ACS Publications. Most Trusted. Most Cited. Most Read
P-Glycoprotein Antibody Functionalized Carbon Nanotube Overcomes the Multidrug Resistance of Human Leukemia Cells
My Activity
    Article

    P-Glycoprotein Antibody Functionalized Carbon Nanotube Overcomes the Multidrug Resistance of Human Leukemia Cells
    Click to copy article linkArticle link copied!

    View Author Information
    National Chromatographic R&A Center, CAS Key Laboratory of Separation Sciences for Analytical Chemistry
    Laboratory of Pharmaceutical Resource Discovery, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China
    * Address correspondence to [email protected], [email protected]
    Other Access OptionsSupporting Information (1)

    ACS Nano

    Cite this: ACS Nano 2010, 4, 3, 1399–1408
    Click to copy citationCitation copied!
    https://doi.org/10.1021/nn9011225
    Published February 11, 2010
    Copyright © 2010 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Multidrug resistance (MDR), which is related to cancer chemotherapy, tumor stem cells, and tumor metastasis, is a huge obstacle for the effective cancer therapy. One of the underlying mechanisms of MDR is the increased efflux of anticancer drugs by overexpressed P-glycoprotein (P-gp) of multidrug resistant cells. In this work, the antibody of P-gp (anti-P-gp) functionalized water-soluble single-walled carbon nanotubes (Ap-SWNTs) loaded with doxorubicin (Dox), Dox/Ap-SWNTs, were synthesized for challenging the MDR of K562 human leukemia cells. The resulting Ap-SWNTs could not only specifically recognize the multidrug resistant human leukemia cells (K562R), but also demonstrate the effective loading and controllable release performance for Dox toward the target K562R cells by exposing to near-infrared radiation (NIR). The recognition capability of Ap-SWNTs toward the K562R cells was confirmed by flow cytometry (FCM) and confocal laser scanning microscopy (CLSM). The binding affinity of Ap-SWNTs toward drug-resistant K562R cells was ca. 23-fold higher than that toward drug-sensitive K562S cells. Additionally, CLSM indicated that Ap-SWNTs could specifically localize on the cell membrane of K562R cells and the fluorescence of Dox in K562R cells could be significantly enhanced after the employment of Ap-SWNTs as carrier. Moreover, the composite of Dox and Ap-SWNTs (Dox/Ap-SWNTs) expressed 2.4-fold higher cytotoxicity and showed the significant cell proliferation suppression toward K562R leukemia cells (p < 0.05) as compared with free Dox which is popularly employed in clinic trials. These results suggest that the Ap-SWNTs are the promising drug delivery vehicle for overcoming the MDR induced by the overexpression of P-gp on cell membrane. Ap-SWNTs loaded with drug molecules could be used to suppress the proliferation of multidrug resistant cells, destroy the tumor stem cells, and inhibit the metastasis of tumor.

    Copyright © 2010 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    TEM images for Ap-SWNTs, the optimization of near-infrared radiation exposure, the targeting capability tests of anti-P-gp and Ap-SWNTs on flow cytometry, bright field and single channel images on confocal microscopy, results of the intracellular uptake pathway of Ap-SWNTs, detection of Dox in K562R cells on capillary electrophoresis, apoptosis assay, and the images of cell samples stained by DAPI. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 213 publications.

    1. Charles L. Brito, João V. Silva, Rodrigo V. Gonzaga, Mauro A. La-Scalea, Jeanine Giarolla, Elizabeth I. Ferreira. A Review on Carbon Nanotubes Family of Nanomaterials and Their Health Field. ACS Omega 2024, 9 (8) , 8687-8708. https://doi.org/10.1021/acsomega.3c08824
    2. Ruibin Li, Linda M. Guiney, Chong Hyun Chang, Nikhita D. Mansukhani, Zhaoxia Ji, Xiang Wang, Yu-Pei Liao, Wen Jiang, Bingbing Sun, Mark C. Hersam, Andre E. Nel, and Tian Xia . Surface Oxidation of Graphene Oxide Determines Membrane Damage, Lipid Peroxidation, and Cytotoxicity in Macrophages in a Pulmonary Toxicity Model. ACS Nano 2018, 12 (2) , 1390-1402. https://doi.org/10.1021/acsnano.7b07737
    3. Irina Y. Zhitnyak, Igor N. Bychkov, Irina V. Sukhorukova, Andrey M. Kovalskii, Konstantin L. Firestein, Dmitri Golberg, Natalya A. Gloushankova, and Dmitry V. Shtansky . Effect of BN Nanoparticles Loaded with Doxorubicin on Tumor Cells with Multiple Drug Resistance. ACS Applied Materials & Interfaces 2017, 9 (38) , 32498-32508. https://doi.org/10.1021/acsami.7b08713
    4. Jinglong Tang, Huige Zhou, Jiaming Liu, Jing Liu, Wanqi Li, Yuqing Wang, Fan Hu, Qing Huo, Jiayang Li, Ying Liu, and Chunying Chen . Dual-Mode Imaging-Guided Synergistic Chemo- and Magnetohyperthermia Therapy in a Versatile Nanoplatform To Eliminate Cancer Stem Cells. ACS Applied Materials & Interfaces 2017, 9 (28) , 23497-23507. https://doi.org/10.1021/acsami.7b06393
    5. Hongzhang Deng, Kun Song, Xuefei Zhao, Yanan Li, Fei Wang, Jianhua Zhang, Anjie Dong, and Zhihai Qin . Tumor Microenvironment Activated Membrane Fusogenic Liposome with Speedy Antibody and Doxorubicin Delivery for Synergistic Treatment of Metastatic Tumors. ACS Applied Materials & Interfaces 2017, 9 (11) , 9315-9326. https://doi.org/10.1021/acsami.6b14683
    6. Tomasz Panczyk, Lukasz Konczak, Jolanta Narkiewicz-Michalek, and Giorgia Pastorin . Corking and Uncorking Carbon Nanotubes by Metal Nanoparticles Bearing pH-Cleavable Hydrazone Linkers. Theoretical Analysis Based on Molecular Dynamics Simulations. The Journal of Physical Chemistry C 2016, 120 (1) , 639-649. https://doi.org/10.1021/acs.jpcc.5b08383
    7. Liping Qiu, Tao Chen, Ismail Öçsoy, Emir Yasun, Cuichen Wu, Guizhi Zhu, Mingxu You, Da Han, Jianhui Jiang, Ruqin Yu, and Weihong Tan . A Cell-Targeted, Size-Photocontrollable, Nuclear-Uptake Nanodrug Delivery System for Drug-Resistant Cancer Therapy. Nano Letters 2015, 15 (1) , 457-463. https://doi.org/10.1021/nl503777s
    8. Yu Chen, Hangrong Chen, and Jianlin Shi . Inorganic Nanoparticle-Based Drug Codelivery Nanosystems To Overcome the Multidrug Resistance of Cancer Cells. Molecular Pharmaceutics 2014, 11 (8) , 2495-2510. https://doi.org/10.1021/mp400596v
    9. Yeon Kyung Lee, Jungil Choi, Wenping Wang, Soyoung Lee, Tae-Hyun Nam, Wan Sung Choi, Chang-Joon Kim, Jong Kwon Lee, Sang-Hyun Kim, Sang Soo Kang, and Dongwoo Khang . Nullifying Tumor Efflux by Prolonged Endolysosome Vesicles: Development of Low Dose Anticancer-Carbon Nanotube Drug. ACS Nano 2013, 7 (10) , 8484-8497. https://doi.org/10.1021/nn4041206
    10. Peng Liu . Modification Strategies for Carbon Nanotubes as a Drug Delivery System. Industrial & Engineering Chemistry Research 2013, 52 (38) , 13517-13527. https://doi.org/10.1021/ie402360f
    11. Yi Zhang, Zhengyan Hu, Hongqiang Qin, Fangjie Liu, Kai Cheng, Ren’an Wu, and Hanfa Zou . Cell Nucleus Targeting for Living Cell Extraction of Nucleic Acid Associated Proteins with Intracellular Nanoprobes of Magnetic Carbon Nanotubes. Analytical Chemistry 2013, 85 (15) , 7038-7043. https://doi.org/10.1021/ac401269g
    12. Elena Heister, Eric W. Brunner, Gregg R. Dieckmann, Izabela Jurewicz, and Alan B. Dalton . Are Carbon Nanotubes a Natural Solution? Applications in Biology and Medicine. ACS Applied Materials & Interfaces 2013, 5 (6) , 1870-1891. https://doi.org/10.1021/am302902d
    13. Ruibin Li, Xiang Wang, Zhaoxia Ji, Bingbing Sun, Haiyuan Zhang, Chong Hyun Chang, Sijie Lin, Huan Meng, Yu-Pei Liao, Meiying Wang, Zongxi Li, Angela A. Hwang, Tze-Bin Song, Run Xu, Yang Yang, Jeffrey I. Zink, André E. Nel, and Tian Xia . Surface Charge and Cellular Processing of Covalently Functionalized Multiwall Carbon Nanotubes Determine Pulmonary Toxicity. ACS Nano 2013, 7 (3) , 2352-2368. https://doi.org/10.1021/nn305567s
    14. Xiang Wang, Tian Xia, Matthew C. Duch, Zhaoxia Ji, Haiyuan Zhang, Ruibin Li, Bingbing Sun, Sijie Lin, Huan Meng, Yu-Pei Liao, Meiying Wang, Tze-Bin Song, Yang Yang, Mark C. Hersam, and André E. Nel . Pluronic F108 Coating Decreases the Lung Fibrosis Potential of Multiwall Carbon Nanotubes by Reducing Lysosomal Injury. Nano Letters 2012, 12 (6) , 3050-3061. https://doi.org/10.1021/nl300895y
    15. Brian D. Holt, Kris Noel Dahl, and Mohammad F. Islam . Cells Take up and Recover from Protein-Stabilized Single-Wall Carbon Nanotubes with Two Distinct Rates. ACS Nano 2012, 6 (4) , 3481-3490. https://doi.org/10.1021/nn300504x
    16. Yu Gao, Yu Chen, Xiufeng Ji, Xinyu He, Qi Yin, Zhiwen Zhang, Jianlin Shi, and Yaping Li . Controlled Intracellular Release of Doxorubicin in Multidrug-Resistant Cancer Cells by Tuning the Shell-Pore Sizes of Mesoporous Silica Nanoparticles. ACS Nano 2011, 5 (12) , 9788-9798. https://doi.org/10.1021/nn2033105
    17. Feng Wang, Yu-Cai Wang, Shuang Dou, Meng-Hua Xiong, Tian-Meng Sun, and Jun Wang . Doxorubicin-Tethered Responsive Gold Nanoparticles Facilitate Intracellular Drug Delivery for Overcoming Multidrug Resistance in Cancer Cells. ACS Nano 2011, 5 (5) , 3679-3692. https://doi.org/10.1021/nn200007z
    18. Bahareh Kargar, Mehdi Fazeli, Zahra Sobhani, Saeid Hosseinzadeh, Aida Solhjoo, Amin Reza Akbarizadeh. Exploration of the photothermal role of curcumin-loaded targeted carbon nanotubes as a potential therapy for melanoma cancer. Scientific Reports 2024, 14 (1) https://doi.org/10.1038/s41598-024-57612-y
    19. Muhammad Ammar Amanat, Anum Farrukh, Muhammad Umer Bin Muhammad Ishaq, Binyameen Bin Shafqat, Saqib Hussain Haidri, Rehab Amin, Rafia Sameen, Tahira Kamal, Muhammad Naeem Riaz, Waleed Quresh, Rabia Ikram, Ghulam Muhammad Ali, Sania Begum, Sajid Ali Khan Bangash, Imdad Kaleem, Shahid Bashir, Sahir Hameed Khattak. The Potential of Nanotechnology to Replace Cancer Stem Cells. Current Stem Cell Research & Therapy 2024, 19 (6) , 820-831. https://doi.org/10.2174/1574888X18666230601140700
    20. Julia Lemos de Oliveira, Maria Eduarda Xavier da Silva, Dachamir Hotza, Claudia Sayer, Ana Paula Serafini Immich. Drug delivery systems for tissue engineering: exploring novel strategies for enhanced regeneration. Journal of Nanoparticle Research 2024, 26 (7) https://doi.org/10.1007/s11051-024-06074-4
    21. Yuanyuan Liu, Shanwu Yu, Yixiang Chen, Zhihong Hu, Lingling Fan, Gaofeng Liang. The clinical regimens and cell membrane camouflaged nanodrug delivery systems in hematologic malignancies treatment. Frontiers in Pharmacology 2024, 15 https://doi.org/10.3389/fphar.2024.1376955
    22. Jinxin Li, Qiwei Wang, Yingli Han, Lingli Jiang, Siqi Lu, Beini Wang, Wenchang Qian, Meng Zhu, He Huang, Pengxu Qian. Development and application of nanomaterials, nanotechnology and nanomedicine for treating hematological malignancies. Journal of Hematology & Oncology 2023, 16 (1) https://doi.org/10.1186/s13045-023-01460-2
    23. HeeBong Yang, Luke Neal, Elijah Earl Flores, Alex Adronov, Na Young Kim. Role and impact of surfactants in carbon nanotube dispersions and sorting. Journal of Surfactants and Detergents 2023, 26 (5) , 607-622. https://doi.org/10.1002/jsde.12702
    24. Gulmi Chakraborty, Minakshi Meher, Sanjay Dash, Rudra Narayan Rout, Sibananda Pradhan, Dipanjali Sahoo. Strategies for Targeted Delivery via Structurally Variant Polymeric Nanocarriers. ChemistrySelect 2023, 8 (29) https://doi.org/10.1002/slct.202301626
    25. Abbad Al Baroot, Khaled A. Elsayed, Firdos Alam Khan, Shamsuddeen A. Haladu, Filiz Ercan, Emre Çevik, Q. A. Drmosh, M. A. Almessiere. Anticancer Activity of Au/CNT Nanocomposite Fabricated by Nanosecond Pulsed Laser Ablation Method on Colon and Cervical Cancer. Micromachines 2023, 14 (7) , 1455. https://doi.org/10.3390/mi14071455
    26. Moreshwar P. Patil, Lalita S. Nemade. Nanoarchitectured Materials. 2023, 1-27. https://doi.org/10.1002/9781394167708.ch1
    27. Komal Iranna Savadatti, Asha Puthuvilayil Johnson, Hosahalli Veerabhadrappa Gangadharappa. Functionalized Carbon Nanotube for Various Disease Treatment. 2023, 125-165. https://doi.org/10.1007/978-981-99-2119-5_6
    28. Mafalda R. Almeida, Rita A.M. Barros, Matheus M. Pereira, Daniel Castro, Joaquim L. Faria, Mara G. Freire, Cláudia G. Silva, Ana P.M. Tavares. Multi-walled carbon nanotubes as a platform for Immunoglobulin G attachment. Chemical Engineering and Processing - Process Intensification 2023, 183 , 109214. https://doi.org/10.1016/j.cep.2022.109214
    29. Neha Kaushik, Shweta B. Borkar, Sondavid K. Nandanwar, Pritam Kumar Panda, Eun Ha Choi, Nagendra Kumar Kaushik. Nanocarrier cancer therapeutics with functional stimuli-responsive mechanisms. Journal of Nanobiotechnology 2022, 20 (1) https://doi.org/10.1186/s12951-022-01364-2
    30. Priya Yadav, Suresh V. Ambudkar, N. Rajendra Prasad. Emerging nanotechnology-based therapeutics to combat multidrug-resistant cancer. Journal of Nanobiotechnology 2022, 20 (1) https://doi.org/10.1186/s12951-022-01626-z
    31. Aritra Kumar Dan, Bari Aamna, Soumik De, Miguel Pereira-Silva, Raghaba Sahu, Ana Cláudia Paiva-Santos, Sagarika Parida. Sericin nanoparticles: Future nanocarrier for target-specific delivery of chemotherapeutic drugs. Journal of Molecular Liquids 2022, 368 , 120717. https://doi.org/10.1016/j.molliq.2022.120717
    32. Hareem Fatima, Muhammad Yasin Naz, Shazia Shukrullah, Hira Aslam, Sami Ullah, Mohammed Ali Assiri. A Review of Multifunction Smart Nanoparticle based Drug Delivery Systems. Current Pharmaceutical Design 2022, 28 (36) , 2965-2983. https://doi.org/10.2174/1381612828666220422085702
    33. Aparna Shukla, Pralay Maiti. Nanomedicine and versatile therapies for cancer treatment. MedComm 2022, 3 (3) https://doi.org/10.1002/mco2.163
    34. Abdulsalam A. Alqahtani, Hira Aslam, Shazia Shukrullah, Hareem Fatima, Muhammad Yasin Naz, Saifur Rahman, Mater H. Mahnashi, Muhammad Irfan. Nanocarriers for Smart Therapeutic Strategies to Treat Drug-Resistant Tumors: A Review. ASSAY and Drug Development Technologies 2022, 20 (5) , 191-210. https://doi.org/10.1089/adt.2022.025
    35. K. Tapasya K. Tapasya, Ashmitha Suresh Kumar, Arunasalam Dharmarajan, Venkatachalam Deepa Parvathi. Nanocarriers: The Promising Future to Cancer Diagnostics and Treatment. Biomedical and Pharmacology Journal 2022, 15 (2) , 785-802. https://doi.org/10.13005/bpj/2416
    36. Meng Cheng, Hongjing Dou. Nano‐assemblies based on biomacromolecules to overcome cancer drug resistance. Polymer International 2022, 71 (4) , 371-378. https://doi.org/10.1002/pi.6310
    37. Tianyuan Ci, Wentao Zhang, Yingyu Qiao, Huangjuan Li, Jing Zang, Hongjun Li, Nianping Feng, Zhen Gu. Delivery strategies in treatments of leukemia. Chemical Society Reviews 2022, 51 (6) , 2121-2144. https://doi.org/10.1039/D1CS00755F
    38. Jefferson Hollanda Véras, Clever Gomes Cardoso, Sara Cristina Puga, Abel Vieira de Melo Bisneto, Renato Rodrigues Roma, Romerio Rodrigues Santos Silva, Claudener Souza Teixeira, Lee Chen-Chen. Lactose-binding lectin from Vatairea macrocarpa seeds induces in vivo angiogenesis via VEGF and TNF-ɑ expression and modulates in vitro doxorubicin-induced genotoxicity. Biochimie 2022, 194 , 55-66. https://doi.org/10.1016/j.biochi.2021.12.011
    39. Ammu V. V. V. Ravi Kiran, Garikapati Kusuma Kumari, Praveen T. Krishnamurthy, Pavan Kumar Chintamaneni, Sai Kiran S. S. Pindiprolu. Carbon Nanotubes in Cancer Therapy. 2022, 1739-1771. https://doi.org/10.1007/978-3-030-91346-5_42
    40. Islam A. Hassanin, Ahmed N. Shama, Ahmed O. Elzoghby. Overcoming cancer drug resistance via nanomedicine-based combined drug delivery. 2022, 3-29. https://doi.org/10.1016/B978-0-323-85873-1.00011-3
    41. Shabana Yasmeen Ansari, Shoaib Anwar Ansari, Farhan Alshammari, Sirajudheen Anwar. CNT-Based Nano Medicine From Synthesis to Therapeutic Application. 2022, 175-211. https://doi.org/10.4018/978-1-7998-8251-0.ch006
    42. Muthu Thiruvengadam, Govindasamy Rajakumar, Venkata Swetha, Mohammad Ansari, Saad Alghamdi, Mazen Almehmadi, Mustafa Halawi, Lakshmanan Kungumadevi, Vaishnavi Raja, Sulthana Sabura Sarbudeen, Saranya Madhavan, Maksim Rebezov, Mohammad Ali Shariati, Alexandr Sviderskiy, Konstantin Bogonosov. Recent Insights and Multifactorial Applications of Carbon Nanotubes. Micromachines 2021, 12 (12) , 1502. https://doi.org/10.3390/mi12121502
    43. Pooja Jain, Himanshu Kathuria, Munira Momin. Clinical therapies and nano drug delivery systems for urinary bladder cancer. Pharmacology & Therapeutics 2021, 226 , 107871. https://doi.org/10.1016/j.pharmthera.2021.107871
    44. Hassan Arkaban, Ahmad Khajeh Ebrahimi, Ali Yarahmadi, Payam Zarrintaj, Mahmood Barani. Development of a multifunctional system based on CoFe 2 O 4 @polyacrylic acid NPs conjugated to folic acid and loaded with doxorubicin for cancer theranostics. Nanotechnology 2021, 32 (30) , 305101. https://doi.org/10.1088/1361-6528/abf878
    45. Xiangli Li, Yiming He, Lin Yang, Zhimei He, Jun-Jie Zhu. Gene/drug-embedded nanoscale metal azolate framework-7 for the reversal of P-glycoprotein-mediated multidrug resistance. Chemical Communications 2021, 57 (55) , 6776-6779. https://doi.org/10.1039/D1CC02463A
    46. Shangui Liu, Abdur Rauf Khan, Xiaoye Yang, Bo Dong, Jianbo Ji, Guangxi Zhai. The reversal of chemotherapy-induced multidrug resistance by nanomedicine for cancer therapy. Journal of Controlled Release 2021, 335 , 1-20. https://doi.org/10.1016/j.jconrel.2021.05.012
    47. Amy Chall, John Stagg, Andrew Mixson, Eric Gato, Rafael L Quirino, Vinoth Sittaramane. Ablation of cells in mice using antibody-functionalized multiwalled carbon nanotubes (Ab-MWCNTs) in combination with microwaves. Nanotechnology 2021, 32 (19) , 195102. https://doi.org/10.1088/1361-6528/abe32a
    48. Gabriel Luta, Mihail Butura, Adrian Tiron, Crina E. Tiron. Enhancing Anti-Tumoral Potential of CD-NHF by Modulating PI3K/Akt Axis in U87 Ex Vivo Glioma Model. International Journal of Molecular Sciences 2021, 22 (8) , 3873. https://doi.org/10.3390/ijms22083873
    49. Alok Mahor, Prem Prakash Singh, Peeyush Bharadwaj, Neeraj Sharma, Surabhi Yadav, Jessica M. Rosenholm, Kuldeep K. Bansal. Carbon-Based Nanomaterials for Delivery of Biologicals and Therapeutics: A Cutting-Edge Technology. C 2021, 7 (1) , 19. https://doi.org/10.3390/c7010019
    50. Xin-Cheng Zhong, Ming-Han Shi, Hui-Na Liu, Jie-Jian Chen, Tian-Tian Wang, Meng-Ting Lin, Zhen-Tao Zhang, Yi Zhou, Yi-Ying Lu, Wen-Hong Xu, Jian-Qing Gao, Dong-Hang Xu, Min Han, Yi-Ding Chen. Mitochondrial targeted doxorubicin derivatives delivered by ROS-responsive nanocarriers to breast tumor for overcoming of multidrug resistance. Pharmaceutical Development and Technology 2021, 26 (1) , 21-29. https://doi.org/10.1080/10837450.2020.1832116
    51. Mohammad Mohajeri, Behzad Behnam, Aida Tasbandi, Tannaz Jamialahmadi, Amirhossein Sahebkar. Carbon-based Nanomaterials and Curcumin: A Review of Biosensing Applications. 2021, 55-74. https://doi.org/10.1007/978-3-030-56153-6_4
    52. Ammu V. V. V. Ravi Kiran, Garikapati Kusuma Kumari, Praveen T. Krishnamurthy, Pavan Kumar Chintamaneni, Sai Kiran S. S. Pindiprolu. Carbon Nanotubes in Cancer Therapy. 2021, 1-33. https://doi.org/10.1007/978-3-319-70614-6_42-1
    53. Farhad Bano, Khalid Umar Fakhri, M. Moshahid Alam Rizvi. Targeted Drug Delivery in Cancer Treatment. 2021, 356-381. https://doi.org/10.4018/978-1-7998-6530-8.ch012
    54. Sougata Ghosh, Rohini Kitture. Nanotheranostics. 2020, 63-94. https://doi.org/10.1002/9781119671732.ch4
    55. Alireza Yaghoubi, Ali Ramazani. Anticancer DOX delivery system based on CNTs: Functionalization, targeting and novel technologies. Journal of Controlled Release 2020, 327 , 198-224. https://doi.org/10.1016/j.jconrel.2020.08.001
    56. A.V.V.V. Ravi Kiran, G. Kusuma Kumari, Praveen T. Krishnamurthy. Carbon nanotubes in drug delivery: Focus on anticancer therapies. Journal of Drug Delivery Science and Technology 2020, 59 , 101892. https://doi.org/10.1016/j.jddst.2020.101892
    57. Xiaoming Cai, Xi Liu, Jun Jiang, Meng Gao, Weili Wang, Huizhen Zheng, Shujuan Xu, Ruibin Li. Molecular Mechanisms, Characterization Methods, and Utilities of Nanoparticle Biotransformation in Nanosafety Assessments. Small 2020, 16 (36) https://doi.org/10.1002/smll.201907663
    58. Ali Hassan, Afraz Saeed, Samia Afzal, Muhammad Shahid, Iram Amin, Muhammad Idrees. Applications and hazards associated with carbon nanotubes in biomedical sciences. Inorganic and Nano-Metal Chemistry 2020, 50 (9) , 741-752. https://doi.org/10.1080/24701556.2020.1724151
    59. Andrzej S. Skwarecki, Michał G. Nowak, Maria J. Milewska. Synthetic strategies in construction of organic macromolecular carrier–drug conjugates. Organic & Biomolecular Chemistry 2020, 18 (30) , 5764-5783. https://doi.org/10.1039/D0OB01101K
    60. Rosa Garriga, Tania Herrero-Continente, Miguel Palos, Vicente L. Cebolla, Jesús Osada, Edgar Muñoz, María Jesús Rodríguez-Yoldi. Toxicity of Carbon Nanomaterials and Their Potential Application as Drug Delivery Systems: In Vitro Studies in Caco-2 and MCF-7 Cell Lines. Nanomaterials 2020, 10 (8) , 1617. https://doi.org/10.3390/nano10081617
    61. Lin Liu, Yanli Bao, Yu Zhang, Chunsheng Xiao, Li Chen. Acid-responsive dextran-based therapeutic nanoplatforms for photodynamic-chemotherapy against multidrug resistance. International Journal of Biological Macromolecules 2020, 155 , 233-240. https://doi.org/10.1016/j.ijbiomac.2020.03.197
    62. Lin Liu, Yanli Bao, Jinze Wang, Chunsheng Xiao, Li Chen. Construction of carrier-free porphyrin-based drug self-framed delivery system to reverse multidrug resistance through photodynamic-chemotherapy. Dyes and Pigments 2020, 177 , 107922. https://doi.org/10.1016/j.dyepig.2019.107922
    63. Manuela Curcio, Annafranca Farfalla, Federica Saletta, Emanuele Valli, Elvira Pantuso, Fiore Pasquale Nicoletta, Francesca Iemma, Orazio Vittorio, Giuseppe Cirillo. Functionalized Carbon Nanostructures Versus Drug Resistance: Promising Scenarios in Cancer Treatment. Molecules 2020, 25 (9) , 2102. https://doi.org/10.3390/molecules25092102
    64. Ana Cristina Q. Silva, Carla Vilela, Hélder A. Santos, Armando J.D. Silvestre, Carmen S.R. Freire. Recent trends on the development of systems for cancer diagnosis and treatment by microfluidic technology. Applied Materials Today 2020, 18 , 100450. https://doi.org/10.1016/j.apmt.2019.100450
    65. Parva Jani, Suresh Subramanian, Aruna Korde, Lalaji Rathod, Krutika K. Sawant. Theranostic Nanocarriers in Cancer: Dual Capabilities on a Single Platform. 2020, 293-312. https://doi.org/10.1007/978-3-030-41464-1_13
    66. Murali Kumarasamy, Alejandro Sosnik. Overcoming efflux transporter-mediated resistance in cancer by using nanomedicines. 2020, 337-369. https://doi.org/10.1016/B978-0-12-816434-1.00011-5
    67. Elizabeth Barsotti, Sugata P. Tan, Lamia Goual, Mohammad Piri. Amorphization of carbon nanotubes in water by electron beam radiation. Carbon 2020, 156 , 313-319. https://doi.org/10.1016/j.carbon.2019.09.043
    68. Sha Yu, Yingying Wang, Yuanfang Li, Li‐Ping Jiang, Sai Bi, Jun‐Jie Zhu. Multifunctional DNA Polycatenane Nanocarriers for Synergistic Targeted Therapy of Multidrug‐Resistant Human Leukemia. Advanced Functional Materials 2019, 29 (48) https://doi.org/10.1002/adfm.201905659
    69. Ghazal Farahavar, Samira Sadat Abolmaali, Nasser Gholijani, Foroogh Nejatollahi. Antibody-guided nanomedicines as novel breakthrough therapeutic, diagnostic and theranostic tools. Biomaterials Science 2019, 7 (10) , 4000-4016. https://doi.org/10.1039/C9BM00931K
    70. Jun-Yu LIANG, Pei-Hong TONG, Jian-Ping LI. Research and Application of Glycoprotein Sensors Based on Glycosyl Recognition. Chinese Journal of Analytical Chemistry 2019, 47 (9) , 1283-1292. https://doi.org/10.1016/S1872-2040(19)61185-0
    71. Yasmin Ranjous, Géza Regdon, Klára Pintye-Hódi, Tamás Sovány. Standpoint on the priority of TNTs and CNTs as targeted drug delivery systems. Drug Discovery Today 2019, 24 (9) , 1704-1709. https://doi.org/10.1016/j.drudis.2019.05.019
    72. Abdulaziz S. R. Bati, LePing Yu, Munkhbayar Batmunkh, Joseph G. Shapter. Recent Advances in Applications of Sorted Single‐Walled Carbon Nanotubes. Advanced Functional Materials 2019, 29 (30) https://doi.org/10.1002/adfm.201902273
    73. Yang Zhang, Lu Yang, Lu Yan, Ge Wang, Aihua Liu. Recent advances in the synthesis of spherical and nanoMOF-derived multifunctional porous carbon for nanomedicine applications. Coordination Chemistry Reviews 2019, 391 , 69-89. https://doi.org/10.1016/j.ccr.2019.04.006
    74. A. L. Pushkarchuk, T. V. Bezyazychnaya, V. I. Potkin, E. A. Dikusar, A. G. Soldatov, A. A. Khrutchinsky, L. F. Babichev. Structure Simulation of Cisplatin Complexes with Single-Walled Carbon Nanotubes and Fullerenol. International Journal of Nanoscience 2019, 18 (03n04) , 1940011. https://doi.org/10.1142/S0219581X19400118
    75. Liuliu Zhang, Huayun Zhu, Yu Gu, Xiaohua Wang, Pingping Wu. Dual drug-loaded PLA nanoparticles bypassing drug resistance for improved leukemia therapy. Journal of Nanoparticle Research 2019, 21 (4) https://doi.org/10.1007/s11051-018-4430-0
    76. H.V. Grushevskaya, N.G. Krylova. Carbon Nanotubes as A High-Performance Platform for Target Delivery of Anticancer Quinones. Current Pharmaceutical Design 2019, 24 (43) , 5207-5218. https://doi.org/10.2174/1381612825666190117095132
    77. Narges Dastmalchi, Reza Safaralizadeh, Saeid Latifi-Navid. Nanoparticles as Therapeutic Delivery Systems in Relation to Cancer Diagnosis and Therapy. Current Nanoscience 2019, 15 (3) , 218-233. https://doi.org/10.2174/1573413714666180727094825
    78. Sergio Rosales-Mendoza, Omar González-Ortega. Carbon Nanotubes-Based Mucosal Vaccines. 2019, 159-179. https://doi.org/10.1007/978-3-030-31668-6_7
    79. Ayan Kumar Barui, Batakrishna Jana, Ja-Hyoung Ryu. An Insight into Characterizations and Applications of Nanoparticulate Targeted Drug Delivery Systems. 2019, 417-453. https://doi.org/10.1007/978-3-662-59596-1_11
    80. Mónica C. García, Paula M. Uberman. Nanohybrid Filler-Based Drug-Delivery System. 2019, 43-79. https://doi.org/10.1016/B978-0-12-814033-8.00002-3
    81. Sudha Vengurlekar, Subhash Chandra Chaturvedi. Elevating toward a new innovation: Carbon nanotubes (CNTs). 2019, 271-294. https://doi.org/10.1016/B978-0-12-816506-5.00016-4
    82. Harshul Batra, Shrikant Pawar, Dherya Bahl. Curcumin in combination with anti-cancer drugs: A nanomedicine review. Pharmacological Research 2019, 139 , 91-105. https://doi.org/10.1016/j.phrs.2018.11.005
    83. Youssef Ghosn, Mohammed Hussein Kamareddine, Antonios Tawk, Carlos Elia, Ahmad El Mahmoud, Khodor Terro, Nadia El Harake, Bachar El-Baba, Joseph Makdessi, Said Farhat. Inorganic Nanoparticles as Drug Delivery Systems and Their Potential Role in the Treatment of Chronic Myelogenous Leukaemia. Technology in Cancer Research & Treatment 2019, 18 , 153303381985324. https://doi.org/10.1177/1533033819853241
    84. Anna Balzerová, Ariana Opletalová, Václav Ranc, Radek Zbořil. Multiplex competitive analysis of HER2 and EpCAM cancer markers in whole human blood using Fe2O3@Ag nanocomposite. Applied Materials Today 2018, 13 , 166-173. https://doi.org/10.1016/j.apmt.2018.08.016
    85. Sudipta Senapati, Arun Kumar Mahanta, Sunil Kumar, Pralay Maiti. Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduction and Targeted Therapy 2018, 3 (1) https://doi.org/10.1038/s41392-017-0004-3
    86. Zhuang Guo, Yuexu Lin, Xiaoyun Wang, Yuying Fu, Wenxiong Lin, Xiangmin Lin. The protective efficacy of four iron-related recombinant proteins and their single-walled carbon nanotube encapsulated counterparts against Aeromonas hydrophila infection in zebrafish. Fish & Shellfish Immunology 2018, 82 , 50-59. https://doi.org/10.1016/j.fsi.2018.08.009
    87. Ivana Borišev, Jasminka Mrđanovic, Danijela Petrovic, Mariana Seke, Danica Jović, Branislava Srđenović, Natasa Latinovic, Aleksandar Djordjevic. Nanoformulations of doxorubicin: how far have we come and where do we go from here?. Nanotechnology 2018, 29 (33) , 332002. https://doi.org/10.1088/1361-6528/aac7dd
    88. Biyao Mao, Lijuan Cheng, Sheng Wang, Jiaqi Zhou, Le Deng. Combat biofilm by bacteriostatic aptamer‐functionalized graphene oxide. Biotechnology and Applied Biochemistry 2018, 65 (3) , 355-361. https://doi.org/10.1002/bab.1631
    89. Peiqi Zhao, Lanfang Li, Shiyong Zhou, Lihua Qiu, Zhengzi Qian, Xianming Liu, Xuchen Cao, Huilai Zhang. TPGS functionalized mesoporous silica nanoparticles for anticancer drug delivery to overcome multidrug resistance. Materials Science and Engineering: C 2018, 84 , 108-117. https://doi.org/10.1016/j.msec.2017.11.040
    90. Li Fan, Silu Zhang, Chunyuan Zhang, Chun Yin, Zhiqin Chu, Chaojun Song, Ge Lin, Quan Li. Multidrug Resistance in Cancer Circumvented Using a Cytosolic Drug Reservoir. Advanced Science 2018, 5 (2) https://doi.org/10.1002/advs.201700289
    91. Jing Yu, Yanmin Ju, Fan Chen, Shenglei Che, Lingyun Zhao, Fugeng Sheng, Yanglong Hou. Chemical Synthesis and Biomedical Applications of Iron Oxide Nanoparticles. 2018, 329-358. https://doi.org/10.1002/9783527698646.ch14
    92. Tomasz Panczyk, Lukasz Konczak, Pawel Wolski. Colloid Nanoparticles and Carbon Nanotubes. What Can We Learn About Their Biomedical Application From Molecular Dynamics Simulations?. 2018, 23-37. https://doi.org/10.1007/978-3-319-61109-9_2
    93. Nicholas G. Zaibaq, Sakineh E. Moghaddam, Lon J. Wilson. Imaging and Treating Cancer with Carbon Nanotube Technology. 2018, 173-210. https://doi.org/10.1007/978-3-319-89878-0_5
    94. Miruna S. Stan, Alina F.G. Strugari, Mihaela Balas, Ionela C. Nica. Biomedical applications of carbon nanotubes with improved properties. 2018, 31-65. https://doi.org/10.1016/B978-0-12-813691-1.00002-6
    95. Sarwar Beg, Mahfoozur Rahman, Atul Jain, Sumant Saini, M.S. Hasnain, Suryakanta Swain, Sarim Imam, Imran Kazmi, Sohail Akhter. Emergence in the functionalized carbon nanotubes as smart nanocarriers for drug delivery applications. 2018, 105-133. https://doi.org/10.1016/B978-0-12-813691-1.00004-X
    96. A.H.M. Yusoff, M.N. Salimi. Superparamagnetic nanoparticles for drug delivery. 2018, 843-859. https://doi.org/10.1016/B978-0-12-813741-3.00037-6
    97. T. Da Ros, A. Ostric, F. Andreola, M. Filocamo, M. Pietrogrande, F. Corsolini, M. Stroppiano, S. Bruni, A. Serafino, S. Fiorito. Carbon nanotubes as nanovectors for intracellular delivery of laronidase in Mucopolysaccharidosis type I. Nanoscale 2018, 10 (2) , 657-665. https://doi.org/10.1039/C7NR07393C
    98. Bin Ma, Lizhen He, Yuanyuan You, Jianbin Mo, Tianfeng Chen. Controlled synthesis and size effects of multifunctional mesoporous silica nanosystem for precise cancer therapy. Drug Delivery 2018, 25 (1) , 293-306. https://doi.org/10.1080/10717544.2018.1425779
    99. Xiudan Wang, Yuanzhe Lin, Xian Li, Da Wang, Donghua Di, Qinfu Zhao, Siling Wang. Fluorescent carbon dot gated hollow mesoporous carbon for chemo-photothermal synergistic therapy. Journal of Colloid and Interface Science 2017, 507 , 410-420. https://doi.org/10.1016/j.jcis.2017.08.010
    100. Manu S. Singh, Salma N. Tammam, Maryam A. Shetab Boushehri, Alf Lamprecht. MDR in cancer: Addressing the underlying cellular alterations with the use of nanocarriers. Pharmacological Research 2017, 126 , 2-30. https://doi.org/10.1016/j.phrs.2017.07.023
    Load more citations

    ACS Nano

    Cite this: ACS Nano 2010, 4, 3, 1399–1408
    Click to copy citationCitation copied!
    https://doi.org/10.1021/nn9011225
    Published February 11, 2010
    Copyright © 2010 American Chemical Society

    Article Views

    3939

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.