ACS Publications. Most Trusted. Most Cited. Most Read
Raspberry-like Metamolecules Exhibiting Strong Magnetic Resonances
My Activity
    Article

    Raspberry-like Metamolecules Exhibiting Strong Magnetic Resonances
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Chemistry, Department of Physics, and §Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
    Department of Chemistry & Nano Science, Ewha Womans University, 11-1, Daehyeon-dong, Seodaemun-gu, Seoul, South Korea
    *Address correspondence to (Z. Fakhraai) [email protected], (S.-J. Park) [email protected]
    Other Access OptionsSupporting Information (1)

    ACS Nano

    Cite this: ACS Nano 2015, 9, 2, 1263–1270
    Click to copy citationCitation copied!
    https://doi.org/10.1021/nn5050678
    Published January 26, 2015
    Copyright © 2015 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    We report a synthetic approach to produce raspberry-like plasmonic nanostructures with unusually strong magnetic resonances, termed raspberry-like metamolecules (raspberry-MMs). The synthesis based on the surfactant-assisted templated seed-growth method allows for the simultaneous one-step synthesis and assembly of well-insulated gold nanoparticles. The aromatic surfactant used for the syntheses forms a thin protective layer around the nanoparticles, preventing them from touching each other and making it possible to pack discrete nanoparticles at close distances in a single cluster. The resulting isotropic gold nanoparticle clusters (i.e., raspberry-MMs) exhibit unusually broad extinction spectra in the visible and near-IR region. Finite-difference time-domain (FDTD) modeling showed that the raspberry-MMs support strong magnetic resonances that contribute significantly to the broadband spectra. The strong magnetic scattering was also verified by far-field scattering measurements, which show that in the near-IR region the magnetic dipole resonance can be even stronger than the electric dipole resonance in these raspberry-MMs. Structural parameters such as the size and the number of gold nanoparticles composing raspberry-MMs can be readily tuned in our synthetic method. A series of syntheses with varying structure parameters, along with FDTD modeling and mode analyses of corresponding model structures, showed that the close packing of a large number of metal nanoparticles in raspberry-MMs is responsible for the unusually strong magnetic resonances observed here.

    Copyright © 2015 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Detailed experimental and simulation methods, additional TEM images, and FDTD simulations. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 83 publications.

    1. Jinjian Wei, Ying Liu, Zhidi Miao, Liang Zhang, Zhihua Li, Yuqin Chen, Kuniharu Ijiro, Zhide Zhang. Influence of Solvophobicity of Biphenol-Derived Small Surface Ligands on the Formation of Size-Controllable Gold Nanoparticle Vesicles. Langmuir 2024, 40 (32) , 16783-16790. https://doi.org/10.1021/acs.langmuir.4c01149
    2. Ke Luo, Kaiqiang Wang, Min-Cheol Lim, Ki-Baek Jeong, Young-Rok Kim. Synthesis of Starch-Based Plasmonic Core–Shell Microparticles for SERS Applications. ACS Sustainable Chemistry & Engineering 2022, 10 (31) , 10268-10274. https://doi.org/10.1021/acssuschemeng.2c02092
    3. Sunghee Lee, Omar Ibrahim, Zahra Fakhraai, So-Jung Park. Heterogeneity in Dynamic Metamolecules. The Journal of Physical Chemistry C 2022, 126 (15) , 6668-6677. https://doi.org/10.1021/acs.jpcc.2c01214
    4. Seung Beom Pyun, Min Gyu Kim, Sung Wook Kim, Ji Eun Song, Hyun Ik Jeon, Sangho Kim, So-Jung Park, Eun Chul Cho. Optically Left-Handed Nanopearl Beads with Inductance-Capacitance Circuits at Visible–Near-Infrared Frequencies Based on Scalable Methods. ACS Applied Materials & Interfaces 2022, 14 (5) , 7121-7129. https://doi.org/10.1021/acsami.1c20838
    5. Wajdi Chaâbani, Julien Proust, Samuel Ouellet, Artur Movsesyan, Jérémie Béal, Renaud Bachelot, Tao Xu, Anne-Laure Baudrion, Pierre-Michel Adam, Denis Boudreau, Abdallah Chehaidar, Jérôme Plain. Si@Au Core–Shell Nanostructures: Toward a New Platform for Controlling Optical Properties at the Nanoscale. The Journal of Physical Chemistry C 2021, 125 (37) , 20606-20616. https://doi.org/10.1021/acs.jpcc.1c06182
    6. Marc R. Bourgeois, Andrew W. Rossi, Matthieu Chalifour, Charles Cherqui, David J. Masiello. Lattice Kerker Effect with Plasmonic Oligomers. The Journal of Physical Chemistry C 2021, 125 (34) , 18817-18826. https://doi.org/10.1021/acs.jpcc.1c05024
    7. Jinjian Wei, Xiaoying Huang, Liang Zhang, Yuqin Chen, Kenichi Niikura, Hideyuki Mitomo, Kuniharu Ijiro, Zhide Zhang. Vesicle Formation by the Self-Assembly of Gold Nanoparticles Covered with Fluorinated Oligo(ethylene glycol)-Terminated Ligands and Its Stability in Aqueous Solution. Langmuir 2021, 37 (32) , 9694-9700. https://doi.org/10.1021/acs.langmuir.1c00996
    8. Omar Ibrahim, Sunghee Lee, Sung Wook Kim, Seung Beom Pyun, Connor Woods, Eun Chul Cho, So-Jung Park, Zahra Fakhraai. Optical Magnetic Multipolar Resonances in Large Dynamic Metamolecules. The Journal of Physical Chemistry C 2021, 125 (30) , 16605-16619. https://doi.org/10.1021/acs.jpcc.1c04538
    9. Sunghee Lee, Jungwoo Kim, Kyungnae Baek, Nam Hoon Kim, Jerome K. Hyun, So-Jung Park, Haemi Lee. Concurrent Imaging of Surface-Enhanced Raman and Mie Scattering from Built-in Nanogap Plasmonic Particles. The Journal of Physical Chemistry Letters 2021, 12 (25) , 5889-5896. https://doi.org/10.1021/acs.jpclett.1c01524
    10. Laurent Lermusiaux, Véronique Many, Philippe Barois, Virginie Ponsinet, Serge Ravaine, Etienne Duguet, Mona Tréguer-Delapierre, Alexandre Baron. Toward Huygens’ Sources with Dodecahedral Plasmonic Clusters. Nano Letters 2021, 21 (5) , 2046-2052. https://doi.org/10.1021/acs.nanolett.0c04666
    11. Tatsuki Hinamoto, Shinnosuke Hotta, Hiroshi Sugimoto, Minoru Fujii. Colloidal Solutions of Silicon Nanospheres toward All-Dielectric Optical Metafluids. Nano Letters 2020, 20 (10) , 7737-7743. https://doi.org/10.1021/acs.nanolett.0c03295
    12. Sunghee Lee, Connor N. Woods, Omar Ibrahim, Sung Wook Kim, Seung Beom Pyun, Eun Chul Cho, Zahra Fakhraai, So-Jung Park. Distinct Optical Magnetism in Gold and Silver Probed by Dynamic Metamolecules. The Journal of Physical Chemistry C 2020, 124 (37) , 20436-20444. https://doi.org/10.1021/acs.jpcc.0c05943
    13. Minji Ha, Jae-Ho Kim, Myunghwa You, Qian Li, Chunhai Fan, Jwa-Min Nam. Multicomponent Plasmonic Nanoparticles: From Heterostructured Nanoparticles to Colloidal Composite Nanostructures. Chemical Reviews 2019, 119 (24) , 12208-12278. https://doi.org/10.1021/acs.chemrev.9b00234
    14. Yang Zhang, Chen Li, Zahra Fakhraai, Basem Moosa, Peng Yang, Niveen M. Khashab. Synthesis of Spiked Plasmonic Nanorods with an Interior Nanogap for Quantitative Surface-Enhanced Raman Scattering Analysis. ACS Omega 2018, 3 (10) , 14399-14405. https://doi.org/10.1021/acsomega.8b01153
    15. Jinjian Wei, Hideyuki Mitomo, Takeharu Tani, Yasutaka Matsuo, Kenichi Niikura, Masayuki Naya, Kuniharu Ijiro. Size-Defined Cracked Vesicle Formation via Self-Assembly of Gold Nanoparticles Covered with Carboxylic Acid-Terminated Surface Ligands. Langmuir 2018, 34 (41) , 12445-12451. https://doi.org/10.1021/acs.langmuir.8b02966
    16. Yutaro Hirai, Yasutaka Matsuo, Hiroshi Yabu. Near-Infrared-Excitable SERS Measurement Using Magneto-Responsive Metafluids for in Situ Molecular Analysis. ACS Applied Nano Materials 2018, 1 (9) , 4980-4987. https://doi.org/10.1021/acsanm.8b01093
    17. Nicholas P. Montoni, Steven C. Quillin, Charles Cherqui, David J. Masiello. Tunable Spectral Ordering of Magnetic Plasmon Resonances in Noble Metal Nanoclusters. ACS Photonics 2018, 5 (8) , 3272-3281. https://doi.org/10.1021/acsphotonics.8b00519
    18. Chen Li, Sunghee Lee, Zhaoxia Qian, Connor Woods, So-Jung Park, Zahra Fakhraai. Controlling Magnetic Dipole Resonance in Raspberry-like Metamolecules. The Journal of Physical Chemistry C 2018, 122 (12) , 6808-6817. https://doi.org/10.1021/acs.jpcc.8b00439
    19. Na Liu, Tim Liedl. DNA-Assembled Advanced Plasmonic Architectures. Chemical Reviews 2018, 118 (6) , 3032-3053. https://doi.org/10.1021/acs.chemrev.7b00225
    20. Uttam Manna, Jung-Hoon Lee, Tian-Song Deng, John Parker, Nolan Shepherd, Yossi Weizmann, and Norbert F. Scherer . Selective Induction of Optical Magnetism. Nano Letters 2017, 17 (12) , 7196-7206. https://doi.org/10.1021/acs.nanolett.7b02144
    21. Matthew J. Eibling, Christopher M. MacDermaid, Zhaoxia Qian, Christopher J. Lanci, So-Jung Park, and Jeffery G. Saven . Controlling Association and Separation of Gold Nanoparticles with Computationally Designed Zinc-Coordinating Proteins. Journal of the American Chemical Society 2017, 139 (49) , 17811-17823. https://doi.org/10.1021/jacs.7b04786
    22. Ji Eun Song, Hakseong Kim, Sang Wook Lee, and Eun Chul Cho . Nanoscale Structural Switching of Plasmonic Nanograin Layers on Hydrogel Colloidal Monolayers for Highly Sensitive and Dynamic SERS in Water with Areal Signal Reproducibility. Analytical Chemistry 2017, 89 (21) , 11259-11268. https://doi.org/10.1021/acs.analchem.7b01021
    23. Kwangjin Kim, SeokJae Yoo, Ji-Hyeok Huh, Q-Han Park, and Seungwoo Lee . Limitations and Opportunities for Optical Metafluids To Achieve an Unnatural Refractive Index. ACS Photonics 2017, 4 (9) , 2298-2311. https://doi.org/10.1021/acsphotonics.7b00546
    24. Marc R. Bourgeois, Alice T. Liu, Michael B. Ross, Jacob M. Berlin, and George C. Schatz . Self-Assembled Plasmonic Metamolecules Exhibiting Tunable Magnetic Response at Optical Frequencies. The Journal of Physical Chemistry C 2017, 121 (29) , 15915-15921. https://doi.org/10.1021/acs.jpcc.7b03817
    25. Wansun Kim, Jae-Chul Lee, Gi-Ja Lee, Hun-Kuk Park, Anbok Lee, and Samjin Choi . Low-Cost Label-Free Biosensing Bimetallic Cellulose Strip with SILAR-Synthesized Silver Core–Gold Shell Nanoparticle Structures. Analytical Chemistry 2017, 89 (12) , 6448-6454. https://doi.org/10.1021/acs.analchem.7b00300
    26. Zhaoxia Qian and David S. Ginger . Reversibly Reconfigurable Colloidal Plasmonic Nanomaterials. Journal of the American Chemical Society 2017, 139 (15) , 5266-5276. https://doi.org/10.1021/jacs.7b00711
    27. Tingting Wang, Yaqin Tang, Xiao He, Ju Yan, Chenhui Wang, and Xuli Feng . Self-Assembled Raspberry-Like Core/Satellite Nanoparticles for Anti-Inflammatory Protein Delivery. ACS Applied Materials & Interfaces 2017, 9 (8) , 6902-6907. https://doi.org/10.1021/acsami.6b16277
    28. Charles Cherqui, Yueying Wu, Guoliang Li, Steven C. Quillin, Jacob A. Busche, Niket Thakkar, Claire A. West, Nicholas P. Montoni, Philip D. Rack, Jon P. Camden, and David J. Masiello . STEM/EELS Imaging of Magnetic Hybridization in Symmetric and Symmetry-Broken Plasmon Oligomer Dimers and All-Magnetic Fano Interference. Nano Letters 2016, 16 (10) , 6668-6676. https://doi.org/10.1021/acs.nanolett.6b03504
    29. Tong Wu, Xiuhui Zhang, Rongyao Wang, and Xiangdong Zhang . Strongly Enhanced Raman Optical Activity in Molecules by Magnetic Response of Nanoparticles. The Journal of Physical Chemistry C 2016, 120 (27) , 14795-14804. https://doi.org/10.1021/acs.jpcc.6b03446
    30. Roland P. M. Höller, Martin Dulle, Sabrina Thomä, Martin Mayer, Anja Maria Steiner, Stephan Förster, Andreas Fery, Christian Kuttner, and Munish Chanana . Protein-Assisted Assembly of Modular 3D Plasmonic Raspberry-like Core/Satellite Nanoclusters: Correlation of Structure and Optical Properties. ACS Nano 2016, 10 (6) , 5740-5750. https://doi.org/10.1021/acsnano.5b07533
    31. Kuo Zhong, Jiaqi Li, Liwang Liu, Ward Brullot, Maarten Bloemen, Alexander Volodin, Kai Song, Pol Van Dorpe, Niels Verellen, and Koen Clays . Direct Fabrication of Monodisperse Silica Nanorings from Hollow Spheres – A Template for Core–Shell Nanorings. ACS Applied Materials & Interfaces 2016, 8 (16) , 10451-10458. https://doi.org/10.1021/acsami.6b00733
    32. Zhaoxia Qian, Chen Li, Zahra Fakhraai, and So-Jung Park . Unusual Weak Interparticle Distance Dependence in Raman Enhancement from Nanoparticle Dimers. The Journal of Physical Chemistry C 2016, 120 (3) , 1824-1830. https://doi.org/10.1021/acs.jpcc.5b09396
    33. Sunghee Lee, Soyun Lee, Soojin Hwang, So‐Jung Park. Gold nanoshells with varying morphologies through templated surfactant‐assisted seed‐growth method. Bulletin of the Korean Chemical Society 2024, 30 https://doi.org/10.1002/bkcs.12845
    34. Won‐Geun Kim, Hongyoon Kim, Byoungsu Ko, Nara Jeon, Cherry Park, Jin‐Woo Oh, Junsuk Rho. Freestanding, Freeform Metamolecule Fibers Tailoring Artificial Optical Magnetism. Small 2023, 19 (47) https://doi.org/10.1002/smll.202303749
    35. Yi‐Yu Cai, Yun Chang Choi, Cherie R. Kagan. Chemical and Physical Properties of Photonic Noble‐Metal Nanomaterials. Advanced Materials 2023, 35 (34) https://doi.org/10.1002/adma.202108104
    36. Shiqi Chen, John A. Parker, Curtis W. Peterson, Stuart A. Rice, Norbert F. Scherer, Andrew L. Ferguson. Understanding and design of non-conservative optical matter systems using Markov state models. Molecular Systems Design & Engineering 2022, 7 (10) , 1228-1238. https://doi.org/10.1039/D2ME00087C
    37. E. Deniz Eren, Mohammad-Amin Moradi, Mark M. J. van Rijt, Bernette M. Oosterlaken, Heiner Friedrich, Gijsbertus de With. From binary AB to ternary ABC supraparticles. Materials Horizons 2022, 9 (10) , 2572-2580. https://doi.org/10.1039/D2MH00574C
    38. Rafał Kowerdziej, Antonio Ferraro, Dimitrios C. Zografopoulos, Roberto Caputo. Soft‐Matter‐Based Hybrid and Active Metamaterials. Advanced Optical Materials 2022, 10 (19) https://doi.org/10.1002/adom.202200750
    39. Jing Zhao, Huan Chen, Kun Song, Liqin Xiang, Qian Zhao, Chaohong Shang, Xiaonong Wang, Zhijie Shen, Xianfeng Wu, Yajie Hu, Xiaopeng Zhao. Ultralow loss visible light metamaterials assembled by metaclusters. Nanophotonics 2022, 11 (12) , 2953-2966. https://doi.org/10.1515/nanoph-2022-0171
    40. Sunghee Lee, Kyunjong Sim, So Yoon Moon, Jisu Choi, Yoojung Jeon, Jwa‐Min Nam, So‐Jung Park. Controlled Assembly of Plasmonic Nanoparticles: From Static to Dynamic Nanostructures. Advanced Materials 2021, 33 (46) https://doi.org/10.1002/adma.202007668
    41. Ashod Aradian, Philippe Barois, Olivier Mondain-Monval, Virginie Ponsinet, Alexandre Baron. The Bottom-Up Approach toward Artificial Optical Magnetism in Metastructures. 2021, 3-1-3-28. https://doi.org/10.1063/9780735422902_003
    42. Hiroshi Sugimoto, Minoru Fujii. Colloidal Mie Resonators for All‐Dielectric Metaoptics. Advanced Photonics Research 2021, 2 (4) https://doi.org/10.1002/adpr.202000111
    43. Rachael Taitt, Mathias Urbain, Zacharie Behel, Ana-María Pablo-Sainz-Ezquerra, Iryna Kandybka, Eloïse Millet, Nicolas Martinez-Rodriguez, Christelle Yeromonahos, Sandrine Beauquis, Ronan Le Dantec, Yannick Mugnier, Pierre-François Brevet, Yann Chevolot, Virginie Monnier. Gold-seeded Lithium Niobate Nanoparticles: Influence of Gold Surface Coverage on Second Harmonic Properties. Nanomaterials 2021, 11 (4) , 950. https://doi.org/10.3390/nano11040950
    44. Ke Wang, Seong Hun Park, Jintao Zhu, Jung Kyu Kim, Lianbin Zhang, Gi‐Ra Yi. Self‐Assembled Colloidal Nanopatterns toward Unnatural Optical Meta‐Materials. Advanced Functional Materials 2021, 31 (12) https://doi.org/10.1002/adfm.202008246
    45. Nabila Tanjeem, Cyril Chomette, Nicholas B. Schade, Serge Ravaine, Etienne Duguet, Mona Tréguer-Delapierre, Vinothan N. Manoharan. Polyhedral plasmonic nanoclusters through multi-step colloidal chemistry. Materials Horizons 2021, 8 (2) , 565-570. https://doi.org/10.1039/D0MH01311K
    46. Dawid Lupa, Magdalena Oćwieja, Zbigniew Adamczyk. Hematite/Polystyrene Raspberry‐Like Microcomposites as Stable Support for Silver Nanoparticle Immobilization. Particle & Particle Systems Characterization 2021, 38 (2) https://doi.org/10.1002/ppsc.202000239
    47. Ji‐Hyeok Huh, Kwangjin Kim, Eunji Im, Jaewon Lee, YongDeok Cho, Seungwoo Lee. Exploiting Colloidal Metamaterials for Achieving Unnatural Optical Refractions. Advanced Materials 2020, 32 (51) https://doi.org/10.1002/adma.202001806
    48. Tian-Song Deng, John Parker, Yutaro Hirai, Nolan Shepherd, Hiroshi Yabu, Norbert F. Scherer. Designing “Metamolecules” for Photonic Function: Reduced Backscattering. physica status solidi (b) 2020, 257 (12) https://doi.org/10.1002/pssb.202000169
    49. Alberto Alvarez-Fernandez, Frédéric Nallet, Philippe Fontaine, Cian Cummins, Georges Hadziioannou, Philippe Barois, Guillaume Fleury, Virginie Ponsinet. Large area Al 2 O 3 –Au raspberry-like nanoclusters from iterative block-copolymer self-assembly. RSC Advances 2020, 10 (67) , 41088-41097. https://doi.org/10.1039/D0RA08730K
    50. Jiaqi Zhang, Qi Zhu, Zipeng Xing. Preparation of new materials by ethylene glycol modification and Al(OH)3 coating NZVI to remove sulfides in water. Journal of Hazardous Materials 2020, 390 , 122049. https://doi.org/10.1016/j.jhazmat.2020.122049
    51. Kanako Watanabe, Tom A.J. Welling, Sina Sadighikia, Haruyuki Ishii, Arnout Imhof, Marijn A. van Huis, Alfons van Blaaderen, Daisuke Nagao. Compartmentalization of gold nanoparticle clusters in hollow silica spheres and their assembly induced by an external electric field. Journal of Colloid and Interface Science 2020, 566 , 202-210. https://doi.org/10.1016/j.jcis.2020.01.094
    52. Rfaqat Ali, Felipe A. Pinheiro, Rafael S. Dutra, Felipe S. S. Rosa, Paulo A. Maia Neto. Enantioselective manipulation of single chiral nanoparticles using optical tweezers. Nanoscale 2020, 12 (8) , 5031-5037. https://doi.org/10.1039/C9NR09736H
    53. Chenglin Yi, Yiqun Yang, Ben Liu, Jie He, Zhihong Nie. Polymer-guided assembly of inorganic nanoparticles. Chemical Society Reviews 2020, 49 (2) , 465-508. https://doi.org/10.1039/C9CS00725C
    54. Kay Dietrich, Matthias Zilk, Martin Steglich, Thomas Siefke, Uwe Hübner, Thomas Pertsch, Carsten Rockstuhl, Andreas Tünnermann, Ernst‐Bernhard Kley. Merging Top‐Down and Bottom‐Up Approaches to Fabricate Artificial Photonic Nanomaterials with a Deterministic Electric and Magnetic Response. Advanced Functional Materials 2020, 30 (3) https://doi.org/10.1002/adfm.201905722
    55. Yan Yu, Yujun Xie, Pan Zeng, Dai Zhang, Rongqing Liang, Wenxing Wang, Qiongrong Ou, Shuyu Zhang. Morphology-Tailored Gold Nanoraspberries Based on Seed-Mediated Space-Confined Self-Assembly. Nanomaterials 2019, 9 (9) , 1202. https://doi.org/10.3390/nano9091202
    56. Pengfei Wang, Ji‐Hyeok Huh, Jaewon Lee, Kwangjin Kim, Kyung Jin Park, Seungwoo Lee, Yonggang Ke. Magnetic Plasmon Networks Programmed by Molecular Self‐Assembly. Advanced Materials 2019, 31 (29) https://doi.org/10.1002/adma.201901364
    57. Yutaro Hirai, Hiroshi Yabu. Self-assembled microrings of Au nanoparticle and Au nanorod clusters formed at the equators of Janus particles. RSC Advances 2019, 9 (30) , 17183-17186. https://doi.org/10.1039/C9RA02767J
    58. Ziwei Ye, Chunchun Li, Nathan Skillen, Yikai Xu, Hannah McCabe, Jessica Kelly, Peter Robertson, Steven E.J. Bell. A one-pot method for building colloidal nanoparticles into bulk dry powders with nanoscale magnetic, plasmonic and catalytic functionalities. Applied Materials Today 2019, 15 , 398-404. https://doi.org/10.1016/j.apmt.2019.03.004
    59. Xue Han, Kun Liu, Changsen Sun. Plasmonics for Biosensing. Materials 2019, 12 (9) , 1411. https://doi.org/10.3390/ma12091411
    60. Véronique Many, Romain Dézert, Etienne Duguet, Alexandre Baron, Vikas Jangid, Virginie Ponsinet, Serge Ravaine, Philippe Richetti, Philippe Barois, Mona Tréguer-Delapierre. High optical magnetism of dodecahedral plasmonic meta-atoms. Nanophotonics 2019, 8 (4) , 549-558. https://doi.org/10.1515/nanoph-2018-0175
    61. Elijah Shirman, Tanya Shirman, Anna V. Shneidman, Alison Grinthal, Katherine R. Phillips, Hayley Whelan, Eli Bulger, Marcus Abramovitch, Jatin Patil, Rochelle Nevarez, Joanna Aizenberg. Modular Design of Advanced Catalytic Materials Using Hybrid Organic–Inorganic Raspberry Particles. Advanced Functional Materials 2018, 28 (27) https://doi.org/10.1002/adfm.201704559
    62. Claudio Adrian Ruiz-Torres, René Fernando Araujo-Martínez, Gabriel Alejandro Martínez-Castañón, J. Elpidio Morales-Sánchez, Jesús María Guajardo-Pacheco, Jesús González-Hernández, Tae-Jin Lee, Hyun-Sang Shin, Yuhoon Hwang, Facundo Ruiz. Preparation of air stable nanoscale zero valent iron functionalized by ethylene glycol without inert condition. Chemical Engineering Journal 2018, 336 , 112-122. https://doi.org/10.1016/j.cej.2017.11.047
    63. John Parker, Norbert Scherer, Stephen Gray, , , . Optical magnetism in core-satellite nanostructures excited by vector beams. 2018, 53. https://doi.org/10.1117/12.2290877
    64. Mathias Kolle, Seungwoo Lee. Progress and Opportunities in Soft Photonics and Biologically Inspired Optics. Advanced Materials 2018, 30 (2) https://doi.org/10.1002/adma.201702669
    65. Jinwei Zeng, Mohammad Kamandi, Mahsa Darvishzadeh-Varcheie, Mohammad Albooyeh, Mehdi Veysi, Caner Guclu, Mina Hanifeh, Mohsen Rajaei, Eric O. Potma, H.Kumar Wickramasinghe, Filippo Capolino, , . In pursuit of photo-induced magnetic and chiral microscopy. EPJ Applied Metamaterials 2018, 5 , 7. https://doi.org/10.1051/epjam/2018002
    66. JORGE R. MEJÍA-SALAZAR, SABRINA A. CAMACHO, CARLOS J.L. CONSTANTINO, OSVALDO N. OLIVEIRA JUNIOR. New trends in plasmonic (bio)sensing. Anais da Academia Brasileira de Ciências 2018, 90 (1 suppl 1) , 779-801. https://doi.org/10.1590/0001-3765201820170571
    67. Kyung Jin Park, Ji-Hyeok Huh, Dae-Woong Jung, Jin-Sung Park, Gwan H. Choi, Gaehang Lee, Pil J. Yoo, Hong-Gyu Park, Gi-Ra Yi, Seungwoo Lee. Assembly of “3D” plasmonic clusters by “2D” AFM nanomanipulation of highly uniform and smooth gold nanospheres. Scientific Reports 2017, 7 (1) https://doi.org/10.1038/s41598-017-06456-w
    68. Seunghoon Lee, Younghyun Wy, Young Wook Lee, Kyungrok Ham, Sang Woo Han. Core–Shell Nanoparticle Clusters Enable Synergistic Integration of Plasmonic and Catalytic Functions in a Single Platform. Small 2017, 13 (43) https://doi.org/10.1002/smll.201701633
    69. Seunghoon Lee, Seungwoo Kang, Jaeyoung Kim, Younghyun Wy, Sang Woo Han. Colloidal Clusters of Plasmonic Nanoparticles with Controlled Topological Parameters. ChemNanoMat 2017, 3 (10) , 772-778. https://doi.org/10.1002/cnma.201700152
    70. Andrea D. Merg, Yicheng Zhou, Ashley M. Smith, Jill E. Millstone, Nathaniel L. Rosi. Ligand Exchange for Controlling the Surface Chemistry and Properties of Nanoparticle Superstructures. ChemNanoMat 2017, 3 (10) , 745-749. https://doi.org/10.1002/cnma.201700171
    71. Mahsa Darvishzadeh-Varcheie, Caner Guclu, Filippo Capolino. Magnetic Nanoantennas Made of Plasmonic Nanoclusters for Photoinduced Magnetic Field Enhancement. Physical Review Applied 2017, 8 (2) https://doi.org/10.1103/PhysRevApplied.8.024033
    72. K. V. Baryshnikova, D. S. Filonov, C. R. Simovski, A. B. Evlyukhin, A. S. Shalin. Optimization for spatial separation of optical fields' components in all-dielectric structures. 2017, 2813-2816. https://doi.org/10.1109/PIERS.2017.8262232
    73. A. Le Beulze, S. Gomez-Graña, H. Gehan, S. Mornet, S. Ravaine, M. Correa-Duarte, L. Guerrini, R. A. Alvarez-Puebla, E. Duguet, E. Pertreux, A. Crut, P. Maioli, F. Vallée, N. Del Fatti, O. Ersen, M. Treguer-Delapierre. Robust raspberry-like metallo-dielectric nanoclusters of critical sizes as SERS substrates. Nanoscale 2017, 9 (17) , 5725-5736. https://doi.org/10.1039/C7NR00969K
    74. Ji‐eun Park, Danielle Reifsnyder Hickey, Sangmi Jun, Seulki Kang, Xiaole Hu, Xi‐Jun Chen, So‐Jung Park. Surfactant‐Assisted Emulsion Self‐Assembly of Nanoparticles into Hollow Vesicle‐Like Structures and 2D Plates. Advanced Functional Materials 2016, 26 (43) , 7791-7798. https://doi.org/10.1002/adfm.201603971
    75. Melissa S. Köhn Serrano, Tobias A. F. König, Johannes S. Haataja, Tina I. Löbling, Holger Schmalz, Seema Agarwal, Andreas Fery, Andreas Greiner. Self‐Organization of Gold Nanoparticle Assemblies with 3D Spatial Order and Their External Stimuli Responsiveness. Macromolecular Rapid Communications 2016, 37 (3) , 215-220. https://doi.org/10.1002/marc.201500509
    76. Tuan-Wei Sun, Ying-Jie Zhu, Chao Qi, Guan-Jun Ding, Feng Chen, Jin Wu. α-Fe 2 O 3 nanosheet-assembled hierarchical hollow mesoporous microspheres: Microwave-assisted solvothermal synthesis and application in photocatalysis. Journal of Colloid and Interface Science 2016, 463 , 107-117. https://doi.org/10.1016/j.jcis.2015.10.038
    77. S. Gomez-Graña, A. Le Beulze, M. Treguer-Delapierre, S. Mornet, E. Duguet, E. Grana, E. Cloutet, G. Hadziioannou, J. Leng, J.-B. Salmon, V. G. Kravets, A. N. Grigorenko, N. A. Peyyety, V. Ponsinet, P. Richetti, A. Baron, D. Torrent, P. Barois. Hierarchical self-assembly of a bulk metamaterial enables isotropic magnetic permeability at optical frequencies. Materials Horizons 2016, 3 (6) , 596-601. https://doi.org/10.1039/C6MH00270F
    78. Ruiwei Guo, Xing Chen, Xiaolei Zhu, Anjie Dong, Jianhua Zhang. A facile strategy to fabricate covalently linked raspberry-like nanocomposites with pH and thermo tunable structures. RSC Advances 2016, 6 (47) , 40991-41001. https://doi.org/10.1039/C6RA03965K
    79. V. Ponsinet, P. Barois, S. M. Gali, P. Richetti, J. B. Salmon, A. Vallecchi, M. Albani, A. Le Beulze, S. Gomez-Grana, E. Duguet, S. Mornet, M. Treguer-Delapierre. Resonant isotropic optical magnetism of plasmonic nanoclusters in visible light. Physical Review B 2015, 92 (22) https://doi.org/10.1103/PhysRevB.92.220414
    80. Jake Fontana, Banahalli R. Ratna. Toward high throughput optical metamaterial assemblies. Applied Optics 2015, 54 (31) , F61. https://doi.org/10.1364/AO.54.000F61
    81. Xiaoshuang Shen, Chao Mei, Hui He, Min Zhou, Weiwei Xia, Xianghua Zeng. Spontaneous structure transition in nanoparticle aggregates: from amorphous clusters to super-crystals. CrystEngComm 2015, 17 (25) , 4637-4641. https://doi.org/10.1039/C5CE00896D
    82. Leming Sun, Zhen Fan, Yongzhong Wang, Yujian Huang, Michael Schmidt, Mingjun Zhang. Tunable synthesis of self-assembled cyclic peptide nanotubes and nanoparticles. Soft Matter 2015, 11 (19) , 3822-3832. https://doi.org/10.1039/C5SM00533G
    83. Beibei Gao, Peng Tian, Mingrun Li, Miao Yang, Yuyan Qiao, Linying Wang, Shutao Xu, Zhongmin Liu. In situ growth and assembly of microporous aluminophosphate nanosheets into ordered architectures at low temperature and their enhanced catalytic performance. Journal of Materials Chemistry A 2015, 3 (15) , 7741-7749. https://doi.org/10.1039/C5TA00888C

    ACS Nano

    Cite this: ACS Nano 2015, 9, 2, 1263–1270
    Click to copy citationCitation copied!
    https://doi.org/10.1021/nn5050678
    Published January 26, 2015
    Copyright © 2015 American Chemical Society

    Article Views

    3266

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.