thin Carbon Films Science 2004, 306, 666 669
    39. 39
      Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Katsnelson, M. I.; Grigorieva, I. V.; Dubonos, S. V.; Firsov, A. A. Two-dimensional Gas of Massless Dirac Fermions in Graphene Nature 2005, 438, 197 200
    40. 40
      Tonndorf, P.; Schmidt, R.; Bottger, P.; Zhang, X.; Borner, J.; Liebig, A.; Albrecht, M.; Kloc, C.; Gordan, O.; Zahn, D. R. T.et al. Photoluminescence Emission and Raman Response of Monolayer MoS2, MoSe2, And WSe2 Opt. Express 2013, 21, 4908 4916
    41. 41
      Zhao, W. J.; Ghorannevis, Z.; Chu, L. Q.; Toh, M. L.; Kloc, C.; Tan, P. H.; Eda, G. Evolution of Electronic Structure in Atomically Thin Sheets of WS2 and WSe2 ACS Nano 2013, 7, 791 797
    42. 42
      Lee, Y. H.; Zhang, X. Q.; Zhang, W. J.; Chang, M. T.; Lin, C. T.; Chang, K. D.; Yu, Y. C.; Wang, J. T. W.; Chang, C. S.; Li, L. J.et al. Synthesis of Large-area MoS2 Atomic Layers with Chemical Vapor Deposition Adv. Mater. 2012, 24, 2320 2325
    43. 43
      Lee, Y. H.; Yu, L.; Wang, H.; Fang, W.; I Ling, X.; Shi, Y.; Lin, C. T.; Huang, J. K.; Chang, M. T.; Chang, C. S.et al. Synthesis and Transfer of Single-layer Transition Metal Disulfides on Diverse Surfaces Nano Lett. 2013, 13, 1852
    44. 44
      Liu, K. K.; Zhang, W. J.; Lee, Y. H.; Lin, Y. C.; Chang, M. T.; Su, C.; Chang, C. S.; Li, H.; Shi, Y. M.; Zhang, H.et al. Growth of Large-area And Highly Crystalline MoS2 Thin Layers on Insulating Substrates Nano Lett. 2012, 12, 1538 1544
    45. 45
      Li, X. S.; Cai, W. W.; An, J. H.; Kim, S.; Nah, J.; Yang, D. X.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E.et al. Large-area Synthesis of High-quality and Uniform Graphene Films on Copper Foils Science 2009, 324, 1312 1314
    46. 46
      Korn, T.; Heydrich, S.; Hirmer, M.; Schmutzler, J.; Schuller, C. Low-temperature Photocarrier Dynamics in Monolayer MoS2 Appl. Phys. Lett. 2011, 99, 102109
    47. 47
      Sundaram, R.; Engel, M.; Lombardo, A.; Krupke, R.; Ferrari, A.; H Avouris, P.; Steiner, M. Electroluminescence in Single Layer MoS2 Nano Lett. 2013, 13, 1416 1421
    48. 48
      Wang, R.; Ruzicka, B. A.; Kumar, N.; Bellus, M. Z.; Chiu, H. Y.; Zhao, H. Ultrafast and Spatially Resolved Studies of Charge Carriers in Atomically Thin Molybdenum Disulfide Phys. Rev. B: Condens. Matter Mater. Phys. 2012, 86, 045406
    49. 49
      Shi, H. Y.; Yan, R. S.; Bertolazzi, S.; Brivio, J.; Gao, B.; Kis, A.; Jena, D.; Xing, H. G.; Huang, L. B. Exciton Dynamics in Suspended Mono Layer And Few-layer MoS2 2D Crystals ACS Nano 2013, 7, 1072 1080
    50. 50
      Lee, C.; Yan, H.; Brus, L. E.; Heinz, T. F.; Hone, J.; Ryu, S. Anomalous Lattice Vibrations of Single- and Few-layer MoS2 ACS Nano 2010, 4, 2695 2700
    51. 51
      Ulbricht, R.; Hendry, E.; Shan, J.; Heinz, T. F.; Bonn, M. Carrier Dynamics In Semiconductors Studied with Time-resolved Terahertz Spectroscopy Rev. Mod. Phys. 2011, 83, 543 586
    52. 52
      Lloyd-Hughes, J.; Jeon, T.-I. A Review of the Terahertz Conductivity of Bulk and Nano-materials J. Infrared, Millimeter, Terahertz Waves 2012, 33, 871
    53. 53
      Grabtchak, S. Y.; Cocivera, M. Contactless Microwave Study of Dispersive Transport in Thin Film CdSe J. Appl. Phys. 1996, 79, 786 793
    54. 54
      Parkinson, P.; Joyce, H. J.; Gao, Q.; Tan, H. H.; Zhang, X.; Zou, J.; Jagadish, C.; Herz, L. M.; Johnston, M. B. Carrier Lifetime and Mobility Enhancement in Nearly Defect-free Core-shell Nanowires Measured Using Time-resolved Terahertz Spectroscopy Nano Lett. 2009, 9, 3349 3353
    55. 55
      Joyce, H. J.; Wong-Leung, J.; Yong, C.; Docherty, C. J.; Paiman, S.; Gao, Q.; Tan, H. H.; Jagadish, C.; Lloyd-Hughes, J.; Herz, L. M.et al. Ultra-low Surface Recombination Velocity in InP Nanowires Probed by Terahertz Spectroscopy Nano Lett. 2012, 12, 5325 5330
    56. 56
      Joyce, H. J.; Docherty, C. J.; Gao, Q.; Tan, H. H.; Jagadish, C.; Lloyd-Hughes, J.; Herz, L. M.; Johnston, M. B. Electronic Properties of GaAs, Inas and InP Nanowires Studied by Terahertz Spectroscopy Nanotechnology 2013, 24, 214006
    57. 57
      Fortin, E.; Raga, F. Excitons in Molybdenum-disulfide Phys. Rev. B: Solid State 1975, 11, 905 912
    58. 58
      Yong, C. K.; Joyce, H. J.; Lloyd-Hughes, J.; Gao, Q.; Tan, H. H.; Jagadish, C.; Johnston, M. B.; Herz, L. M. Ultrafast Dynamics of Exciton Formation In Semiconductor Nanowires Small 2012, 8, 1725 1731
    59. 59
      Docherty, C. J.; Lin, C.; Joyce, H. J.; Nicholas, R. J.; Herz, L. M.; Li, L.; Johnston, M. B. Extreme Sensitivity of Graphene Photoconductivity To Environmental Gases Nat. Commun. 2012, 3, 1228
  • Supporting Information

    Supporting Information


    detailing the pump fluence and pump energy dependence of the THz spectroscopy measurements, as well as information above removing reflections from the trilayer THz photoconductivity. This material is available free of charge via the Internet at http://pubs.acs.org.


    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.