Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Cadmium-Free CuInS2/ZnS Quantum Dots for Sentinel Lymph Node Imaging with Reduced Toxicity

View Author Information
Laboratoire Physique et Etude des Matériaux, CNRS UPR0005, ESPCI, 10, rue Vauquelin, 75005 Paris, France
Centre de Recherche en Automatique de Nancy, Nancy-University, CNRS, Centre Alexis Vautrin, avenue de Bourgogne, 54511 Vandoeuvre-lès-Nancy Cedex, France
§ Laboratoire de physico-chimie des Polymères et des Milieux Dispersés, CNRS UMR7615, ESPCI, 10, rue Vauquelin, 75005 Paris, France
* Address correspondence to [email protected]
Cite this: ACS Nano 2010, 4, 5, 2531–2538
Publication Date (Web):April 13, 2010
https://doi.org/10.1021/nn901421v
Copyright © 2010 American Chemical Society

    Article Views

    8459

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    Semiconductor quantum dots (QDs) could significantly impact the performance of biomedical near-infrared (NIR) imaging by providing fluorescent probes that are brighter and more photostable than conventional organic dyes. However, the toxicity of the components of NIR emitting II−VI and IV−VI QDs that have been made so far (Cd, Hg, Te, Pb, etc.) has remained a major obstacle to the clinical use of QDs. Here, we present the synthesis of CuInS2/ZnS core/shell QDs emitting in the NIR (∼800 nm) with good quantum yield and stability even after transfer into water. We demonstrate the potential of these QDs by imaging two regional lymph nodes (LNs) in vivo in mice. We then compare the inflammatory response of the axillary LN induced by different doses of CuInS2/ZnS and CdTeSe/CdZnS QDs and show a clear difference in acute local toxicity, the onset of inflammation only occurring at a 10 times more concentrated dose for CuInS2/ZnS QDs than for their Cd-containing counterparts.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    XRD patterns, elemental analysis, additional NIR imaging, lymph node uptake quantification, EDX analysis, X-ray diffraction, photostability, additional NIR fluorescence imaging, quantification of CuInS2/ZnS QD % ID in the regional LNs. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 463 publications.

    1. Amanda Richardson, Jan Alster, Petro Khoroshyy, Jakub Psencik, Jan Valenta, Roman Tuma, Kevin Critchley. Direct Synthesis and Characterization of Hydrophilic Cu-Deficient Copper Indium Sulfide Quantum Dots. ACS Omega 2024, 9 (15) , 17114-17124. https://doi.org/10.1021/acsomega.3c09531
    2. Yang Yang, Qunying Jiang, Fan Zhang. Nanocrystals for Deep-Tissue In Vivo Luminescence Imaging in the Near-Infrared Region. Chemical Reviews 2024, 124 (2) , 554-628. https://doi.org/10.1021/acs.chemrev.3c00506
    3. Anh T. Nguyen, Dustin R. Baucom, Yong Wang, Colin D. Heyes. Compact, Fast Blinking Cd-Free Quantum Dots for Super-Resolution Fluorescence Imaging. Chemical & Biomedical Imaging 2023, 1 (3) , 251-259. https://doi.org/10.1021/cbmi.3c00018
    4. Prajit Kumar Singha, Tanuja Kistwal, Anindya Datta. Single-Particle Dynamics of ZnS Shelling Induced Replenishment of Carrier Diffusion for Individual Emission Centers in CuInS2 Quantum Dots. The Journal of Physical Chemistry Letters 2023, 14 (18) , 4289-4296. https://doi.org/10.1021/acs.jpclett.3c00467
    5. Long Liu, Bing Bai, Xuyong Yang, Zuliang Du, Guohua Jia. Anisotropic Heavy-Metal-Free Semiconductor Nanocrystals: Synthesis, Properties, and Applications. Chemical Reviews 2023, 123 (7) , 3625-3692. https://doi.org/10.1021/acs.chemrev.2c00688
    6. Suk-Young Yoon, Jee-Na Han, Young-Ju Lee, Ali Imran Channa, Dae-Yeon Jo, Hyun-Min Kim, Yuri Kim, Seong Min Park, Seoyeon Park, Yang-Hee Kim, Heesun Yang. Highly Emissive Green ZnSeTe Quantum Dots: Effects of Core Size on Their Optical Properties and Comparison with InP Counterparts. ACS Energy Letters 2023, 8 (2) , 1131-1140. https://doi.org/10.1021/acsenergylett.2c02924
    7. Chenghui Xia, Philippe Tamarat, Lei Hou, Serena Busatto, Johannes D. Meeldijk, Celso de Mello Donega, Brahim Lounis. Unraveling the Emission Pathways in Copper Indium Sulfide Quantum Dots. ACS Nano 2021, 15 (11) , 17573-17581. https://doi.org/10.1021/acsnano.1c04909
    8. Huan Liu, Ganlin Shang, Can Ren, Yang Gao, Tingchao He. Photophysical Properties of Mn-Doped InP/ZnS Nanocrystals. The Journal of Physical Chemistry C 2021, 125 (39) , 21748-21753. https://doi.org/10.1021/acs.jpcc.1c06858
    9. Jagodish C. Sarker, Graeme Hogarth. Dithiocarbamate Complexes as Single Source Precursors to Nanoscale Binary, Ternary and Quaternary Metal Sulfides. Chemical Reviews 2021, 121 (10) , 6057-6123. https://doi.org/10.1021/acs.chemrev.0c01183
    10. Xinyuan Sun, Mengyao Shi, Chun Zhang, Jinting Yuan, Min Yin, Shichao Du, Shuai Yu, Bowei Ouyang, Fumin Xue, Sheng-Tao Yang. Fluorescent Ag–In–S/ZnS Quantum Dots for Tumor Drainage Lymph Node Imaging In Vivo. ACS Applied Nano Materials 2021, 4 (2) , 1029-1037. https://doi.org/10.1021/acsanm.0c02542
    11. Hiroyuki Yamada, Noriyuki Saitoh, Batu Ghosh, Yoshitake Masuda, Noriko Yoshizawa, Naoto Shirahata. Improved Brightness and Color Tunability of Solution-Processed Silicon Quantum Dot Light-Emitting Diodes. The Journal of Physical Chemistry C 2020, 124 (42) , 23333-23342. https://doi.org/10.1021/acs.jpcc.0c06672
    12. Anh T. Nguyen, Feng Gao, Dustin Baucom, Colin D. Heyes. CuInS2-Doped ZnS Quantum Dots Obtained via Non-Injection Cation Exchange Show Reduced but Heterogeneous Blinking and Provide Insights into Their Structure–Optical Property Relationships. The Journal of Physical Chemistry C 2020, 124 (19) , 10744-10754. https://doi.org/10.1021/acs.jpcc.0c01933
    13. Gunjan Purohit, Aneeta Kharkwal, Diwan S. Rawat. CuIn-ethylxanthate, a “Versatile Precursor” for Photosensitization of Graphene-Quantum Dots and Nanocatalyzed Synthesis of Imidazopyridines with Ideal Green Chemistry Metrics. ACS Sustainable Chemistry & Engineering 2020, 8 (14) , 5544-5557. https://doi.org/10.1021/acssuschemeng.9b07371
    14. Yang Gao, Huan Liu, Junzi Li, Xiangquan Deng, Wenbo Hu, Shuyu Xiao, Xin Qiu, Xiaodong Lin, Ke Wang, Tingchao He. Photophysical Properties of Water-Soluble CdTe/CdSe/ZnS Core/Shell/Shell Nanocrystals Emitting at 820 nm. The Journal of Physical Chemistry C 2020, 124 (14) , 7994-7999. https://doi.org/10.1021/acs.jpcc.0c01027
    15. Joshua C. Kays, Alexander M. Saeboe, Reyhaneh Toufanian, Danielle E. Kurant, Allison M. Dennis. Shell-Free Copper Indium Sulfide Quantum Dots Induce Toxicity in Vitro and in Vivo. Nano Letters 2020, 20 (3) , 1980-1991. https://doi.org/10.1021/acs.nanolett.9b05259
    16. Addis Fuhr, Hyeong Jin Yun, Scott A. Crooker, Victor I. Klimov. Spectroscopic and Magneto-Optical Signatures of Cu1+ and Cu2+ Defects in Copper Indium Sulfide Quantum Dots. ACS Nano 2020, 14 (2) , 2212-2223. https://doi.org/10.1021/acsnano.9b09181
    17. Chenghui Xia, Wentao Wang, Liang Du, Freddy T. Rabouw, Dave J. van den Heuvel, Hans C. Gerritsen, Hedi Mattoussi, Celso de Mello Donega. Förster Resonance Energy Transfer between Colloidal CuInS2/ZnS Quantum Dots and Dark Quenchers. The Journal of Physical Chemistry C 2020, 124 (2) , 1717-1731. https://doi.org/10.1021/acs.jpcc.9b10536
    18. Li Fu, Bin Zhang, Xiaoyan Long, Kena Fu, Xuwen Gao, Guizheng Zou. Promising Electrochemiluminescence from CuInS2/ZnS Nanocrystals/Hydrazine via Internal Cu(I)/Cu(II) Couple Cycling. Analytical Chemistry 2019, 91 (15) , 10221-10226. https://doi.org/10.1021/acs.analchem.9b02320
    19. Tushar Debnath, Hirendra N. Ghosh. Recent Progress of Electron Storage Mn Center in Doped Nanocrystals. The Journal of Physical Chemistry C 2019, 123 (17) , 10703-10719. https://doi.org/10.1021/acs.jpcc.8b11055
    20. Subbiramaniyan Kubendhiran, Zhen Bao, Kashyap Dave, Ru-Shi Liu. Microfluidic Synthesis of Semiconducting Colloidal Quantum Dots and Their Applications. ACS Applied Nano Materials 2019, 2 (4) , 1773-1790. https://doi.org/10.1021/acsanm.9b00456
    21. Suk-Young Yoon, Jong-Hoon Kim, Eun-Pyo Jang, Sun-Hyoung Lee, Dae-Yeon Jo, Yuri Kim, Young Rag Do, Heesun Yang. Systematic and Extensive Emission Tuning of Highly Efficient Cu–In–S-Based Quantum Dots from Visible to Near Infrared. Chemistry of Materials 2019, 31 (7) , 2627-2634. https://doi.org/10.1021/acs.chemmater.9b00550
    22. Nuri Oh, Logan P. Keating, Gryphon A. Drake, Moonsub Shim. CuGaS2–CuInE2 (E = S, Se) Colloidal Nanorod Heterostructures. Chemistry of Materials 2019, 31 (6) , 1973-1980. https://doi.org/10.1021/acs.chemmater.8b04769
    23. Addis S. Fuhr, Philippe Sautet, Anastassia N. Alexandrova. Heterogeneity in Local Chemical Bonding Explains Spectral Broadening in Quantum Dots with Cu Impurities. The Journal of Physical Chemistry C 2019, 123 (9) , 5705-5713. https://doi.org/10.1021/acs.jpcc.8b12023
    24. Suman Mallick, Prashant Kumar, Apurba Lal Koner. Freeze-Resistant Cadmium-Free Quantum Dots for Live-Cell Imaging. ACS Applied Nano Materials 2019, 2 (2) , 661-666. https://doi.org/10.1021/acsanm.8b02231
    25. Piotr Bujak, Zbigniew Wróbel, Mateusz Penkala, Kamil Kotwica, Angelika Kmita, Marta Gajewska, Andrzej Ostrowski, Patrycja Kowalik, Adam Pron. Highly Luminescent Ag–In–Zn–S Quaternary Nanocrystals: Growth Mechanism and Surface Chemistry Elucidation. Inorganic Chemistry 2019, 58 (2) , 1358-1370. https://doi.org/10.1021/acs.inorgchem.8b02916
    26. Sadaf Hameed, Hong Chen, Muhammad Irfan, Sadia Zafar Bajwa, Waheed S Khan, Shahid Mahmood Baig, Zhifei Dai. Fluorescence Guided Sentinel Lymph Node Mapping: From Current Molecular Probes to Future Multimodal Nanoprobes. Bioconjugate Chemistry 2019, 30 (1) , 13-28. https://doi.org/10.1021/acs.bioconjchem.8b00812
    27. Somen Mondal, Radhamanohar Aepuru, Jayanta Dana, Nandan Ghorai, Hirendra. N. Ghosh. Biexciton Dissociation Dynamics in Nanohybrid Au–CuInS2 Nanocrystals. The Journal of Physical Chemistry C 2018, 122 (50) , 28497-28505. https://doi.org/10.1021/acs.jpcc.8b09261
    28. V. Renuga, C. Neela Mohan, M. S. Mohamed Jaabir, P. Arul Prakash, M. Navaneethan. Synthesis and Surface Passivation of CuInS2/MnS/ZnS Core–Multishell Nanocrystals, Their Optical, Structural, and Morphological Characterization, and Their Bioimaging Applications. Industrial & Engineering Chemistry Research 2018, 57 (46) , 15703-15721. https://doi.org/10.1021/acs.iecr.8b03482
    29. Chenghui Xia, Weiwei Wu, Ting Yu, Xiaobin Xie, Christina van Oversteeg, Hans C. Gerritsen, Celso de Mello Donega. Size-Dependent Band-Gap and Molar Absorption Coefficients of Colloidal CuInS2 Quantum Dots. ACS Nano 2018, 12 (8) , 8350-8361. https://doi.org/10.1021/acsnano.8b03641
    30. Laura Trapiella-Alfonso, Thomas Pons, Nicolas Lequeux, Ludovic Leleu, Juliette Grimaldi, Mariana Tasso, Edward Oujagir, Johanne Seguin, Fanny d’Orlyé, Christian Girard, Bich-Thuy Doan, Anne Varenne. Clickable-Zwitterionic Copolymer Capped-Quantum Dots for in Vivo Fluorescence Tumor Imaging. ACS Applied Materials & Interfaces 2018, 10 (20) , 17107-17116. https://doi.org/10.1021/acsami.8b04708
    31. Chenghui Xia, Naomi Winckelmans, P. Tim Prins, Sara Bals, Hans C. Gerritsen, Celso de Mello Donegá. Near-Infrared-Emitting CuInS2/ZnS Dot-in-Rod Colloidal Heteronanorods by Seeded Growth. Journal of the American Chemical Society 2018, 140 (17) , 5755-5763. https://doi.org/10.1021/jacs.8b01412
    32. Josephine F. L. Lox, Zhiya Dang, Volodymyr M. Dzhagan, Daniel Spittel, Beatriz Martín-García, Iwan Moreels, Dietrich R. T. Zahn, Vladimir Lesnyak. Near-Infrared Cu–In–Se-Based Colloidal Nanocrystals via Cation Exchange. Chemistry of Materials 2018, 30 (8) , 2607-2617. https://doi.org/10.1021/acs.chemmater.7b05187
    33. Pengqi Lu, Ruifeng Li, Ni Yao, Xusheng Dai, Zhenyu Ye, Kai Zheng, Weiguang Kong, Wei Fang, Shuang Li, Qinghua Xu, Huizhen Wu. Enhancement of Two-Photon Fluorescence and Low Threshold Amplification of Spontaneous Emission of Zn-processed CuInS2 Quantum Dots. ACS Photonics 2018, 5 (4) , 1310-1317. https://doi.org/10.1021/acsphotonics.7b01255
    34. Bingkun Chen, Narayan Pradhan, and Haizheng Zhong . From Large-Scale Synthesis to Lighting Device Applications of Ternary I–III–VI Semiconductor Nanocrystals: Inspiring Greener Material Emitters. The Journal of Physical Chemistry Letters 2018, 9 (2) , 435-445. https://doi.org/10.1021/acs.jpclett.7b03037
    35. Shuaidi Zhang, Ren Geryak, Jeffrey Geldmeier, Sunghan Kim, and Vladimir V. Tsukruk . Synthesis, Assembly, and Applications of Hybrid Nanostructures for Biosensing. Chemical Reviews 2017, 117 (20) , 12942-13038. https://doi.org/10.1021/acs.chemrev.7b00088
    36. Addis S. Fuhr, Hyeong Jin Yun, Nikolay S. Makarov, Hongbo Li, Hunter McDaniel, and Victor I. Klimov . Light Emission Mechanisms in CuInS2 Quantum Dots Evaluated by Spectral Electrochemistry. ACS Photonics 2017, 4 (10) , 2425-2435. https://doi.org/10.1021/acsphotonics.7b00560
    37. Yongbo Yang, Li Lin, Lijia Jing, Xiuli Yue, and Zhifei Dai . CuInS2/ZnS Quantum Dots Conjugating Gd(III) Chelates for Near-Infrared Fluorescence and Magnetic Resonance Bimodal Imaging. ACS Applied Materials & Interfaces 2017, 9 (28) , 23450-23457. https://doi.org/10.1021/acsami.7b05867
    38. Valerio Pinchetti, Monica Lorenzon, Hunter McDaniel, Roberto Lorenzi, Francesco Meinardi, Victor I. Klimov, and Sergio Brovelli . Spectro-electrochemical Probing of Intrinsic and Extrinsic Processes in Exciton Recombination in I–III–VI2 Nanocrystals. Nano Letters 2017, 17 (7) , 4508-4517. https://doi.org/10.1021/acs.nanolett.7b02040
    39. Chenghui Xia, Johannes D. Meeldijk, Hans C. Gerritsen, and Celso de Mello Donega . Highly Luminescent Water-Dispersible NIR-Emitting Wurtzite CuInS2/ZnS Core/Shell Colloidal Quantum Dots. Chemistry of Materials 2017, 29 (11) , 4940-4951. https://doi.org/10.1021/acs.chemmater.7b01258
    40. Claudia Coughlan, Maria Ibáñez, Oleksandr Dobrozhan, Ajay Singh, Andreu Cabot, and Kevin M. Ryan . Compound Copper Chalcogenide Nanocrystals. Chemical Reviews 2017, 117 (9) , 5865-6109. https://doi.org/10.1021/acs.chemrev.6b00376
    41. Lifeng Wang, Keming Xu, Xiaochun Hou, Yiyuan Han, Shiying Liu, Christian Wiraja, Cangjie Yang, Jun Yang, Mingfeng Wang, Xiaochen Dong, Wei Huang, and Chenjie Xu . Fluorescent Poly(glycerol-co-sebacate) Acrylate Nanoparticles for Stem Cell Labeling and Longitudinal Tracking. ACS Applied Materials & Interfaces 2017, 9 (11) , 9528-9538. https://doi.org/10.1021/acsami.7b01203
    42. Niko Hildebrandt, Christopher M. Spillmann, W. Russ Algar, Thomas Pons, Michael H. Stewart, Eunkeu Oh, Kimihiro Susumu, Sebastian A. Díaz, James B. Delehanty, and Igor L. Medintz . Energy Transfer with Semiconductor Quantum Dot Bioconjugates: A Versatile Platform for Biosensing, Energy Harvesting, and Other Developing Applications. Chemical Reviews 2017, 117 (2) , 536-711. https://doi.org/10.1021/acs.chemrev.6b00030
    43. Gaixia Xu, Shuwen Zeng, Butian Zhang, Mark T. Swihart, Ken-Tye Yong, and Paras N. Prasad . New Generation Cadmium-Free Quantum Dots for Biophotonics and Nanomedicine. Chemical Reviews 2016, 116 (19) , 12234-12327. https://doi.org/10.1021/acs.chemrev.6b00290
    44. Lihong Jing, Stephen V. Kershaw, Yilin Li, Xiaodan Huang, Yingying Li, Andrey L. Rogach, and Mingyuan Gao . Aqueous Based Semiconductor Nanocrystals. Chemical Reviews 2016, 116 (18) , 10623-10730. https://doi.org/10.1021/acs.chemrev.6b00041
    45. Kathryn E. Knowles, Kimberly H. Hartstein, Troy B. Kilburn, Arianna Marchioro, Heidi D. Nelson, Patrick J. Whitham, and Daniel R. Gamelin . Luminescent Colloidal Semiconductor Nanocrystals Containing Copper: Synthesis, Photophysics, and Applications. Chemical Reviews 2016, 116 (18) , 10820-10851. https://doi.org/10.1021/acs.chemrev.6b00048
    46. Peter Reiss, Marie Carrière, Christophe Lincheneau, Louis Vaure, and Sudarsan Tamang . Synthesis of Semiconductor Nanocrystals, Focusing on Nontoxic and Earth-Abundant Materials. Chemical Reviews 2016, 116 (18) , 10731-10819. https://doi.org/10.1021/acs.chemrev.6b00116
    47. Eva Izquierdo, Adrien Robin, Sean Keuleyan, Nicolas Lequeux, Emmanuel Lhuillier, and Sandrine Ithurria . Strongly Confined HgTe 2D Nanoplatelets as Narrow Near-Infrared Emitters. Journal of the American Chemical Society 2016, 138 (33) , 10496-10501. https://doi.org/10.1021/jacs.6b04429
    48. Jayanta Dana, Tushar Debnath, and Hirendra N. Ghosh . Involvement of Sub-Bandgap States in Subpicosecond Exciton and Biexciton Dynamics of Ternary AgInS2 Nanocrystals. The Journal of Physical Chemistry Letters 2016, 7 (16) , 3206-3214. https://doi.org/10.1021/acs.jpclett.6b01341
    49. Lili Yan, Zhichun Li, Mingxing Sun, Guoqing Shen, and Liang Li . Stable and Flexible CuInS2/ZnS:Al-TiO2 Film for Solar-Light-Driven Photodegradation of Soil Fumigant. ACS Applied Materials & Interfaces 2016, 8 (31) , 20048-20056. https://doi.org/10.1021/acsami.6b05587
    50. Riya Bose, Ashok Bera, Manas R. Parida, Aniruddha Adhikari, Basamat S. Shaheen, Erkki Alarousu, Jingya Sun, Tom Wu, Osman M. Bakr, and Omar F. Mohammed . Real-Space Mapping of Surface Trap States in CIGSe Nanocrystals Using 4D Electron Microscopy. Nano Letters 2016, 16 (7) , 4417-4423. https://doi.org/10.1021/acs.nanolett.6b01553
    51. Chang-Ching Tu, Kuang-Po Chen, Tsu-An Yang, Min-Yuan Chou, Lih Y. Lin, and Yaw-Kuen Li . Silicon Quantum Dot Nanoparticles with Antifouling Coatings for Immunostaining on Live Cancer Cells. ACS Applied Materials & Interfaces 2016, 8 (22) , 13714-13723. https://doi.org/10.1021/acsami.6b02318
    52. Danilo H. Jara, Kevin G. Stamplecoskie, and Prashant V. Kamat . Two Distinct Transitions in CuxInS2 Quantum Dots. Bandgap versus Sub-Bandgap Excitations in Copper-Deficient Structures. The Journal of Physical Chemistry Letters 2016, 7 (8) , 1452-1459. https://doi.org/10.1021/acs.jpclett.6b00571
    53. Elena S. Speranskaya, Chantal Sevrin, Sarah De Saeger, Zeger Hens, Irina Yu. Goryacheva, and Christian Grandfils . Synthesis of Hydrophilic CuInS2/ZnS Quantum Dots with Different Polymeric Shells and Study of Their Cytotoxicity and Hemocompatibility. ACS Applied Materials & Interfaces 2016, 8 (12) , 7613-7622. https://doi.org/10.1021/acsami.5b11258
    54. Alice D. P. Leach and Janet E. Macdonald . Optoelectronic Properties of CuInS2 Nanocrystals and Their Origin. The Journal of Physical Chemistry Letters 2016, 7 (3) , 572-583. https://doi.org/10.1021/acs.jpclett.5b02211
    55. Juan Zhou, Yong Yang, and Chun-yang Zhang . Toward Biocompatible Semiconductor Quantum Dots: From Biosynthesis and Bioconjugation to Biomedical Application. Chemical Reviews 2015, 115 (21) , 11669-11717. https://doi.org/10.1021/acs.chemrev.5b00049
    56. Zhiguo Liu, Pengfei Rong, Lun Yu, Xintong Zhang, Cejun Yang, Fei Guo, Yanzhong Zhao, Kechao Zhou, Wei Wang, and Wenbin Zeng . Dual-Modality Noninvasive Mapping of Sentinel Lymph Node by Photoacoustic and Near-Infrared Fluorescent Imaging Using Dye-Loaded Mesoporous Silica Nanoparticles. Molecular Pharmaceutics 2015, 12 (9) , 3119-3128. https://doi.org/10.1021/mp500698b
    57. Tushar Debnath, Sourav Maiti, Partha Maity, and Hirendra N. Ghosh . Subpicosecond Exciton Dynamics and Biexcitonic Feature in Colloidal CuInS2 Nanocrystals: Role of In–Cu Antisite Defects. The Journal of Physical Chemistry Letters 2015, 6 (17) , 3458-3465. https://doi.org/10.1021/acs.jpclett.5b01767
    58. Zhongyun Liu, Na Chen, Chunhong Dong, Wei Li, Weisheng Guo, Hanjie Wang, Sheng Wang, Jian Tan, Yu Tu, and Jin Chang . Facile Construction of Near Infrared Fluorescence Nanoprobe with Amphiphilic Protein-Polymer Bioconjugate for Targeted Cell Imaging. ACS Applied Materials & Interfaces 2015, 7 (34) , 18997-19005. https://doi.org/10.1021/acsami.5b05406
    59. Chuanzhen Zhao, Zelong Bai, Xiangyou Liu, Yijia Zhang, Bingsuo Zou, and Haizheng Zhong . Small GSH-Capped CuInS2 Quantum Dots: MPA-Assisted Aqueous Phase Transfer and Bioimaging Applications. ACS Applied Materials & Interfaces 2015, 7 (32) , 17623-17629. https://doi.org/10.1021/acsami.5b05503
    60. Regina Bilan, Fabrice Fleury, Igor Nabiev, and Alyona Sukhanova . Quantum Dot Surface Chemistry and Functionalization for Cell Targeting and Imaging. Bioconjugate Chemistry 2015, 26 (4) , 609-624. https://doi.org/10.1021/acs.bioconjchem.5b00069
    61. Xiaojiao Kang, Lijian Huang, Yanchun Yang, and Daocheng Pan . Scaling up the Aqueous Synthesis of Visible Light Emitting Multinary AgInS2/ZnS Core/Shell Quantum Dots. The Journal of Physical Chemistry C 2015, 119 (14) , 7933-7940. https://doi.org/10.1021/acs.jpcc.5b00413
    62. Sang Hyun Park, Ara Hong, Jong-Hoon Kim, Heesun Yang, Kwangyeol Lee, and Ho Seong Jang . Highly Bright Yellow-Green-Emitting CuInS2 Colloidal Quantum Dots with Core/Shell/Shell Architecture for White Light-Emitting Diodes. ACS Applied Materials & Interfaces 2015, 7 (12) , 6764-6771. https://doi.org/10.1021/acsami.5b00166
    63. Chieh-Wei Chen, Dai-Ying Wu, Yung-Chieh Chan, Chun Che Lin, Po-Hsiang Chung, Michael Hsiao, and Ru-Shi Liu . Evaluations of the Chemical Stability and Cytotoxicity of CuInS2 and CuInS2/ZnS Core/Shell Quantum Dots. The Journal of Physical Chemistry C 2015, 119 (5) , 2852-2860. https://doi.org/10.1021/jp510908f
    64. Quinten A. Akkerman, Alessandro Genovese, Chandramohan George, Mirko Prato, Iwan Moreels, Alberto Casu, Sergio Marras, Alberto Curcio, Alice Scarpellini, Teresa Pellegrino, Liberato Manna, and Vladimir Lesnyak . From Binary Cu2S to Ternary Cu–In–S and Quaternary Cu–In–Zn–S Nanocrystals with Tunable Composition via Partial Cation Exchange. ACS Nano 2015, 9 (1) , 521-531. https://doi.org/10.1021/nn505786d
    65. William D. Rice, Hunter McDaniel, Victor I. Klimov, and Scott A. Crooker . Magneto-Optical Properties of CuInS2 Nanocrystals. The Journal of Physical Chemistry Letters 2014, 5 (23) , 4105-4109. https://doi.org/10.1021/jz502154m
    66. Ingvar T. Kraatz, Matthew Booth, Benjamin J. Whitaker, Michael G. D. Nix, and Kevin Critchley . Sub-Bandgap Emission and Intraband Defect-Related Excited-State Dynamics in Colloidal CuInS2/ZnS Quantum Dots Revealed by Femtosecond Pump–Dump–Probe Spectroscopy. The Journal of Physical Chemistry C 2014, 118 (41) , 24102-24109. https://doi.org/10.1021/jp5065374
    67. Po-Hsiang Chuang, Chun Che Lin, and Ru-Shi Liu . Emission-Tunable CuInS2/ZnS Quantum Dots: Structure, Optical Properties, and Application in White Light-Emitting Diodes with High Color Rendering Index. ACS Applied Materials & Interfaces 2014, 6 (17) , 15379-15387. https://doi.org/10.1021/am503889z
    68. Baodong Mao, Chi-Hung Chuang, Christopher McCleese, Junjie Zhu, and Clemens Burda . Near-Infrared Emitting AgInS2/ZnS Nanocrystals. The Journal of Physical Chemistry C 2014, 118 (25) , 13883-13889. https://doi.org/10.1021/jp500872w
    69. Stefaan J. Soenen, Bella B. Manshian, Tangi Aubert, Uwe Himmelreich, Jo Demeester, Stefaan C. De Smedt, Zeger Hens, and Kevin Braeckmans . Cytotoxicity of Cadmium-Free Quantum Dots and Their Use in Cell Bioimaging. Chemical Research in Toxicology 2014, 27 (6) , 1050-1059. https://doi.org/10.1021/tx5000975
    70. Marc-Antoine Langevin, Anna M. Ritcey, and Claudine Nì Allen . Air-Stable Near-Infrared AgInSe2 Nanocrystals. ACS Nano 2014, 8 (4) , 3476-3482. https://doi.org/10.1021/nn406439w
    71. Hiroyuki Shinchi, Masahiro Wakao, Nonoka Nagata, Masaya Sakamoto, Eiko Mochizuki, Taro Uematsu, Susumu Kuwabata, and Yasuo Suda . Cadmium-Free Sugar-Chain-Immobilized Fluorescent Nanoparticles Containing Low-Toxicity ZnS-AgInS2 Cores for Probing Lectin and Cells. Bioconjugate Chemistry 2014, 25 (2) , 286-295. https://doi.org/10.1021/bc400425w
    72. Mohamed F. Foda, Liang Huang, Feng Shao, and He-You Han . Biocompatible and Highly Luminescent Near-Infrared CuInS2/ZnS Quantum Dots Embedded Silica Beads for Cancer Cell Imaging. ACS Applied Materials & Interfaces 2014, 6 (3) , 2011-2017. https://doi.org/10.1021/am4050772
    73. Joanna Kolny-Olesiak and Horst Weller . Synthesis and Application of Colloidal CuInS2 Semiconductor Nanocrystals. ACS Applied Materials & Interfaces 2013, 5 (23) , 12221-12237. https://doi.org/10.1021/am404084d
    74. Dawei Deng, Lingzhi Qu, Jian Zhang, Yuxiang Ma, and Yueqing Gu . Quaternary Zn–Ag–In–Se Quantum Dots for Biomedical Optical Imaging of RGD-Modified Micelles. ACS Applied Materials & Interfaces 2013, 5 (21) , 10858-10865. https://doi.org/10.1021/am403050s
    75. Jack Fuzell, Arthur Thibert, Tonya M. Atkins, Mita Dasog, Erik Busby, Jonathan G. C. Veinot, Susan M. Kauzlarich, and Delmar S. Larsen . Red States versus Blue States in Colloidal Silicon Nanocrystals: Exciton Sequestration into Low-Density Traps. The Journal of Physical Chemistry Letters 2013, 4 (21) , 3806-3812. https://doi.org/10.1021/jz401896k
    76. Marion Helle, Enrico Rampazzo, Morgane Monchanin, Frédéric Marchal, François Guillemin, Sara Bonacchi, Francesca Salis, Luca Prodi, and Lina Bezdetnaya . Surface Chemistry Architecture of Silica Nanoparticles Determine the Efficiency of in Vivo Fluorescence Lymph Node Mapping. ACS Nano 2013, 7 (10) , 8645-8657. https://doi.org/10.1021/nn402792a
    77. Matthew G. Panthani, Tarik A. Khan, Dariya K. Reid, Daniel J. Hellebusch, Michael R. Rasch, Jennifer A. Maynard, and Brian A. Korgel . In Vivo Whole Animal Fluorescence Imaging of a Microparticle-Based Oral Vaccine Containing (CuInSexS2–x)/ZnS Core/Shell Quantum Dots. Nano Letters 2013, 13 (9) , 4294-4298. https://doi.org/10.1021/nl402054w
    78. Wei-Wei Xiong, Guo-Hai Yang, Xing-Cai Wu, and Jun-Jie Zhu . Aqueous Synthesis of Color-Tunable CuInS2/ZnS Nanocrystals for the Detection of Human Interleukin 6. ACS Applied Materials & Interfaces 2013, 5 (16) , 8210-8216. https://doi.org/10.1021/am402328t
    79. Jianwei Liu, Folarin Erogbogbo, Ken-Tye Yong, Ling Ye, Jing Liu, Rui Hu, Hongyan Chen, Yazhuo Hu, Yi Yang, Jinghui Yang, Indrajit Roy, Nicholas A. Karker, Mark T. Swihart, and Paras N. Prasad . Assessing Clinical Prospects of Silicon Quantum Dots: Studies in Mice and Monkeys. ACS Nano 2013, 7 (8) , 7303-7310. https://doi.org/10.1021/nn4029234
    80. Riya Bose, Santanu Jana, Goutam Manna, Supriya Chakraborty, and Narayan Pradhan . Rate of Cation Exchange and Change in Optical Properties during Transformation of Ternary to Doped Binary Nanocrystals. The Journal of Physical Chemistry C 2013, 117 (30) , 15835-15841. https://doi.org/10.1021/jp403218g
    81. Matthew G. Panthani, C. Jackson Stolle, Dariya K. Reid, Dong Joon Rhee, Taylor B. Harvey, Vahid A. Akhavan, Yixuan Yu, and Brian A. Korgel . CuInSe2 Quantum Dot Solar Cells with High Open-Circuit Voltage. The Journal of Physical Chemistry Letters 2013, 4 (12) , 2030-2034. https://doi.org/10.1021/jz4010015
    82. Yufeng Liu, Fuqiang Huang, Yian Xie, Houlei Cui, Wei Zhao, Chongyin Yang, and Ning Dai . Controllable Synthesis of Cu2In2ZnS5 Nano/Microcrystals and Hierarchical Films and Applications in Dye-Sensitized Solar Cells. The Journal of Physical Chemistry C 2013, 117 (20) , 10296-10301. https://doi.org/10.1021/jp401998p
    83. Chun-Yi Cheng, Keng-Liang Ou, Wei-Ting Huang, Jem-Kun Chen, Jia-Yaw Chang, and Cheng-Hsien Yang . Gadolinium-Based CuInS2/ZnS Nanoprobe for Dual-Modality Magnetic Resonance/Optical Imaging. ACS Applied Materials & Interfaces 2013, 5 (10) , 4389-4400. https://doi.org/10.1021/am401428n
    84. Meng-Lin Lu, Chih-Wei Lai, Hsing-Ju Pan, Chung-Tse Chen, Pi-Tai Chou, and Yang-Fang Chen . A Facile Integration of Zero- (I–III–VI Quantum Dots) and One- (Single SnO2 Nanowire) Dimensional Nanomaterials: Fabrication of a Nanocomposite Photodetector with Ultrahigh Gain and Wide Spectral Response. Nano Letters 2013, 13 (5) , 1920-1927. https://doi.org/10.1021/nl3041367
    85. Kui Yu, Peter Ng, Jianying Ouyang, Md. Badruz Zaman, Abedelnasser Abulrob, Toya Nath Baral, Dorothy Fatehi, Zygmunt J. Jakubek, David Kingston, Xiaohua Wu, Xiangyang Liu, Charlie Hebert, Donald M. Leek, and Dennis M. Whitfield . Low-Temperature Approach to Highly Emissive Copper Indium Sulfide Colloidal Nanocrystals and Their Bioimaging Applications. ACS Applied Materials & Interfaces 2013, 5 (8) , 2870-2880. https://doi.org/10.1021/am302951k
    86. Xina Wang, Rong Liu, Tian Wang, Baoyuan Wang, Yang Xu, and Hao Wang . Dual Roles of ZnS Thin Layers in Significant Photocurrent Enhancement of ZnO/CdTe Nanocable Arrays Photoanode. ACS Applied Materials & Interfaces 2013, 5 (8) , 3312-3316. https://doi.org/10.1021/am4003793
    87. Shuling Shen and Qiangbin Wang . Rational Tuning the Optical Properties of Metal Sulfide Nanocrystals and Their Applications. Chemistry of Materials 2013, 25 (8) , 1166-1178. https://doi.org/10.1021/cm302482d
    88. Marc-Antoine Langevin, Dany Lachance-Quirion, Anna M. Ritcey, and Claudine Nì. Allen . Size-Dependent Extinction Coefficients and Transition Energies of Near-Infrared β-Ag2Se Colloidal Quantum Dots. The Journal of Physical Chemistry C 2013, 117 (10) , 5424-5428. https://doi.org/10.1021/jp311206e
    89. Haizheng Zhong, Zelong Bai, and Bingsuo Zou . Tuning the Luminescence Properties of Colloidal I–III–VI Semiconductor Nanocrystals for Optoelectronics and Biotechnology Applications. The Journal of Physical Chemistry Letters 2012, 3 (21) , 3167-3175. https://doi.org/10.1021/jz301345x
    90. Tsukasa Torimoto, Masaki Tada, Meilin Dai, Tatsuya Kameyama, Shushi Suzuki, and Susumu Kuwabata . Tunable Photoelectrochemical Properties of Chalcopyrite AgInS2 Nanoparticles Size-Controlled with a Photoetching Technique. The Journal of Physical Chemistry C 2012, 116 (41) , 21895-21902. https://doi.org/10.1021/jp307305q
    91. Young-Woock Noh, Seong-Ho Kong, Doo-Yeol Choi, Hye Sun Park, Han-Kwang Yang, Hyuk-Joon Lee, Hee Chan Kim, Keon Wook Kang, Moon-Hee Sung, and Yong Taik Lim . Near-Infrared Emitting Polymer Nanogels for Efficient Sentinel Lymph Node Mapping. ACS Nano 2012, 6 (9) , 7820-7831. https://doi.org/10.1021/nn301949y
    92. Dawei Deng, Yuqi Chen, Jie Cao, Junmei Tian, Zhiyu Qian, Samuel Achilefu, and Yueqing Gu . High-Quality CuInS2/ZnS Quantum Dots for In vitro and In vivo Bioimaging. Chemistry of Materials 2012, 24 (15) , 3029-3037. https://doi.org/10.1021/cm3015594
    93. Luca De Trizio, Mirko Prato, Alessandro Genovese, Alberto Casu, Mauro Povia, Roberto Simonutti, Marcelo J. P. Alcocer, Cosimo D’Andrea, Francesco Tassone, and Liberato Manna . Strongly Fluorescent Quaternary Cu–In–Zn–S Nanocrystals Prepared from Cu1-xInS2 Nanocrystals by Partial Cation Exchange. Chemistry of Materials 2012, 24 (12) , 2400-2406. https://doi.org/10.1021/cm301211e
    94. Matthew Booth, Andrew P. Brown, Stephen D. Evans, and Kevin Critchley . Determining the Concentration of CuInS2 Quantum Dots from the Size-Dependent Molar Extinction Coefficient. Chemistry of Materials 2012, 24 (11) , 2064-2070. https://doi.org/10.1021/cm300227b
    95. Woo-Seuk Song and Heesun Yang . Efficient White-Light-Emitting Diodes Fabricated from Highly Fluorescent Copper Indium Sulfide Core/Shell Quantum Dots. Chemistry of Materials 2012, 24 (10) , 1961-1967. https://doi.org/10.1021/cm300837z
    96. Xiaosheng Tang, Wenxi Bernice Ailsa Ho, and Jun Min Xue . Synthesis of Zn-Doped AgInS2 Nanocrystals and Their Fluorescence Properties. The Journal of Physical Chemistry C 2012, 116 (17) , 9769-9773. https://doi.org/10.1021/jp207711p
    97. Goutam Palui, Hyon Bin Na, and Hedi Mattoussi . Poly(ethylene glycol)-Based Multidentate Oligomers for Biocompatible Semiconductor and Gold Nanocrystals. Langmuir 2012, 28 (5) , 2761-2772. https://doi.org/10.1021/la203968t
    98. Noura A. Al-Hajaj, Alexandre Moquin, Kevin D. Neibert, Ghareb M. Soliman, Françoise M. Winnik, and Dusica Maysinger . Short Ligands Affect Modes of QD Uptake and Elimination in Human Cells. ACS Nano 2011, 5 (6) , 4909-4918. https://doi.org/10.1021/nn201009w
    99. Folarin Erogbogbo, Chen-An, Tien, Ching-Wen Chang, Ken-Tye Yong, Wing-Cheung Law, Hong Ding, Indrajit Roy, Mark T. Swihart, and Paras N. Prasad . Bioconjugation of Luminescent Silicon Quantum Dots for Selective Uptake by Cancer Cells. Bioconjugate Chemistry 2011, 22 (6) , 1081-1088. https://doi.org/10.1021/bc100552p
    100. Colin M. Hessel, Varun P. Pattani, Michael Rasch, Matthew G. Panthani, Bonil Koo, James W. Tunnell, and Brian A. Korgel . Copper Selenide Nanocrystals for Photothermal Therapy. Nano Letters 2011, 11 (6) , 2560-2566. https://doi.org/10.1021/nl201400z
    Load more citations