ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Solid Nanotubes Comprising α-Fe2O3 Nanoparticles Prepared from Ferritin Protein

View Author Information
Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi-shi, Saitama 332-0012, Japan
* Address correspondence to [email protected]
Cite this: ACS Nano 2010, 4, 3, 1732–1738
Publication Date (Web):February 18, 2010
https://doi.org/10.1021/nn901879d
Copyright © 2010 American Chemical Society

    Article Views

    3763

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    Solid nanotubes comprising α-Fe2O3 nanoparticles were prepared from iron-storage protein ferritin. Their structure, magnetic properties, and photocatalytic activities were characterized. The initial ferritin nanotube precursors were fabricated using alternating layer-by-layer depositions of poly-l-arginine (PLA) and ferritin into a track-etched polycarbonate membrane (pore diameter, 400 nm) with subsequent dissolution of the template. The obtained uniform cylinders of (PLA/ferritin)3 (outer diameter, 410 ± 14 nm) were calcinated at 500 °C under air, yielding reddish-brown iron oxide nanotubes. The one-dimensional hollow structure remained perfect, but its diameter, wall thickness, and maximum length were markedly diminished. Disappearance of the protein shell and the PLA layers were confirmed using IR and EDX spectroscopy. Subsequent SEM, TEM, and XPS measurements showed that the tubular walls comprise fine α-Fe2O3 nanoparticles with a 5 nm diameter. These α-Fe2O3 nanotubes demonstrated superparamagnetic properties with a blocking temperature of 37 K and efficient photocatalytic activity for degradation of 4-chlorophenol.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    SEM image of α-Fe2O3 nanotubes after brief sonication (Figure S1), UV−vis absorption spectrum of α-Fe2O3 nanotubes in water (Figure S2). This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 87 publications.

    1. Chuyao Chen, Cong Huang, Jiamin Liu, Jia Tao, Yuying Chen, Kan Deng, Yikai Xu, Bingquan Lin, Peng Zhao. Hofmeister Effect-Based T1–T2 Dual-Mode MRI and Enhanced Synergistic Therapy of Tumor. ACS Applied Materials & Interfaces 2022, 14 (44) , 49568-49581. https://doi.org/10.1021/acsami.2c15295
    2. Toshimi Shimizu, Wuxiao Ding, Naohiro Kameta. Soft-Matter Nanotubes: A Platform for Diverse Functions and Applications. Chemical Reviews 2020, 120 (4) , 2347-2407. https://doi.org/10.1021/acs.chemrev.9b00509
    3. Lei Yu, Ruixin Han, Xiahan Sang, Jue Liu, Melonie P. Thomas, Bethany M. Hudak, Amita Patel, Katharine Page, Beth S. Guiton. Shell-Induced Ostwald Ripening: Simultaneous Structure, Composition, and Morphology Transformations during the Creation of Hollow Iron Oxide Nanocapsules. ACS Nano 2018, 12 (9) , 9051-9059. https://doi.org/10.1021/acsnano.8b02946
    4. Priyadarshi Ranjan, Sreejith Shankar, Ronit Popovitz-Biro, Sidney R. Cohen, Iddo Pinkas, Reshef Tenne, Michal Lahav, and Milko E. van der Boom . Tubular Hybrids: A Nanoparticle—Molecular Network. Langmuir 2018, 34 (7) , 2464-2470. https://doi.org/10.1021/acs.langmuir.7b03125
    5. Sachin N. Shah, Abid A. Khan, Ana Espinosa, Miguel A. Garcia, Wiwat Nuansing, Mariana Ungureanu, Jonathan G. Heddle, Andrey L. Chuvilin, Christina Wege, and Alexander M. Bittner . Virus-Templated Near-Amorphous Iron Oxide Nanotubes. Langmuir 2016, 32 (23) , 5899-5908. https://doi.org/10.1021/acs.langmuir.5b04491
    6. Shouwei Zhang, Sophie Demoustier-Champagne, and Alain M. Jonas . Quantitative Collection and Enzymatic Activity of Glucose Oxidase Nanotubes Fabricated by Templated Layer-by-Layer Assembly. Biomacromolecules 2015, 16 (8) , 2382-2393. https://doi.org/10.1021/acs.biomac.5b00628
    7. Hauke Kloust, Robert Zierold, Jan-Philip Merkl, Christian Schmidtke, Artur Feld, Elmar Pöselt, Andreas Kornowski, Kornelius Nielsch, and Horst Weller . Synthesis of Iron Oxide Nanorods Using a Template Mediated Approach. Chemistry of Materials 2015, 27 (14) , 4914-4917. https://doi.org/10.1021/acs.chemmater.5b00513
    8. Han Hu, Buyuan Guan, Baoyu Xia, and Xiong Wen (David) Lou . Designed Formation of Co3O4/NiCo2O4 Double-Shelled Nanocages with Enhanced Pseudocapacitive and Electrocatalytic Properties. Journal of the American Chemical Society 2015, 137 (16) , 5590-5595. https://doi.org/10.1021/jacs.5b02465
    9. Khachatur V. Manukyan, Yong-Siou Chen, Sergei Rouvimov, Peng Li, Xiang Li, Sining Dong, Xinyu Liu, Jacek K. Furdyna, Alexei Orlov, Gary H. Bernstein, Wolfgang Porod, Sergey Roslyakov, and Alexander S. Mukasyan . Ultrasmall α-Fe2O3 Superparamagnetic Nanoparticles with High Magnetization Prepared by Template-Assisted Combustion Process. The Journal of Physical Chemistry C 2014, 118 (29) , 16264-16271. https://doi.org/10.1021/jp504733r
    10. Yanping Liu, Jooyoung Chung, Youngjin Jang, Shuai Mao, B. Moon Kim, Yongqaing Wang, and Xiaohui Guo . Magnetically Recoverable Nanoflake-Shaped Iron Oxide/Pt Heterogeneous Catalysts and Their Excellent Catalytic Performance in the Hydrogenation Reaction. ACS Applied Materials & Interfaces 2014, 6 (3) , 1887-1892. https://doi.org/10.1021/am404904p
    11. Sushma Kumari, Amol Kulkarni, Guruswamy Kumaraswamy, and Sayam Sen Gupta . Large Centimeter-Sized Macroporous Ferritin Gels as Versatile Nanoreactors. Chemistry of Materials 2013, 25 (23) , 4813-4819. https://doi.org/10.1021/cm403240j
    12. Shun Goto, Yusuke Amano, Motofusa Akiyama, Christoph Böttcher, and Teruyuki Komatsu . Gold Nanoparticle Inclusion into Protein Nanotube as a Layered Wall Component. Langmuir 2013, 29 (46) , 14293-14300. https://doi.org/10.1021/la403283x
    13. Bo Chen, Yi Jia, Jie Zhao, Hong Li, Weiguang Dong, and Junbai Li . Assembled Hemoglobin and Catalase Nanotubes for the Treatment of Oxidative Stress. The Journal of Physical Chemistry C 2013, 117 (38) , 19751-19758. https://doi.org/10.1021/jp407164q
    14. Maiyong Zhu, Ying Wang, Dehai Meng, Xingzhang Qin, and Guowang Diao . Hydrothermal Synthesis of Hematite Nanoparticles and Their Electrochemical Properties. The Journal of Physical Chemistry C 2012, 116 (30) , 16276-16285. https://doi.org/10.1021/jp304041m
    15. Yongmin Ko, Younghoon Kim, Hyunhee Baek, and Jinhan Cho . Electrically Bistable Properties of Layer-by-Layer Assembled Multilayers Based on Protein Nanoparticles. ACS Nano 2011, 5 (12) , 9918-9926. https://doi.org/10.1021/nn2036939
    16. Xuefeng Song, Lian Gao, and Sanjay Mathur . Synthesis, Characterization, and Gas Sensing Properties of Porous Nickel Oxide Nanotubes. The Journal of Physical Chemistry C 2011, 115 (44) , 21730-21735. https://doi.org/10.1021/jp208093s
    17. Zhihong Bao, Zhenhua Sun, Zifu Li, Linwei Tian, To Ngai, and Jianfang Wang . Plasmonic Gold−Superparamagnetic Hematite Heterostructures. Langmuir 2011, 27 (8) , 5071-5075. https://doi.org/10.1021/la200147d
    18. Ru Peng, Wenjing Zhang, Qin Ran, Cong Liang, Li Jing, Siqiu Ye, and Yuezhong Xian . Magnetically Switchable Bioelectrocatalytic System Based on Ferrocene Grafted Iron Oxide Nanoparticles. Langmuir 2011, 27 (6) , 2910-2916. https://doi.org/10.1021/la1040486
    19. Bin Liu, Xing Li, Ji Peng Zhang, Xin Li, Yu Yuan, Guo Hua Hou, Hui Juan Zhang, Hui Zhang, Yuan Li, Raffaele Mezzenga. Protein Nanotubes as Advanced Material Platforms and Delivery Systems. Advanced Materials 2024, 36 (6) https://doi.org/10.1002/adma.202307627
    20. Yuanqing Guo, Quan Liu, Xiaobin Tang, Heng Liang, Guibai Li, Liwei Yang, Lu Wang, Xiaoling Li, Yan Sun. Photocatalytic membrane coated with α-Fe2O3/Fe3O4 for enhanced filtration performance and antifouling property in surface water treatment. Chemosphere 2023, 341 , 140114. https://doi.org/10.1016/j.chemosphere.2023.140114
    21. Jiaqi Liu, Ya'nan Meng, Deyang Yu, Chunli Guo, Liangyu Liu, Xiaoyang Liu. Synthesis of Co 3 O 4 /NiCo 2 O 4 Double‐Shelled Nanocages with Enhanced Capacitive and Oxygen Evolution Reaction Properties in Battery‐Supercapacitor Hybrid Devices. ChemistrySelect 2023, 8 (29) https://doi.org/10.1002/slct.202301597
    22. Marcin Drozd, Adrian Duszczyk, Polina Ivanova, Mariusz Pietrzak. Interactions of proteins with metal-based nanoparticles from a point of view of analytical chemistry - Challenges and opportunities. Advances in Colloid and Interface Science 2022, 304 , 102656. https://doi.org/10.1016/j.cis.2022.102656
    23. Yifan Jia, Congyi Yang, Xueyang Chen, Wenqing Xue, Helena J. Hutchins-Crawford, Qianqian Yu, Paul D. Topham, Linge Wang. A review on electrospun magnetic nanomaterials: methods, properties and applications. Journal of Materials Chemistry C 2021, 9 (29) , 9042-9082. https://doi.org/10.1039/D1TC01477C
    24. Shouwei Zhang, Fan Xia, Sophie Demoustier-Champagne, Alain M. Jonas. Layer-by-layer assembly in nanochannels: assembly mechanism and applications. Nanoscale 2021, 13 (16) , 7471-7497. https://doi.org/10.1039/D1NR01113H
    25. Toshimi Shimizu. General Remarks of Soft-Matter Nanotubes. 2021, 1-58. https://doi.org/10.1007/978-981-16-2685-2_1
    26. Toshimi Shimizu. Protein-Based Nanotubes. 2021, 241-263. https://doi.org/10.1007/978-981-16-2685-2_7
    27. Mostafa F. Al-Hakkani, Gamal A. Gouda, Sedky H.A. Hassan. A review of green methods for phyto-fabrication of hematite (α-Fe2O3) nanoparticles and their characterization, properties, and applications. Heliyon 2021, 7 (1) , e05806. https://doi.org/10.1016/j.heliyon.2020.e05806
    28. Sunil Kumar, Anjali Thakur, Saral K. Gupta, Parasmani Rajput, Amarjeet Singh. A Facile Route to Synthesis of Ferromagnetic and Antiferromagnetic Phases of Iron Oxide Nanoparticles by Controlled Heat Treatment of Ferritin. Journal of Superconductivity and Novel Magnetism 2020, 33 (12) , 3841-3852. https://doi.org/10.1007/s10948-020-05649-1
    29. Teruyuki Komatsu. Protein-based Smart Microtubes and Nanotubes as Ultrasmall Biomaterials. Chemistry Letters 2020, 49 (10) , 1245-1255. https://doi.org/10.1246/cl.200433
    30. Mariana P. Proenca, Célia T. Sousa, João Ventura, João P. Araújo. Cylindrical magnetic nanotubes: Synthesis, magnetism and applications. 2020, 135-184. https://doi.org/10.1016/B978-0-08-102832-2.00006-2
    31. Hanuk Lee, Jae-Woo Park. Titanium-doped stainless steel nanotubes for the photocatalytic degradation of an organic compound. Catalysis Today 2020, 340 , 268-276. https://doi.org/10.1016/j.cattod.2018.09.021
    32. Sudipta Bera, Jayeeta Kolay, Pallabi Pramanik, Anirban Bhattacharyya, Rupa Mukhopadhyay. Long-range solid-state electron transport through ferritin multilayers. Journal of Materials Chemistry C 2019, 7 (29) , 9038-9048. https://doi.org/10.1039/C9TC01744E
    33. Zhizhong Liu, Ping Xu, Hao Song, Jiangwen Xu, Jijiang Fu, Biao Gao, Xuming Zhang, Paul K. Chu. In situ formation of porous TiO2 nanotube array with MgTiO3 nanoparticles for enhanced photocatalytic activity. Surface and Coatings Technology 2019, 365 , 222-226. https://doi.org/10.1016/j.surfcoat.2018.07.062
    34. Alex Rufus, N. Sreeju, Daizy Philip. Size tunable biosynthesis and luminescence quenching of nanostructured hematite (α-Fe2O3) for catalytic degradation of organic pollutants. Journal of Physics and Chemistry of Solids 2019, 124 , 221-234. https://doi.org/10.1016/j.jpcs.2018.09.026
    35. Dong Mao, Xiaoqi Cui, Zhiwen He, Hua Lu, Wending Zhang, Lei Wang, Qiang Zhuang, Shijia Hua, Ting Mei, Jianlin Zhao. Broadband polarization-insensitive saturable absorption of Fe 2 O 3 nanoparticles. Nanoscale 2018, 10 (45) , 21219-21224. https://doi.org/10.1039/C8NR07551D
    36. Lei Han, Haijiao Zhang, Daoyuan Chen, Feng Li. Protein‐Directed Metal Oxide Nanoflakes with Tandem Enzyme‐Like Characteristics: Colorimetric Glucose Sensing Based on One‐Pot Enzyme‐Free Cascade Catalysis. Advanced Functional Materials 2018, 28 (17) https://doi.org/10.1002/adfm.201800018
    37. Raju Edla, Andrea Tonezzer, Michele Orlandi, Nainesh Patel, Rohan Fernandes, Nicola Bazzanella, Kalyani Date, D.C. Kothari, Antonio Miotello. 3D hierarchical nanostructures of iron oxides coatings prepared by pulsed laser deposition for photocatalytic water purification. Applied Catalysis B: Environmental 2017, 219 , 401-411. https://doi.org/10.1016/j.apcatb.2017.07.063
    38. . Synthesis, Characterization, and Applications of Two‐Dimensional ( 2D ) Graphene‐Related Nanostructures. 2017, 221-361. https://doi.org/10.1002/9783527698158.ch4
    39. Lei Yu, Ruixin Han, Xiahan Sang, Jue Liu, Amita Patel, Katharine Page, Beth S. Guiton. Understanding Hollow Metal Oxide Nanomaterial Formation with in situ Transmission Electron Microscopy. Microscopy and Microanalysis 2017, 23 (S1) , 2066-2067. https://doi.org/10.1017/S1431927617010996
    40. Hong Pan, Long Jin, Binbin Zhang, Hai Su, Haitao Zhang, Weiqing Yang. Self-assembly biomimetic fern leaf-like α-Fe2O3 for sensing inflammable 1-butanol gas. Sensors and Actuators B: Chemical 2017, 243 , 29-35. https://doi.org/10.1016/j.snb.2016.11.080
    41. Sushma Kumari, Marleen Häring, Sayam Sen Gupta, David Díaz Díaz. Catalytic Macroporous Biohydrogels Made of Ferritin‐Encapsulated Gold Nanoparticles. ChemPlusChem 2017, 82 (2) , 225-232. https://doi.org/10.1002/cplu.201600454
    42. Zeheng Yang, Kun Wang, Zongming Shao, Yuan Tian, Gongde Chen, Kai Wang, Zhangxian Chen, Yan Dou, Weixin Zhang. In-situ preparation of Fe2O3 hierarchical arrays on stainless steel substrate for high efficient catalysis. Journal of Solid State Chemistry 2017, 246 , 278-283. https://doi.org/10.1016/j.jssc.2016.11.023
    43. Lei Han, Pei Liu, Haijiao Zhang, Feng Li, Aihua Liu. Phage capsid protein-directed MnO 2 nanosheets with peroxidase-like activity for spectrometric biosensing and evaluation of antioxidant behaviour. Chem. Commun. 2017, 53 (37) , 5216-5219. https://doi.org/10.1039/C7CC02049J
    44. Sameer Kulkarni, Mangesh Jadhav, Prasad Raikar, Delicia A. Barretto, Shyam Kumar Vootla, U. S. Raikar. Green synthesized multifunctional Ag@Fe 2 O 3 nanocomposites for effective antibacterial, antifungal and anticancer properties. New Journal of Chemistry 2017, 41 (17) , 9513-9520. https://doi.org/10.1039/C7NJ01849E
    45. Hao Tian, Songcan Wang, Chi Zhang, Jean-Pierre Veder, Jian Pan, Mietek Jaroniec, Lianzhou Wang, Jian Liu. Design and synthesis of porous ZnTiO 3 /TiO 2 nanocages with heterojunctions for enhanced photocatalytic H 2 production. Journal of Materials Chemistry A 2017, 5 (23) , 11615-11622. https://doi.org/10.1039/C7TA00148G
    46. Samantha Doninelli, Michael Badoux, Andreas F. M. Kilbinger. Polymeric Tubular Structures. 2016, 141-220. https://doi.org/10.1039/9781782626664-00141
    47. Xiaodong Ma, Mengying Zhao, Qin Pang, Meihua Zheng, Hongwen Sun, John Crittenden, Yanying Zhu, Yongsheng Chen. Development of novel CaCO 3 /Fe 2 O 3 nanorods for low temperature 1,2-dichlorobenzene oxidation. Applied Catalysis A: General 2016, 522 , 70-79. https://doi.org/10.1016/j.apcata.2016.04.025
    48. Yongmin Ko, Sook Won Ryu, Jinhan Cho. Biomolecule nanoparticle-induced nanocomposites with resistive switching nonvolatile memory properties. Applied Surface Science 2016, 368 , 36-43. https://doi.org/10.1016/j.apsusc.2016.01.225
    49. Lingjuan Ma, Hongbin Ma, Nanxing Gao, Jiaomei Wang, Xuqin Zhang. Controllable synthesis of α-Fe2O3 nanotubes with high surface area: preparation, growth mechanism, and its catalytic performance for the selective catalytic reduction of NO with NH3. Journal of Materials Science 2016, 51 (4) , 1959-1965. https://doi.org/10.1007/s10853-015-9505-z
    50. Qingliang He, Tingting Yuan, Yiran Wang, Abhishant Guleria, Suying Wei, Guoqi Zhang, Luyi Sun, Jingjing Liu, Jingfang Yu, David P. Young, Hongfei Lin, Airat Khasanov, Zhanhu Guo. Manipulating the dimensional assembly pattern and crystalline structures of iron oxide nanostructures with a functional polyolefin. Nanoscale 2016, 8 (4) , 1915-1920. https://doi.org/10.1039/C5NR07213A
    51. Guijia Cui, Zebin Sun, Haizhen Li, Xiaoning Liu, Yan Liu, Yaxi Tian, Shiqiang Yan. Synthesis and characterization of magnetic elongated hollow mesoporous silica nanocapsules with silver nanoparticles. Journal of Materials Chemistry A 2016, 4 (5) , 1771-1783. https://doi.org/10.1039/C5TA09353H
    52. Rongmei Liu, Zixiang Jiang, Qi Liu, Xiandong Zhu, Li Liu, Lu Ni, Chengcheng Shen. Novel red blood cell shaped α-Fe 2 O 3 microstructures and FeO(OH) nanorods as high capacity supercapacitors. RSC Advances 2015, 5 (111) , 91127-91133. https://doi.org/10.1039/C5RA14619D
    53. Il‐Doo Kim, Seon‐Jin Choi. Nanofibers and Nanotubes. 2015, 415-442. https://doi.org/10.1002/9783527670819.ch13
    54. Hiroshi Inaba, Susumu Kitagawa, Takafumi Ueno. Protein Needles as Molecular Templates for Artificial Metalloenzymes. Israel Journal of Chemistry 2015, 55 (1) , 40-50. https://doi.org/10.1002/ijch.201400097
    55. M.P. Proenca, C.T. Sousa, J. Ventura, J.P. Araújo. Electrochemical synthesis and magnetism of magnetic nanotubes. 2015, 727-781. https://doi.org/10.1016/B978-0-08-100164-6.00024-2
    56. Qingliang He, Tingting Yuan, Suying Wei, Zhanhu Guo. Unusual Function of Modified Polyolefins for Manipulating Magnetic Nanostructures. JOM 2014, 66 (4) , 655-659. https://doi.org/10.1007/s11837-014-0903-5
    57. Xiaodong Ma, Xi Feng, Jie Guo, Huiqin Cao, Xueyue Suo, Hongwen Sun, Meihua Zheng. Catalytic oxidation of 1,2-dichlorobenzene over Ca-doped FeOx hollow microspheres. Applied Catalysis B: Environmental 2014, 147 , 666-676. https://doi.org/10.1016/j.apcatb.2013.10.003
    58. Amit Kumar Dutta, Swarup Kumar Maji, Bibhutosh Adhikary. γ-Fe2O3 nanoparticles: An easily recoverable effective photo-catalyst for the degradation of rose bengal and methylene blue dyes in the waste-water treatment plant. Materials Research Bulletin 2014, 49 , 28-34. https://doi.org/10.1016/j.materresbull.2013.08.024
    59. Baiju G. Nair, Yukiko Nakano, Yoshihiro Ito, Hiroshi Abe. Transmembrane molecular transport through nanopores formed by protein nanotubes. Chem. Commun. 2014, 50 (5) , 602-604. https://doi.org/10.1039/C3CC45907A
    60. Yong Li, Wenjie Shen. Tuning the Morphology of Metal Oxides for Catalytic Applications. 2013, 333-403. https://doi.org/10.1002/9781118609811.ch10
    61. Yunfeng Li, Yanjie Hu, Guangjian Huang, Chunzhong Li. Metallic iron nanoparticles: Flame synthesis, characterization and magnetic properties. Particuology 2013, 11 (4) , 460-467. https://doi.org/10.1016/j.partic.2012.10.008
    62. Shengjie Xu, Danping Shen, Peiyi Wu. Fabrication of water-repellent cellulose fiber coated with magnetic nanoparticles under supercritical carbon dioxide. Journal of Nanoparticle Research 2013, 15 (4) https://doi.org/10.1007/s11051-013-1577-6
    63. Ryunosuke Kato, Teruyuki Komatsu. Structure and Photocatalytic Activity of Iron Oxide Nanotubes Prepared from Ferritin. Journal of Inorganic and Organometallic Polymers and Materials 2013, 23 (1) , 167-171. https://doi.org/10.1007/s10904-012-9725-5
    64. Amedea B. Seabra, Nelson Durán. Biological applications of peptides nanotubes: An overview. Peptides 2013, 39 , 47-54. https://doi.org/10.1016/j.peptides.2012.10.007
    65. Xiaopeng Qi, Guangwei She, Meng Wang, Lixuan Mu, Wensheng Shi. Electrochemical synthesis of p-type Zn-doped α-Fe2O3 nanotube arrays for photoelectrochemical water splitting. Chemical Communications 2013, 49 (51) , 5742. https://doi.org/10.1039/c3cc40599k
    66. Huaifang Shang, Wangsheng Chu, Jie Cheng, Fangfang Pan, Dongming Cheng, Dingguo Xia, Wenlou Wang, Ziyu Wu. Surface phase composition of nanosized LiFePO4 and their enhanced electrochemical properties. Journal of Materials Chemistry A 2013, 1 (22) , 6635. https://doi.org/10.1039/c3ta10390k
    67. Qingliang He, Suying Wei, Zhanhu Guo. Magnetic Polyolefin-based Nanocomposites. MRS Proceedings 2013, 1499 https://doi.org/10.1557/opl.2013.576
    68. Weiting Zhan, Hongwei Ni, Rongsheng Chen, Xinli Song, Kaifu Huo, Jijiang Fu. Formation of nanopore arrays on stainless steel surface by anodization for visible-light photocatalytic degradation of organic pollutants. Journal of Materials Research 2012, 27 (18) , 2417-2424. https://doi.org/10.1557/jmr.2012.200
    69. Qingliang He, Tingting Yuan, Suying Wei, Neel Haldolaarachchige, Zhiping Luo, David P. Young, Airat Khasanov, Zhanhu Guo. Morphology‐ and Phase‐Controlled Iron Oxide Nanoparticles Stabilized with Maleic Anhydride Grafted Polypropylene. Angewandte Chemie 2012, 124 (35) , 8972-8975. https://doi.org/10.1002/ange.201203347
    70. Qingliang He, Tingting Yuan, Suying Wei, Neel Haldolaarachchige, Zhiping Luo, David P. Young, Airat Khasanov, Zhanhu Guo. Morphology‐ and Phase‐Controlled Iron Oxide Nanoparticles Stabilized with Maleic Anhydride Grafted Polypropylene. Angewandte Chemie International Edition 2012, 51 (35) , 8842-8845. https://doi.org/10.1002/anie.201203347
    71. Jean‐Charles Eloi, Sarah E. Ward Jones, Veronika Poór, Mitsuhiro Okuda, Jessica Gwyther, Walther Schwarzacher. Electrochemically Triggered Selective Adsorption of Biotemplated Nanoparticles on Self‐Assembled Organometallic Diblock Copolymer Thin Films. Advanced Functional Materials 2012, 22 (15) , 3273-3278. https://doi.org/10.1002/adfm.201200210
    72. Cécile J. Roy, Cédric C. Buron, Sophie Demoustier‐Champagne, Alain M. Jonas. Nanoconfined Polyelectrolyte Multilayers: From Nanostripes to Multisegmented Functional Nanotubes. 2012, 613-636. https://doi.org/10.1002/9783527646746.ch25
    73. Yixing Ye, Baoyou Geng. Magnetic Nanotubes: Synthesis, Properties, and Applications. Critical Reviews in Solid State and Materials Sciences 2012, 37 (2) , 75-93. https://doi.org/10.1080/10408436.2011.613491
    74. Teruyuki Komatsu, Takaaki Sato, Christoph Boettcher. Human Serum Albumin Nanotubes with Esterase Activity. Chemistry – An Asian Journal 2012, 7 (1) , 201-206. https://doi.org/10.1002/asia.201100606
    75. Teruyuki Komatsu. Protein-based nanotubes for biomedical applications. Nanoscale 2012, 4 (6) , 1910-1918. https://doi.org/10.1039/C1NR11224D
    76. Jing-San Xu, Ying-Jie Zhu. α-Fe2O3 hierarchically nanostructured mesoporous microspheres: Surfactant-free solvothermal combined with heat treatment synthesis, photocatalytic activity and magnetic property. CrystEngComm 2012, 14 (8) , 2702. https://doi.org/10.1039/c2ce06473a
    77. Xiaoling Mou, Xuejiao Wei, Yong Li, Wenjie Shen. Tuning crystal-phase and shape of Fe2O3 nanoparticles for catalytic applications. CrystEngComm 2012, 14 (16) , 5107. https://doi.org/10.1039/c2ce25109d
    78. Junkun Liu, Huaqiang Cao, Jinping Xiong, Ziyang Cheng. Ferromagnetic hematite@graphene nanocomposites for removal of rhodamine B dye molecules from water. CrystEngComm 2012, 14 (16) , 5140. https://doi.org/10.1039/c2ce25578b
    79. Mingshan Zhu, Penglei Chen, Minghua Liu. Highly efficient visible-light-driven plasmonic photocatalysts based on graphene oxide-hybridized one-dimensional Ag/AgCl heteroarchitectures. Journal of Materials Chemistry 2012, 22 (40) , 21487. https://doi.org/10.1039/c2jm34938h
    80. Yanhu Wei, Shuangbing Han, David A. Walker, Scott C. Warren, Bartosz A. Grzybowski. Enhanced photocatalytic activity of hybrid Fe2O3–Pd nanoparticulate catalysts. Chemical Science 2012, 3 (4) , 1090. https://doi.org/10.1039/c2sc00673a
    81. Chuan Wang, Hong Liu, Zhimin Sun. Heterogeneous Photo-Fenton Reaction Catalyzed by Nanosized Iron Oxides for Water Treatment. International Journal of Photoenergy 2012, 2012 , 1-10. https://doi.org/10.1155/2012/801694
    82. Ryunosuke Kato, Teruyuki Komatsu. Protein Nanotube Arrays Immobilized on Solid Substrates: Molecular Trap in Aqueous Medium. Chemistry Letters 2011, 40 (12) , 1338-1339. https://doi.org/10.1246/cl.2011.1338
    83. Hui Li, Zhong Lu, Qin Li, Man‐Ho So, Chi‐Ming Che, Rong Chen. Hydrothermal Synthesis and Properties of Controlled α‐Fe 2 O 3 Nanostructures in HEPES Solution. Chemistry – An Asian Journal 2011, 6 (9) , 2320-2331. https://doi.org/10.1002/asia.201100204
    84. Dong Hun Kim, Lei Bi, Peng Jiang, Gerald F. Dionne, C. A. Ross. Magnetoelastic effects in SrTi 1 − x M x O 3 (M = Fe, Co, or Cr) epitaxial thin films. Physical Review B 2011, 84 (1) https://doi.org/10.1103/PhysRevB.84.014416
    85. Teruyuki Komatsu, Hiromi Terada, Nao Kobayashi. Protein Nanotubes with an Enzyme Interior Surface. Chemistry – A European Journal 2011, 17 (6) , 1849-1854. https://doi.org/10.1002/chem.201001937
    86. Omar Azzaroni, K. H. Aaron Lau. Layer-by-layer assemblies in nanoporous templates: nano-organized design and applications of soft nanotechnology. Soft Matter 2011, 7 (19) , 8709. https://doi.org/10.1039/c1sm05561e
    87. Shyamal K. Das, M. Gnanavel, Manu U. M. Patel, Chikkadasappa Shivakumara, Aninda J. Bhattacharyya. Anamolously High Lithium Storage in Mesoporous Nanoparticulate Aggregation of Fe3+ Doped Anatase Titania. Journal of The Electrochemical Society 2011, 158 (12) , A1290. https://doi.org/10.1149/2.029112jes

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect