Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Imaging Pancreatic Cancer Using Bioconjugated InP Quantum Dots

View Author Information
Institute for Lasers, Photonics and Biophotonics, University at Buffalo, The State University of New York, Buffalo, New York 14260-4200,
Department of Pathology and Oncology, The Sol Goldman Pancreatic Cancer Research Center CRB-2, Suite 345, Johns Hopkins University School of Medicine, 1550 Orleans Street, Baltimore, Maryland 21231
* Address correspondence to [email protected], [email protected]
Cite this: ACS Nano 2009, 3, 3, 502–510
Publication Date (Web):February 25, 2009
https://doi.org/10.1021/nn8008933
Copyright © 2009 American Chemical Society

    Article Views

    7050

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    Abstract Image

    In this paper, we report the successful use of non-cadmium-based quantum dots (QDs) as highly efficient and nontoxic optical probes for imaging live pancreatic cancer cells. Indium phosphide (core)−zinc sulfide (shell), or InP/ZnS, QDs with high quality and bright luminescence were prepared by a hot colloidal synthesis method in nonaqueous media. The surfaces of these QDs were then functionalized with mercaptosuccinic acid to make them highly dispersible in aqueous media. Further bioconjugation with pancreatic cancer specific monoclonal antibodies, such as anticlaudin 4 and antiprostate stem cell antigen (anti-PSCA), to the functionalized InP/ZnS QDs, allowed specific in vitro targeting of pancreatic cancer cell lines (both immortalized and low passage ones). The receptor-mediated delivery of the bioconjugates was further confirmed by the observation of poor in vitro targeting in nonpancreatic cancer based cell lines which are negative for the claudin-4-receptor. These observations suggest the immense potential of InP/ZnS QDs as non-cadmium-based safe and efficient optical imaging nanoprobes in diagnostic imaging, particularly for early detection of cancer.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Cited By

    This article is cited by 299 publications.

    1. Jayanta Dolai, Reeddhi Ray, Santu Ghosh, Anupam Maity, Nikhil R. Jana. Optical Nanomaterials for Advanced Bioimaging Applications. ACS Applied Optical Materials 2024, 2 (1) , 1-14. https://doi.org/10.1021/acsaom.3c00357
    2. Long Liu, Bing Bai, Xuyong Yang, Zuliang Du, Guohua Jia. Anisotropic Heavy-Metal-Free Semiconductor Nanocrystals: Synthesis, Properties, and Applications. Chemical Reviews 2023, 123 (7) , 3625-3692. https://doi.org/10.1021/acs.chemrev.2c00688
    3. Mertcan Han, Onuralp Karatum, Sedat Nizamoglu. Optoelectronic Neural Interfaces Based on Quantum Dots. ACS Applied Materials & Interfaces 2022, 14 (18) , 20468-20490. https://doi.org/10.1021/acsami.1c25009
    4. Bhaskaran Manoj, Sanoop Mambully Somasundaran, Devika Rajan, Shyamala Thirunavukkuarasu, K. George Thomas. InP-Bovine Serum Albumin Conjugates as Energy Transfer Probes. The Journal of Physical Chemistry B 2022, 126 (14) , 2635-2646. https://doi.org/10.1021/acs.jpcb.1c10134
    5. W. Russ Algar, Melissa Massey, Kelly Rees, Rehan Higgins, Katherine D. Krause, Ghinwa H. Darwish, William J. Peveler, Zhujun Xiao, Hsin-Yun Tsai, Rupsa Gupta, Kelsi Lix, Michael V. Tran, Hyungki Kim. Photoluminescent Nanoparticles for Chemical and Biological Analysis and Imaging. Chemical Reviews 2021, 121 (15) , 9243-9358. https://doi.org/10.1021/acs.chemrev.0c01176
    6. Pin-Ru Chen, Kuo-Yang Lai, Chang-Wei Yeh, Hsueh-Shih Chen. Aminophosphine-Based InP Quantum Dots for the Detection of Zn2+ and Cd2+ Ions in Water. ACS Applied Nano Materials 2021, 4 (4) , 3977-3988. https://doi.org/10.1021/acsanm.1c00336
    7. Fawei Zhu, Jing Wang, Siqi Xie, Yuqiu Zhu, Lumin Wang, Jinju Xu, Sen Liao, Jiwei Ren, Qi Liu, Hua Yang, Xiaoqing Chen. l-Pyroglutamic Acid-Modified CdSe/ZnS Quantum Dots: A New Fluorescence-Responsive Chiral Sensing Platform for Stereospecific Molecular Recognition. Analytical Chemistry 2020, 92 (17) , 12040-12048. https://doi.org/10.1021/acs.analchem.0c02668
    8. Shih-Jung Ho, Hui-Ching Hsu, Chang-Wei Yeh, Hsueh-Shih Chen. Inkjet-Printed Salt-Encapsulated Quantum Dot Film for UV-Based RGB Color-Converted Micro-Light Emitting Diode Displays. ACS Applied Materials & Interfaces 2020, 12 (29) , 33346-33351. https://doi.org/10.1021/acsami.0c05646
    9. Anh T. Nguyen, Feng Gao, Dustin Baucom, Colin D. Heyes. CuInS2-Doped ZnS Quantum Dots Obtained via Non-Injection Cation Exchange Show Reduced but Heterogeneous Blinking and Provide Insights into Their Structure–Optical Property Relationships. The Journal of Physical Chemistry C 2020, 124 (19) , 10744-10754. https://doi.org/10.1021/acs.jpcc.0c01933
    10. Mustafa Caglar, Raj Pandya, James Xiao, Sarah K. Foster, Giorgio Divitini, Richard Y. S. Chen, Neil C. Greenham, Kristian Franze, Akshay Rao, Ulrich F. Keyser. All-Optical Detection of Neuronal Membrane Depolarization in Live Cells Using Colloidal Quantum Dots. Nano Letters 2019, 19 (12) , 8539-8549. https://doi.org/10.1021/acs.nanolett.9b03026
    11. Chayan K. De, Saptarshi Mandal, Debjit Roy, Swarnali Ghosh, Arindam Konar, Prasun K. Mandal. Ultrafast Dynamics and Ultrasensitive Single-Particle Intermittency in Small-Sized Toxic Metal Free InP-Based Core/Alloy-Shell/Shell Quantum Dots: Excitation Wavelength Dependency Toward Variation of PLQY. The Journal of Physical Chemistry C 2019, 123 (46) , 28502-28510. https://doi.org/10.1021/acs.jpcc.9b09947
    12. Nishtha Panwar, Alana Mauluidy Soehartono, Kok Ken Chan, Shuwen Zeng, Gaixia Xu, Junle Qu, Philippe Coquet, Ken-Tye Yong, Xiaoyuan Chen. Nanocarbons for Biology and Medicine: Sensing, Imaging, and Drug Delivery. Chemical Reviews 2019, 119 (16) , 9559-9656. https://doi.org/10.1021/acs.chemrev.9b00099
    13. Chayan K. De, Debjit Roy, Saptarshi Mandal, Prasun K. Mandal. Suppressed Blinking under Normal Air Atmosphere in Toxic-Metal-Free, Small Sized, InP-Based Core/Alloy-Shell/Shell Quantum Dots. The Journal of Physical Chemistry Letters 2019, 10 (15) , 4330-4338. https://doi.org/10.1021/acs.jpclett.9b01157
    14. Indra Narayan Chakraborty, Soumendu Roy, Gayathri Devatha, Anish Rao, Pramod P. Pillai. InP/ZnS Quantum Dots as Efficient Visible-Light Photocatalysts for Redox and Carbon–Carbon Coupling Reactions. Chemistry of Materials 2019, 31 (7) , 2258-2262. https://doi.org/10.1021/acs.chemmater.9b00086
    15. Denise N. Williams, Sunipa Pramanik, Richard P. Brown, Bo Zhi, Eileen McIntire, Natalie V. Hudson-Smith, Christy L. Haynes, Zeev Rosenzweig. Adverse Interactions of Luminescent Semiconductor Quantum Dots with Liposomes and Shewanella oneidensis. ACS Applied Nano Materials 2018, 1 (9) , 4788-4800. https://doi.org/10.1021/acsanm.8b01000
    16. Elizabeth Mariam Thomas, Sushant Ghimire, Reiko Kohara, Ajith Nair Anil, Ken-ichi Yuyama, Yuta Takano, K. George Thomas, Vasudevanpillai Biju. Blinking Suppression in Highly Excited CdSe/ZnS Quantum Dots by Electron Transfer under Large Positive Gibbs (Free) Energy Change. ACS Nano 2018, 12 (9) , 9060-9069. https://doi.org/10.1021/acsnano.8b03010
    17. Shyamala Thirunavukkuarasu, Athira George, Anu Thomas, Anoop Thomas, Vinesh Vijayan, K George Thomas. InP Quantum Dots: Probing the Active Domain of Tau Peptide Using Energy Transfer. The Journal of Physical Chemistry C 2018, 122 (25) , 14168-14176. https://doi.org/10.1021/acs.jpcc.8b01533
    18. Matthew A. Wall, Brandi M. Cossairt, Jonathan T. C. Liu. Reaction-Driven Nucleation Theory. The Journal of Physical Chemistry C 2018, 122 (17) , 9671-9679. https://doi.org/10.1021/acs.jpcc.8b01368
    19. Chayan K. De, Tapan Routh, Debjit Roy, Saptarshi Mandal, and Prasun K. Mandal . Highly Photoluminescent InP Based Core Alloy Shell QDs from Air-Stable Precursors: Excitation Wavelength Dependent Photoluminescence Quantum Yield, Photoluminescence Decay Dynamics, and Single Particle Blinking Dynamics. The Journal of Physical Chemistry C 2018, 122 (1) , 964-973. https://doi.org/10.1021/acs.jpcc.7b11327
    20. Chenghui Xia, Johannes D. Meeldijk, Hans C. Gerritsen, and Celso de Mello Donega . Highly Luminescent Water-Dispersible NIR-Emitting Wurtzite CuInS2/ZnS Core/Shell Colloidal Quantum Dots. Chemistry of Materials 2017, 29 (11) , 4940-4951. https://doi.org/10.1021/acs.chemmater.7b01258
    21. Yi-Zhou Wu, Jie Sun, Yaqin Zhang, Maomao Pu, Gen Zhang, Nongyue He, and Xin Zeng . Effective Integration of Targeted Tumor Imaging and Therapy Using Functionalized InP QDs with VEGFR2 Monoclonal Antibody and miR-92a Inhibitor. ACS Applied Materials & Interfaces 2017, 9 (15) , 13068-13078. https://doi.org/10.1021/acsami.7b02641
    22. Niko Hildebrandt, Christopher M. Spillmann, W. Russ Algar, Thomas Pons, Michael H. Stewart, Eunkeu Oh, Kimihiro Susumu, Sebastian A. Díaz, James B. Delehanty, and Igor L. Medintz . Energy Transfer with Semiconductor Quantum Dot Bioconjugates: A Versatile Platform for Biosensing, Energy Harvesting, and Other Developing Applications. Chemical Reviews 2017, 117 (2) , 536-711. https://doi.org/10.1021/acs.chemrev.6b00030
    23. Gaixia Xu, Shuwen Zeng, Butian Zhang, Mark T. Swihart, Ken-Tye Yong, and Paras N. Prasad . New Generation Cadmium-Free Quantum Dots for Biophotonics and Nanomedicine. Chemical Reviews 2016, 116 (19) , 12234-12327. https://doi.org/10.1021/acs.chemrev.6b00290
    24. Zhi Li, Xuewen He, Xucheng Luo, Li Wang, and Nan Ma . DNA-Programmed Quantum Dot Polymerization for Ultrasensitive Molecular Imaging of Cancer Cells. Analytical Chemistry 2016, 88 (19) , 9355-9358. https://doi.org/10.1021/acs.analchem.6b02864
    25. Guanying Chen, Indrajit Roy, Chunhui Yang, and Paras N. Prasad . Nanochemistry and Nanomedicine for Nanoparticle-based Diagnostics and Therapy. Chemical Reviews 2016, 116 (5) , 2826-2885. https://doi.org/10.1021/acs.chemrev.5b00148
    26. Christopher G. England, Reinier Hernandez, Savo Bou Zein Eddine, and Weibo Cai . Molecular Imaging of Pancreatic Cancer with Antibodies. Molecular Pharmaceutics 2016, 13 (1) , 8-24. https://doi.org/10.1021/acs.molpharmaceut.5b00626
    27. Juan Zhou, Yong Yang, and Chun-yang Zhang . Toward Biocompatible Semiconductor Quantum Dots: From Biosynthesis and Bioconjugation to Biomedical Application. Chemical Reviews 2015, 115 (21) , 11669-11717. https://doi.org/10.1021/acs.chemrev.5b00049
    28. Kun Ge, Cuimiao Zhang, Guang Jia, Huihui Ren, Jianyuan Wang, Aaron Tan, Xing-Jie Liang, Aimin Zang, and Jinchao Zhang . Defect-Related Luminescent Mesoporous Silica Nanoparticles Employed for Novel Detectable Nanocarrier. ACS Applied Materials & Interfaces 2015, 7 (20) , 10905-10914. https://doi.org/10.1021/acsami.5b02146
    29. Po-Hsiang Chuang, Chun Che Lin, and Ru-Shi Liu . Emission-Tunable CuInS2/ZnS Quantum Dots: Structure, Optical Properties, and Application in White Light-Emitting Diodes with High Color Rendering Index. ACS Applied Materials & Interfaces 2014, 6 (17) , 15379-15387. https://doi.org/10.1021/am503889z
    30. Dylan C. Gary, Benjamin A. Glassy, and Brandi M. Cossairt . Investigation of Indium Phosphide Quantum Dot Nucleation and Growth Utilizing Triarylsilylphosphine Precursors. Chemistry of Materials 2014, 26 (4) , 1734-1744. https://doi.org/10.1021/cm500102q
    31. Anoop Thomas, Pratheesh V. Nair, and K. George Thomas . InP Quantum Dots: An Environmentally Friendly Material with Resonance Energy Transfer Requisites. The Journal of Physical Chemistry C 2014, 118 (7) , 3838-3845. https://doi.org/10.1021/jp500125v
    32. Sophie Carenco, David Portehault, Cédric Boissière, Nicolas Mézailles, and Clément Sanchez . Nanoscaled Metal Borides and Phosphides: Recent Developments and Perspectives. Chemical Reviews 2013, 113 (10) , 7981-8065. https://doi.org/10.1021/cr400020d
    33. Altug Ozcelikkale, Soham Ghosh, and Bumsoo Han . Multifaceted Transport Characteristics of Nanomedicine: Needs for Characterization in Dynamic Environment. Molecular Pharmaceutics 2013, 10 (6) , 2111-2126. https://doi.org/10.1021/mp3005947
    34. Yucheng Wang, Rui Hu, Guimiao Lin, Indrajit Roy, and Ken-Tye Yong . Functionalized Quantum Dots for Biosensing and Bioimaging and Concerns on Toxicity. ACS Applied Materials & Interfaces 2013, 5 (8) , 2786-2799. https://doi.org/10.1021/am302030a
    35. Marc-Antoine Langevin, Dany Lachance-Quirion, Anna M. Ritcey, and Claudine Nì. Allen . Size-Dependent Extinction Coefficients and Transition Energies of Near-Infrared β-Ag2Se Colloidal Quantum Dots. The Journal of Physical Chemistry C 2013, 117 (10) , 5424-5428. https://doi.org/10.1021/jp311206e
    36. Kim E. Sapsford, W. Russ Algar, Lorenzo Berti, Kelly Boeneman Gemmill, Brendan J. Casey, Eunkeu Oh, Michael H. Stewart, and Igor L. Medintz . Functionalizing Nanoparticles with Biological Molecules: Developing Chemistries that Facilitate Nanotechnology. Chemical Reviews 2013, 113 (3) , 1904-2074. https://doi.org/10.1021/cr300143v
    37. Peristera Andreakou, Mael Brossard, Chunyong Li, Maria Bernechea, Gerasimos Konstantatos, and Pavlos G. Lagoudakis . Size- and Temperature-Dependent Carrier Dynamics in Oleic Acid Capped PbS Quantum Dots. The Journal of Physical Chemistry C 2013, 117 (4) , 1887-1892. https://doi.org/10.1021/jp3054108
    38. David M. Stewart, Michael G. Mavros, and David A. Micha . Light Absorption by Crystalline and Amorphous Silicon Quantum Dots with Silver Adsorbates and Dopants. The Journal of Physical Chemistry C 2012, 116 (43) , 23107-23112. https://doi.org/10.1021/jp3075805
    39. Evren Mutlugun, Pedro Ludwig Hernandez-Martinez, Cuneyt Eroglu, Yasemin Coskun, Talha Erdem, Vijay K. Sharma, Emre Unal, Subhendu K. Panda, Stephen G. Hickey, Nikolai Gaponik, Alexander Eychmüller, and Hilmi Volkan Demir . Large-Area (over 50 cm × 50 cm) Freestanding Films of Colloidal InP/ZnS Quantum Dots. Nano Letters 2012, 12 (8) , 3986-3993. https://doi.org/10.1021/nl301198k
    40. Matthew Booth, Andrew P. Brown, Stephen D. Evans, and Kevin Critchley . Determining the Concentration of CuInS2 Quantum Dots from the Size-Dependent Molar Extinction Coefficient. Chemistry of Materials 2012, 24 (11) , 2064-2070. https://doi.org/10.1021/cm300227b
    41. Feng Long, Chunmei Gu, April Z. Gu, and Hanchang Shi . Quantum Dot/Carrier–Protein/Haptens Conjugate as a Detection Nanobioprobe for FRET-Based Immunoassay of Small Analytes with All-Fiber Microfluidic Biosensing Platform. Analytical Chemistry 2012, 84 (8) , 3646-3653. https://doi.org/10.1021/ac3000495
    42. Zhen Fan, Melanie Shelton, Anant Kumar Singh, Dulal Senapati, Sadia Afrin Khan, and Paresh Chandra Ray . Multifunctional Plasmonic Shell–Magnetic Core Nanoparticles for Targeted Diagnostics, Isolation, and Photothermal Destruction of Tumor Cells. ACS Nano 2012, 6 (2) , 1065-1073. https://doi.org/10.1021/nn2045246
    43. Jinhao Gao, Kai Chen, Richard Luong, Donna M. Bouley, Hua Mao, Tiecheng Qiao, Sanjiv S. Gambhir, and Zhen Cheng . A Novel Clinically Translatable Fluorescent Nanoparticle for Targeted Molecular Imaging of Tumors in Living Subjects. Nano Letters 2012, 12 (1) , 281-286. https://doi.org/10.1021/nl203526f
    44. Sudarsan Tamang, Grégory Beaune, Isabelle Texier, and Peter Reiss . Aqueous Phase Transfer of InP/ZnS Nanocrystals Conserving Fluorescence and High Colloidal Stability. ACS Nano 2011, 5 (12) , 9392-9402. https://doi.org/10.1021/nn203598c
    45. Graeme J. Stasiuk, Sudarsan Tamang, Daniel Imbert, Cathy Poillot, Marco Giardiello, Céline Tisseyre, Emmanuel L. Barbier, Pascal Henry Fries, Michel de Waard, Peter Reiss, and Marinella Mazzanti . Cell-Permeable Ln(III) Chelate-Functionalized InP Quantum Dots As Multimodal Imaging Agents. ACS Nano 2011, 5 (10) , 8193-8201. https://doi.org/10.1021/nn202839w
    46. Michael G. Mavros, David A. Micha, and Dmitri S. Kilin . Optical Properties of Doped Silicon Quantum Dots with Crystalline and Amorphous Structures. The Journal of Physical Chemistry C 2011, 115 (40) , 19529-19537. https://doi.org/10.1021/jp2055798
    47. Lule Beqa, Zhen Fan, Anant Kumar Singh, Dulal Senapati, and Paresh Chandra Ray . Gold Nano-Popcorn Attached SWCNT Hybrid Nanomaterial for Targeted Diagnosis and Photothermal Therapy of Human Breast Cancer Cells. ACS Applied Materials & Interfaces 2011, 3 (9) , 3316-3324. https://doi.org/10.1021/am2004366
    48. Dongmei Li, Xiaohe Tian, Guiju Hu, Qiong Zhang, Peng Wang, Pingping Sun, Hongping Zhou, Xiangming Meng, Jiaxiang Yang, Jieying Wu, Baokang Jin, Shengyi Zhang, Xutang Tao, and Yupeng Tian . Synthesis, Crystal Structures, Photophysical Properties, and Bioimaging of Living Cells of Bis-β-Diketonate Phenothiazine Ligands and Its Cyclic Dinuclear Complexes. Inorganic Chemistry 2011, 50 (17) , 7997-8006. https://doi.org/10.1021/ic200150h
    49. Shungao Yin, Feng Huang, Jing Zhang, Jinsheng Zheng, and Zhang Lin . The Effects of Particle Concentration and Surface Charge on the Oriented Attachment Growth Kinetics of CdTe Nanocrystals in H2O. The Journal of Physical Chemistry C 2011, 115 (21) , 10357-10364. https://doi.org/10.1021/jp112173u
    50. Kangmin He, Wangxi Luo, Yuliang Zhang, Fei Liu, Da Liu, Li Xu, Lei Qin, Chunyang Xiong, Zhizhen Lu, Xiaohong Fang and Youyi Zhang . Intercellular Transportation of Quantum Dots Mediated by Membrane Nanotubes. ACS Nano 2010, 4 (6) , 3015-3022. https://doi.org/10.1021/nn1002198
    51. Wentong Lu, Sri Ranjini Arumugam, Dulal Senapati, Anant K. Singh, Tahir Arbneshi, Sadia Afrin Khan, Hongtao Yu and Paresh Chandra Ray. Multifunctional Oval-Shaped Gold-Nanoparticle-Based Selective Detection of Breast Cancer Cells Using Simple Colorimetric and Highly Sensitive Two-Photon Scattering Assay. ACS Nano 2010, 4 (3) , 1739-1749. https://doi.org/10.1021/nn901742q
    52. Fang Wu, Sherry A. Wuensch, Mitra Azadniv, Mohammad R. Ebrahimkhani and I. Nicholas Crispe. Galactosylated LDL Nanoparticles: A Novel Targeting Delivery System To Deliver Antigen to Macrophages and Enhance Antigen Specific T Cell Responses. Molecular Pharmaceutics 2009, 6 (5) , 1506-1517. https://doi.org/10.1021/mp900081y
    53. Abdulaziz Anas, Tetsuya Okuda, Nagako Kawashima, Kenichi Nakayama, Tamitake Itoh, Mitsuru Ishikawa and Vasudevanpillai Biju. Clathrin-Mediated Endocytosis of Quantum Dot−Peptide Conjugates in Living Cells. ACS Nano 2009, 3 (8) , 2419-2429. https://doi.org/10.1021/nn900663r
    54. Yanyan Cui, Qianqian Wu, Junzi Li, Yang Gao, Fan Cao, Xuyong Yang, Tingchao He. Spectroscopic properties of yellow and red InP/ZnSe/ZnS quantum dots. Journal of Materials Chemistry C 2024, 12 (18) , 6696-6701. https://doi.org/10.1039/D4TC00925H
    55. Maryam Abbasi, Rukhsanda Aziz, Muhammad Tariq Rafiq, Aziz Ur Rahim Bacha, Zahid Ullah, Abdul Ghaffar, Ghulam Mustafa, Iqra Nabi, Malik Tahir Hayat. Efficient performance of InP and InP/ZnS quantum dots for photocatalytic degradation of toxic aquatic pollutants. Environmental Science and Pollution Research 2024, 31 (13) , 19986-20000. https://doi.org/10.1007/s11356-024-32479-8
    56. Pushpanjali Das, Revati S. Deshmukh. Quantum dots: The trailblazers of early detection. Journal of Oral and Maxillofacial Pathology 2024, 28 (1) , 100-105. https://doi.org/10.4103/jomfp.jomfp_377_23
    57. Kartika Wardhani, Aviva Levina, Georges E. R. Grau, Peter A. Lay. Fluorescent, phosphorescent, magnetic resonance contrast and radioactive tracer labelling of extracellular vesicles. Chemical Society Reviews 2024, 367 https://doi.org/10.1039/D2CS00238H
    58. Vasudevan Pillay R. Remya, Sundararajan Parani, Jose V. Rajendran, Rodney Maluleke, Thabang C. Lebepe, Olanrewaju A. Aladesuyi, Sabu Thomas, Oluwatobi S. Oluwafemi. Fabrication of Epoxy-CuInS-ZnS QDs- nanocomposite for fluorescent, transparent toughened coating applications. Materials Science and Engineering: B 2023, 297 , 116726. https://doi.org/10.1016/j.mseb.2023.116726
    59. Huan Liu, Peixian Chen, Yanyan Cui, Yang Gao, Jiaji Cheng, Tingchao He, Rui Chen. InP Semiconductor Nanocrystals: Synthesis, Optical Properties, and Applications. Advanced Optical Materials 2023, 11 (17) https://doi.org/10.1002/adom.202300425
    60. Fatemeh Davodabadi, Shekoufeh Mirinejad, Sonia Fathi‐Karkan, Mahdi Majidpour, Narges Ajalli, Roghayeh Sheervalilou, Saman Sargazi, Dominika Rozmus, Abbas Rahdar, Ana M. Diez‐Pascual. Aptamer‐functionalized quantum dots as theranostic nanotools against cancer and bacterial infections: A comprehensive overview of recent trends. Biotechnology Progress 2023, 39 (5) https://doi.org/10.1002/btpr.3366
    61. Jeladhara Sobhanan, Jose V. Rival, Abdulaziz Anas, Edakkattuparambil Sidharth Shibu, Yuta Takano, Vasudevanpillai Biju. Luminescent quantum dots: Synthesis, optical properties, bioimaging and toxicity. Advanced Drug Delivery Reviews 2023, 197 , 114830. https://doi.org/10.1016/j.addr.2023.114830
    62. Seungki Shin, Namyoung Gwak, Hyeri Yoo, Hyunwoo Jang, Minwoo Lee, Kyungwan Kang, Seongchan Kim, Sooyeon Yeon, Tae Ann Kim, Sangtae Kim, Gyu Weon Hwang, Nuri Oh. Fluoride-free synthesis strategy for luminescent InP cores and effective shelling processes via combinational precursor chemistry. Chemical Engineering Journal 2023, 466 , 143223. https://doi.org/10.1016/j.cej.2023.143223
    63. Yanbing Lv, Jinjin Fan, Man Zhao, Ruili Wu, Lin Song Li. Recent advances in quantum dot-based fluorescence-linked immunosorbent assays. Nanoscale 2023, 15 (12) , 5560-5578. https://doi.org/10.1039/D2NR07247E
    64. Imen Harabi, Yousaf Hameed Khattak, Safa Jemai, Shafi Ullah, Hanae Toura, Bernabe Mari Soucase. InP/ZnS/ZnS core quantum dots for InP luminescence and photoelectrochemical improvement. Physica B: Condensed Matter 2023, 652 , 414634. https://doi.org/10.1016/j.physb.2023.414634
    65. I. A. Weinstein, S. S. Savchenko. Temperature behavior of the optical spectra of InP/ZnS nanocrystals stabilized by a polyvinylpyrrolidone-based coating. Russian Chemical Bulletin 2023, 72 (2) , 534-545. https://doi.org/10.1007/s11172-023-3817-8
    66. Mary Burkitt-Gray, Marianna Casavola, Pip C. J. Clark, Simon M. Fairclough, Wendy R. Flavell, Roland A. Fleck, Sarah J. Haigh, Jack Chun-Ren Ke, Marina Leontiadou, Edward A. Lewis, Jacek Osiecki, Basma Qazi-Chaudhry, Gema Vizcay-Barrena, Wijittra Wichiansee, Mark Green. Structural investigations into colour-tuneable fluorescent InZnP-based quantum dots from zinc carboxylate and aminophosphine precursors. Nanoscale 2023, 15 (4) , 1763-1774. https://doi.org/10.1039/D2NR02803D
    67. Manuel A. Triana, Rubén J. Camargo, Shin-Tson Wu, Raymond J. Lanzafame, Yajie Dong. Quantum dot materials, devices, and their applications in photomedicine. 2023, 155-200. https://doi.org/10.1016/B978-0-12-820566-2.00005-3
    68. Muhammad Javed Iqbal, Zeeshan Javed, Jesús Herrera-Bravo, Haleema Sadia, Faiza Anum, Shahid Raza, Arifa Tahir, Muhammad Naeem Shahwani, Javad Sharifi-Rad, Daniela Calina, William C. Cho. Biosensing chips for cancer diagnosis and treatment: a new wave towards clinical innovation. Cancer Cell International 2022, 22 (1) https://doi.org/10.1186/s12935-022-02777-7
    69. Xunqiang Cheng, Mingming Liu, Qinggang Zhang, Mengda He, Xinrong Liao, Qun Wan, Wenji Zhan, Long Kong, Liang Li. A Novel Strategy to Enhance the Photostability of InP/ZnSe/ZnS Quantum Dots with Zr Doping. Nanomaterials 2022, 12 (22) , 4044. https://doi.org/10.3390/nano12224044
    70. Zhaochang Wang, Jiawei Ji, Yuhang Guo, Tongtong Tao, Xidong Hu, Yongqing Zhu, Xiaojun Liu, Kun Liu, Yunlong Jiao. Robust air cavity generation on sacrificial microstructures for sustainable underwater drag reduction. Applied Physics Letters 2022, 121 (18) https://doi.org/10.1063/5.0128049
    71. Kyeong-Min Ham, Minhee Kim, Sungje Bock, Jaehi Kim, Wooyeon Kim, Heung Su Jung, Jaehyun An, Hobeom Song, Jung-Won Kim, Hyung-Mo Kim, Won-Yeop Rho, Sang Hun Lee, Seung-min Park, Dong-Eun Kim, Bong-Hyun Jun. Highly Bright Silica-Coated InP/ZnS Quantum Dot-Embedded Silica Nanoparticles as Biocompatible Nanoprobes. International Journal of Molecular Sciences 2022, 23 (18) , 10977. https://doi.org/10.3390/ijms231810977
    72. Jinyu Zhang, Guang Jia, Jianru Wang, Hanxiao Kong, Huilin Li, Cuimiao Zhang. Hollow chain-like SiO2/ZnO nanocomposites: Electrospinning synthesis, defect-related luminescence, and applications for drug delivery. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2022, 647 , 129139. https://doi.org/10.1016/j.colsurfa.2022.129139
    73. Ibrahim Adisa Raufu, Alexandra Moura, Guillaume Vales, Olayiwola Akeem Ahmed, Abdulfatai Aremu, Pierre Thouvenot, Nathalie Tessaud-Rita, Hélène Bracq-Dieye, Ramar Krishnamurthy, Alexandre Leclercq, Marc Lecuit. Listeria ilorinensis sp. nov., isolated from cow milk cheese in Nigeria. International Journal of Systematic and Evolutionary Microbiology 2022, 72 (6) https://doi.org/10.1099/ijsem.0.005437
    74. Houman Bahmani Jalali, Sadra Sadeghi, Itir Bakis Dogru Yuksel, Asim Onal, Sedat Nizamoglu. Past, present and future of indium phosphide quantum dots. Nano Research 2022, 15 (5) , 4468-4489. https://doi.org/10.1007/s12274-021-4038-z
    75. Leilei Zhang, Xing Li, Shaobo Cheng, Chongxin Shan. Microscopic Understanding of the Growth and Structural Evolution of Narrow Bandgap III–V Nanostructures. Materials 2022, 15 (5) , 1917. https://doi.org/10.3390/ma15051917
    76. Santosh Podder. Fluorescent Quantum Dots, A Technological Marvel for Optical Bio-imaging: A Perspective on Associated In Vivo Toxicity. 2022, 143-163. https://doi.org/10.1007/978-981-19-3144-4_8
    77. Deepshikha Shahdeo, Sonu Gandhi. Next generation biosensors as a cancer diagnostic tool. 2022, 179-196. https://doi.org/10.1016/B978-0-12-823424-2.00016-8
    78. T.K. Krishnapriya, M.K. Jayaraj, A.S. Asha. Luminescent nanoparticles for bio-imaging application. 2022, 107-128. https://doi.org/10.1016/B978-0-12-824008-3.00006-0
    79. Taha Roodbar Shojaei, Soroush Soltani, Mohammad Derakhshani. Synthesis, properties, and biomedical applications of inorganic bionanomaterials. 2022, 139-174. https://doi.org/10.1016/B978-0-12-824147-9.00006-6
    80. Sudabe Mandani, Behzad Rezaei, Ali Asghar Ensafi. Developing a highly-sensitive aptasensor based on surface energy transfer between InP/ZnS quantum dots and Ag-nanoplates for the determination of insulin. Journal of Photochemistry and Photobiology A: Chemistry 2022, 423 , 113601. https://doi.org/10.1016/j.jphotochem.2021.113601
    81. Yang Liu, Yinghui Wang, Shuyan Song, Hongjie Zhang. Tumor Diagnosis and Therapy Mediated by Metal Phosphorus‐Based Nanomaterials. Advanced Materials 2021, 33 (49) https://doi.org/10.1002/adma.202103936
    82. Gokul Paramasivam, Vishnu Vardhan Palem, Thanigaivel Sundaram, Vickram Sundaram, Somasundaram Chandra Kishore, Stefano Bellucci. Nanomaterials: Synthesis and Applications in Theranostics. Nanomaterials 2021, 11 (12) , 3228. https://doi.org/10.3390/nano11123228
    83. Zeineb Ayed, Shiana Malhotra, Garima Dobhal, Renee V. Goreham. Aptamer Conjugated Indium Phosphide Quantum Dots with a Zinc Sulphide Shell as Photoluminescent Labels for Acinetobacter baumannii. Nanomaterials 2021, 11 (12) , 3317. https://doi.org/10.3390/nano11123317
    84. Zhengyan Liang, Muhammad Babar Khawar, Jingyan Liang, Haibo Sun. Bio-Conjugated Quantum Dots for Cancer Research: Detection and Imaging. Frontiers in Oncology 2021, 11 https://doi.org/10.3389/fonc.2021.749970
    85. Ahmed A. H. Abdellatif, Hamdoon A. Mohammed, Riaz A. Khan, Varsha Singh, Abdellatif Bouazzaoui, Mohammad Yusuf, Naseem Akhtar, Maria Khan, Amal Al-Subaiyel, Salman A. A. Mohammed, Mohsen S. Al-Omar. Nano-scale delivery: A comprehensive review of nano-structured devices, preparative techniques, site-specificity designs, biomedical applications, commercial products, and references to safety, cellular uptake, and organ toxicity. Nanotechnology Reviews 2021, 10 (1) , 1493-1559. https://doi.org/10.1515/ntrev-2021-0096
    86. Sanni M. A. Färkkilä, E. Toby Kiers, Raivo Jaaniso, Uno Mäeorg, Roger M. Leblanc, Kathleen K. Treseder, Zhenhui Kang, Leho Tedersoo. Fluorescent nanoparticles as tools in ecology and physiology. Biological Reviews 2021, 96 (5) , 2392-2424. https://doi.org/10.1111/brv.12758
    87. Zan Li, Jiao Lu, Qing Pang, Jinmao You. Construction of a near-infrared fluorescent probe for ratiometric imaging of peroxynitrite during tumor progression. The Analyst 2021, 146 (16) , 5204-5211. https://doi.org/10.1039/D1AN00980J
    88. Forrest W. Eagle, Ricardo A. Rivera-Maldonado, Brandi M. Cossairt. Surface Chemistry of Metal Phosphide Nanocrystals. Annual Review of Materials Research 2021, 51 (1) , 541-564. https://doi.org/10.1146/annurev-matsci-080819-011036
    89. Rafal J. Wiglusz. Nanostructural Materials with Rare Earth Ions: Synthesis, Physicochemical Characterization, Modification and Applications. Nanomaterials 2021, 11 (7) , 1848. https://doi.org/10.3390/nano11071848
    90. Onuralp Karatum, Mohammad Mohammadi Aria, Guncem Ozgun Eren, Erdost Yildiz, Rustamzhon Melikov, Shashi Bhushan Srivastava, Saliha Surme, Itir Bakis Dogru, Houman Bahmani Jalali, Burak Ulgut, Afsun Sahin, Ibrahim Halil Kavakli, Sedat Nizamoglu. Nanoengineering InP Quantum Dot-Based Photoactive Biointerfaces for Optical Control of Neurons. Frontiers in Neuroscience 2021, 15 https://doi.org/10.3389/fnins.2021.652608
    91. Xi Hu, Fan Xia, Jiyoung Lee, Fangyuan Li, Xiaoyang Lu, Xiaozhen Zhuo, Guangjun Nie, Daishun Ling. Tailor‐Made Nanomaterials for Diagnosis and Therapy of Pancreatic Ductal Adenocarcinoma. Advanced Science 2021, 8 (7) https://doi.org/10.1002/advs.202002545
    92. Indra Narayan Chakraborty, Pradyut Roy, Anish Rao, Gayathri Devatha, Soumendu Roy, Pramod P. Pillai. The unconventional role of surface ligands in dictating the light harvesting properties of quantum dots. Journal of Materials Chemistry A 2021, 9 (12) , 7422-7457. https://doi.org/10.1039/D0TA12623C
    93. Hanieh Montaseri, Cherie Ann Kruger, Heidi Abrahamse. Inorganic Nanoparticles Applied for Active Targeted Photodynamic Therapy of Breast Cancer. Pharmaceutics 2021, 13 (3) , 296. https://doi.org/10.3390/pharmaceutics13030296
    94. Aylin M. Deliormanlı, Sibel Oguzlar, Kadriye Ertekin. Photoluminescence and decay characteristics of cerium, gallium and vanadium - containing borate-based bioactive glass powders for bioimaging applications. Ceramics International 2021, 47 (3) , 3797-3807. https://doi.org/10.1016/j.ceramint.2020.09.237
    95. Baskaran Purushothaman, Joon Myong Song. Ag 2 S quantum dot theragnostics. Biomaterials Science 2021, 9 (1) , 51-69. https://doi.org/10.1039/D0BM01576H
    96. Sumit Kumar, Pooja Kumari, Gaurav Rathee, Brijesh Rathi. Nanomaterials for Early Cancer Diagnostics. 2021, 97-114. https://doi.org/10.1007/978-981-15-7564-8_5
    97. G. Kedarnath. Synthesis and Applications of Colloidal Nanomaterials of Main Group- and Transition- Metal Phosphides. 2021, 461-536. https://doi.org/10.1007/978-981-16-1892-5_12
    98. Akanksha Malaiya, Dolly Jain, Awesh K. Yadav. Nanoparticles and pancreas cancer. 2021, 145-164. https://doi.org/10.1016/B978-0-12-819793-6.00007-2
    99. Maxime Munch, Benjamin H. Rotstein, Gilles Ulrich. Fluorine-18-Labeled Fluorescent Dyes for Dual-Mode Molecular Imaging. Molecules 2020, 25 (24) , 6042. https://doi.org/10.3390/molecules25246042
    100. Kang Rui Garrick Lim, Daryl Darwan, Hadhi Wijaya, Zhi Chiaw Lim, Janaki Shanmugam, Tian Wang, Li Jun Lim, Wee Han Ang, Zhi‐Kuang Tan. High Quantum Yield Water‐Dispersed Near‐Infrared In(Zn)As–In(Zn)P–GaP–ZnS Quantum Dots with Robust Stability for Bioimaging. Advanced Materials Interfaces 2020, 7 (22) https://doi.org/10.1002/admi.202000920
    Load more citations