ACS Publications. Most Trusted. Most Cited. Most Read
Somamides A and B, Two New Depsipeptide Analogues of Dolastatin 13 from a Fijian Cyanobacterial Assemblage of Lyngbya majuscula and Schizothrix Species
My Activity
    Article

    Somamides A and B, Two New Depsipeptide Analogues of Dolastatin 13 from a Fijian Cyanobacterial Assemblage of Lyngbya majuscula and Schizothrix Species
    Click to copy article linkArticle link copied!

    View Author Information
    College of Pharmacy, Oregon State University, Corvallis, Oregon 97331
    Other Access Options

    Journal of Natural Products

    Cite this: J. Nat. Prod. 2001, 64, 6, 716–719
    Click to copy citationCitation copied!
    https://doi.org/10.1021/np000634j
    Published May 18, 2001
    Copyright © 2001 American Chemical Society and American Society of Pharmacognosy

    Abstract

    Click to copy section linkSection link copied!

    Somamides A (1) and B (2) were isolated from assemblages of the marine cyanobacteria Lyngbya majuscula and Schizothrix sp. from the Fijian Islands. These new depsipeptides are analogous in structure to the cyanobacterial metabolite symplostatin 2 (4) as well as dolastatin 13 (3), originally isolated from Dolabella auricularia, further demonstrating the cyanobacterial origin of the dolastatins.

    Copyright © 2001 American Chemical Society and American Society of Pharmacognosy

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    *

     To whom correspondence should be addressed. Tel:  541 737 5801. Fax:  541 737 3999. E-mail:  [email protected].

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 71 publications.

    1. Yueying Li, Hao-Bing Yu, Yi Zhang, Tiago Leao, Evgenia Glukhov, Marsha L. Pierce, Chen Zhang, Hyunwoo Kim, Huanru Henry Mao, Fang Fang, Garrison W. Cottrell, Thomas F. Murray, Lena Gerwick, Huashi Guan, William H. Gerwick. Pagoamide A, a Cyclic Depsipeptide Isolated from a Cultured Marine Chlorophyte, Derbesia sp., Using MS/MS-Based Molecular Networking. Journal of Natural Products 2020, 83 (3) , 617-625. https://doi.org/10.1021/acs.jnatprod.9b01019
    2. Lena Keller, Kirley Marques Canuto, Chenxi Liu, Brian M. Suzuki, Jehad Almaliti, Asfandyar Sikandar, C. Benjamin Naman, Evgenia Glukhov, Danmeng Luo, Brendan M. Duggan, Hendrik Luesch, Jesko Koehnke, Anthony J. O’Donoghue, William H. Gerwick. Tutuilamides A–C: Vinyl-Chloride-Containing Cyclodepsipeptides from Marine Cyanobacteria with Potent Elastase Inhibitory Properties. ACS Chemical Biology 2020, 15 (3) , 751-757. https://doi.org/10.1021/acschembio.9b00992
    3. Shinya Kodani, Hisayuki Komaki, Hikaru Hemmi, Yuto Miyake, Issara Kaweewan, Hideo Dohra. Streptopeptolin, a Cyanopeptolin-Type Peptide from Streptomyces olivochromogenes. ACS Omega 2018, 3 (7) , 8104-8110. https://doi.org/10.1021/acsomega.8b01042
    4. Annabel Levert, Rebeca Alvariño, Louis Bornancin, Eliane Abou Mansour, Adam M. Burja, Anne-Marie Genevière, Isabelle Bonnard, Eva Alonso, Luis Botana, Bernard Banaigs. Structures and Activities of Tiahuramides A–C, Cyclic Depsipeptides from a Tahitian Collection of the Marine Cyanobacterium Lyngbya majuscula. Journal of Natural Products 2018, 81 (6) , 1301-1310. https://doi.org/10.1021/acs.jnatprod.7b00751
    5. Xiao Liang, Xu-Hua Nong, Zhong-Hui Huang, and Shu-Hua Qi . Antifungal and Antiviral Cyclic Peptides from the Deep-Sea-Derived Fungus Simplicillium obclavatum EIODSF 020. Journal of Agricultural and Food Chemistry 2017, 65 (25) , 5114-5121. https://doi.org/10.1021/acs.jafc.7b01238
    6. Min Chen, Chang-Lun Shao, Xiu-Mei Fu, Chui-Jian Kong, Zhi-Gang She, and Chang-Yun Wang . Lumazine Peptides Penilumamides B–D and the Cyclic Pentapeptide Asperpeptide A from a Gorgonian-Derived Aspergillus sp. Fungus. Journal of Natural Products 2014, 77 (7) , 1601-1606. https://doi.org/10.1021/np5001686
    7. Yasufumi Imae, Kentaro Takada, Shigeru Okada, Yuji Ise, Hiroshi Yoshimura, Yasuhiro Morii, and Shigeki Matsunaga . Isolation of Ciliatamide D from a Marine Sponge Stelletta sp. and a Reinvestigation of the Configuration of Ciliatamide A. Journal of Natural Products 2013, 76 (4) , 755-758. https://doi.org/10.1021/np300878b
    8. Hahk-Soo Kang, Aleksej Krunic, and Jimmy Orjala . Stigonemapeptin, an Ahp-Containing Depsipeptide with Elastase Inhibitory Activity from the Bloom-Forming Freshwater Cyanobacterium Stigonema sp.. Journal of Natural Products 2012, 75 (4) , 807-811. https://doi.org/10.1021/np300150h
    9. George R. Pettit, Thomas H. Smith, Jun-Ping Xu, Delbert L. Herald, Erik J. Flahive, Collin R. Anderson, Paul E. Belcher, and John C. Knight . Antineoplastic Agents. 590. X-ray Crystal Structure of Dolastatin 16 and Syntheses of the Dolamethylleuine and Dolaphenvaline Units. Journal of Natural Products 2011, 74 (5) , 1003-1008. https://doi.org/10.1021/np100877h
    10. Sarath P. Gunasekera, Margaret W. Miller, Jason C. Kwan, Hendrik Luesch and Valerie J. Paul. Molassamide, a Depsipeptide Serine Protease Inhibitor from the Marine Cyanobacterium Dichothrix utahensis. Journal of Natural Products 2010, 73 (3) , 459-462. https://doi.org/10.1021/np900603f
    11. Takaya Kisugi and Tatsufumi Okino. Micropeptins from the Freshwater Cyanobacterium Microcystis aeruginosa (NIES-100). Journal of Natural Products 2009, 72 (4) , 777-781. https://doi.org/10.1021/np800631t
    12. Sarath P. Gunasekera, Raphael Ritson-Williams and Valerie J. Paul. Carriebowmide, a New Cyclodepsipeptide from the Marine Cyanobacterium Lyngbya polychroa. Journal of Natural Products 2008, 71 (12) , 2060-2063. https://doi.org/10.1021/np800453t
    13. Kanchan Taori, Susan Matthew, James R. Rocca, Valerie J. Paul and Hendrik Luesch. Lyngbyastatins 5–7, Potent Elastase Inhibitors from Floridian Marine Cyanobacteria, Lyngbya spp.. Journal of Natural Products 2007, 70 (10) , 1593-1600. https://doi.org/10.1021/np0702436
    14. Yasumasa Hamada and, Takayuki Shioiri. Recent Progress of the Synthetic Studies of Biologically Active Marine Cyclic Peptides and Depsipeptides. Chemical Reviews 2005, 105 (12) , 4441-4482. https://doi.org/10.1021/cr0406312
    15. Maria Elizbeth Alvarez-Sánchez, Rodrigo Arreola, Saray Quintero-Fabián, Gilberto Pérez-Sánchez. Modified peptides and organic metabolites of cyanobacterial origin with antiplasmodial properties. International Journal for Parasitology: Drugs and Drug Resistance 2024, 24 , 100530. https://doi.org/10.1016/j.ijpddr.2024.100530
    16. Chanaphat Thetsana, Ryo Kobayashi, Kanitta Manadee, Shinya Kodani. Isolation and structure determination of a new depsipeptide crocapeptin C from the myxobacterium Melittangium boletus. Natural Product Research 2024, , 1-7. https://doi.org/10.1080/14786419.2024.2308719
    17. Sudeshna Nandi, Somanjana Khatua, Anish Nag, Surjit Sen, Nilanjan Chakraborty, Arghya Naskar, Krishnendu Acharya, Reham Hassan Mekky, María del Mar Contreras, Daniela Calina, Irene Dini, Javad Sharifi-Rad. Dolastatins and their analogues present a compelling landscape of potential natural and synthetic anticancer drug candidates. Current Research in Biotechnology 2024, 7 , 100167. https://doi.org/10.1016/j.crbiot.2023.100167
    18. Robert Konkel, Marta Cegłowska, Karolina Szubert, Ewa Wieczerzak, Sofia Iliakopoulou, Triantafyllos Kaloudis, Hanna Mazur-Marzec. Structural Diversity and Biological Activity of Cyanopeptolins Produced by Nostoc edaphicum CCNP1411. Marine Drugs 2023, 21 (10) , 508. https://doi.org/10.3390/md21100508
    19. Zi-Hui Chen, Yue-Wei Guo, Xu-Wen Li. Recent advances on marine mollusk-derived natural products: chemistry, chemical ecology and therapeutical potential. Natural Product Reports 2023, 40 (3) , 509-556. https://doi.org/10.1039/D2NP00021K
    20. Alexis C.R. Hoste, Sigrid Görgen, Philippe Jacques. Increasing the natural biodiversity of microbial lipopeptides using a synthetic biology approach. 2023, 203-247. https://doi.org/10.1016/B978-0-323-91697-4.00010-7
    21. Raphael Reher, Allegra T. Aron, Pavla Fajtová, Paolo Stincone, Berenike Wagner, Alicia I. Pérez-Lorente, Chenxi Liu, Ido Y. Ben Shalom, Wout Bittremieux, Mingxun Wang, Kyowon Jeong, Marie L. Matos-Hernandez, Kelsey L. Alexander, Eduardo J. Caro-Diaz, C. Benjamin Naman, J. H. William Scanlan, Phil M. M. Hochban, Wibke E. Diederich, Carlos Molina-Santiago, Diego Romero, Khaled A. Selim, Peter Sass, Heike Brötz-Oesterhelt, Chambers C. Hughes, Pieter C. Dorrestein, Anthony J. O’Donoghue, William H. Gerwick, Daniel Petras. Native metabolomics identifies the rivulariapeptolide family of protease inhibitors. Nature Communications 2022, 13 (1) https://doi.org/10.1038/s41467-022-32016-6
    22. Emily Curren, Chui Pin Leaw, Po Teen Lim, Sandric Chee Yew Leong. The toxic cosmopolitan cyanobacteria Moorena producens: insights into distribution, ecophysiology and toxicity. Environmental Science and Pollution Research 2022, 29 (52) , 78178-78206. https://doi.org/10.1007/s11356-022-23096-4
    23. Benjamín Robles-Bañuelos, Lorena María Durán-Riveroll, Edgar Rangel-López, Hugo Isidro Pérez-López, Leticia González-Maya. Marine Cyanobacteria as Sources of Lead Anticancer Compounds: A Review of Families of Metabolites with Cytotoxic, Antiproliferative, and Antineoplastic Effects. Molecules 2022, 27 (15) , 4814. https://doi.org/10.3390/molecules27154814
    24. Tanja M. Voser, Max D. Campbell, Anthony R. Carroll. How different are marine microbial natural products compared to their terrestrial counterparts?. Natural Product Reports 2022, 39 (1) , 7-19. https://doi.org/10.1039/D1NP00051A
    25. Yang Hai, Mei-Yan Wei, Chang-Yun Wang, Yu-Cheng Gu, Chang-Lun Shao. The intriguing chemistry and biology of sulfur-containing natural products from marine microorganisms (1987–2020). Marine Life Science & Technology 2021, 3 (4) , 488-518. https://doi.org/10.1007/s42995-021-00101-2
    26. Damien Le Moigne, Justine Demay, Anita Reinhardt, Cécile Bernard, Sandra Kim Tiam, Benjamin Marie. Dynamics of the Metabolome of Aliinostoc sp. PMC 882.14 in Response to Light and Temperature Variations. Metabolites 2021, 11 (11) , 745. https://doi.org/10.3390/metabo11110745
    27. Ankit Tiwari, Issara Kaweewan, Yuto Miyake, Hikaru Hemmi, Shinya Kodani. Isolation and structure determination of new chymotrypsin inhibitory peptides streptopeptolins B and C. Natural Product Research 2021, 35 (16) , 2700-2706. https://doi.org/10.1080/14786419.2019.1663514
    28. Qi-Yin Chen, Danmeng Luo, Gustavo M. Seabra, Hendrik Luesch. Ahp-Cyclodepsipeptides as tunable inhibitors of human neutrophil elastase and kallikrein 7: Total synthesis of tutuilamide A, serine protease selectivity profile and comparison with lyngbyastatin 7. Bioorganic & Medicinal Chemistry 2020, 28 (23) , 115756. https://doi.org/10.1016/j.bmc.2020.115756
    29. Yujin Jeong, Sang-Hyeok Cho, Hookeun Lee, Hyung-Kyoon Choi, Dong-Myung Kim, Choul-Gyun Lee, Suhyung Cho, Byung-Kwan Cho. Current Status and Future Strategies to Increase Secondary Metabolite Production from Cyanobacteria. Microorganisms 2020, 8 (12) , 1849. https://doi.org/10.3390/microorganisms8121849
    30. Steffen Köcher, Sarah Resch, Till Kessenbrock, Lukas Schrapp, Michael Ehrmann, Markus Kaiser. From dolastatin 13 to cyanopeptolins, micropeptins, and lyngbyastatins: the chemical biology of Ahp-cyclodepsipeptides. Natural Product Reports 2020, 37 (2) , 163-174. https://doi.org/10.1039/C9NP00033J
    31. Robert J. Capon. Extracting value: mechanistic insights into the formation of natural product artifacts – case studies in marine natural products. Natural Product Reports 2020, 37 (1) , 55-79. https://doi.org/10.1039/C9NP00013E
    32. I-Shuo Huang, Paul V. Zimba. Cyanobacterial bioactive metabolites—A review of their chemistry and biology. Harmful Algae 2019, 86 , 139-209. https://doi.org/10.1016/j.hal.2019.05.001
    33. Kaori Ozaki, Arihiro Iwasaki, Kiyotake Suenaga, Toshiaki Teruya. Kyanamide, a new Ahp-containing depsipeptide from marine cyanobacterium Caldora penicillata. Tetrahedron 2019, 75 (25) , 3382-3386. https://doi.org/10.1016/j.tet.2019.04.046
    34. Justine Demay, Cécile Bernard, Anita Reinhardt, Benjamin Marie. Natural Products from Cyanobacteria: Focus on Beneficial Activities. Marine Drugs 2019, 17 (6) , 320. https://doi.org/10.3390/md17060320
    35. I-Shuo Huang, Paul V. Zimba. Cyanobacterial bioactive metabolites—A review of their chemistry and biology. Harmful Algae 2019, 83 , 42-94. https://doi.org/10.1016/j.hal.2018.11.008
    36. Wendy K. Strangman, Allison K. Stewart, Megan C. Herring, Jeffrey L.C. Wright. Identification of the new chymotrypsin inhibitor micropeptin 996 by metabolomics-guided analysis. Tetrahedron Letters 2018, 59 (10) , 934-937. https://doi.org/10.1016/j.tetlet.2018.01.087
    37. Vedanjali Gogineni, Mark T. Hamann. Marine natural product peptides with therapeutic potential: Chemistry, biosynthesis, and pharmacology. Biochimica et Biophysica Acta (BBA) - General Subjects 2018, 1862 (1) , 81-196. https://doi.org/10.1016/j.bbagen.2017.08.014
    38. Wei-Feng Xu, Xue-Mei Hou, Fei-Hua Yao, Na Zheng, Jun Li, Chang-Yun Wang, Rui-Yun Yang, Chang-Lun Shao. Xylapeptide A, an Antibacterial Cyclopentapeptide with an Uncommon L-Pipecolinic Acid Moiety from the Associated Fungus Xylaria sp. (GDG-102). Scientific Reports 2017, 7 (1) https://doi.org/10.1038/s41598-017-07331-4
    39. Koshi Machida, Takuro Matsumoto, Nobuhiro Fusetani, Yoichi Nakao. Dolabellol A, a New Halogenated Diterpene Isolated from the Opisthobranch Dolabella auricularia. Chemistry Letters 2017, 46 (11) , 1676-1678. https://doi.org/10.1246/cl.170756
    40. Zhengyu Cao, Xichun Li, Xiaohan Zou, Michael Greenwood, William Gerwick, Thomas Murray. Involvement of JNK and Caspase Activation in Hoiamide A-Induced Neurotoxicity in Neocortical Neurons. Marine Drugs 2015, 13 (2) , 903-919. https://doi.org/10.3390/md13020903
    41. Dawid Siodłak. α,β-Dehydroamino acids in naturally occurring peptides. Amino Acids 2015, 47 (1) , 1-17. https://doi.org/10.1007/s00726-014-1846-4
    42. Rani Maharani, Brad E. Sleebs, Andrew B. Hughes. Macrocyclic N-Methylated Cyclic Peptides and Depsipeptides. 2015, 113-249. https://doi.org/10.1016/B978-0-444-63460-3.00004-3
    43. Nicolai Stuhr-Hansen, Shahrokh Padrah, Kristian Strømgaard. Facile synthesis of α-hydroxy carboxylic acids from the corresponding α-amino acids. Tetrahedron Letters 2014, 55 (30) , 4149-4151. https://doi.org/10.1016/j.tetlet.2014.05.090
    44. Arihiro Iwasaki, Shinpei Sumimoto, Osamu Ohno, Shoichiro Suda, Kiyotake Suenaga. Kurahamide, a Cyclic Depsipeptide Analog of Dolastatin 13 from a Marine Cyanobacterial Assemblage of Lyngbya sp.. Bulletin of the Chemical Society of Japan 2014, 87 (5) , 609-613. https://doi.org/10.1246/bcsj.20140008
    45. Bernard Banaigs, Isabelle Bonnard, Anne Witczak, Nicolas Inguimbert. Marine Peptide Secondary Metabolites. 2014, 285-318. https://doi.org/10.1002/9783527681501.ch13
    46. Srinivasa Rao Adusumalli, Andrei K. Yudin, Vishal Rai. Cyclic Peptides. 2013, 321-369. https://doi.org/10.1002/9783527666911.ch8
    47. Sara Stolze, Markus Kaiser. Case Studies of the Synthesis of Bioactive Cyclodepsipeptide Natural Products. Molecules 2013, 18 (2) , 1337-1367. https://doi.org/10.3390/molecules18021337
    48. M. Nagarajan, V. Maruthanayagam, M. Sundararaman. A review of pharmacological and toxicological potentials of marine cyanobacterial metabolites. Journal of Applied Toxicology 2012, 32 (3) , 153-185. https://doi.org/10.1002/jat.1717
    49. David J. Newman, Gordon M. Cragg, Paul G. Grothaus. Drug Discovery in Ocean. 2012, 3150-3170. https://doi.org/10.1007/978-1-4419-0851-3_833
    50. Jamal M. Arif, Alvina Farooqui, Mohammad Haris Siddiqui, Mohammed Al-Karrawi, Awdah Al-Hazmi, Othman A. Al-Sagair. Novel Bioactive Peptides from Cyanobacteria. 2012, 111-161. https://doi.org/10.1016/B978-0-444-53836-9.00022-0
    51. Klaus-Dieter Feussner, Kavita Ragini, Rohitesh Kumar, Katy M. Soapi, William G. Aalbersberg, Mary Kay Harper, Brad Carte, Chris M. Ireland. Investigations of the marine flora and fauna of the Fiji Islands. Natural Product Reports 2012, 29 (12) , 1424. https://doi.org/10.1039/c2np20055d
    52. Deevi Basavaiah, Raju Jannapu Reddy, Dandamudi V. Lenin. The Baylis – Hillman Adducts as Valuable Source for One‐Pot Multi‐Step Synthesis: A Facile Synthesis of Substituted Piperidin‐2‐ones. Helvetica Chimica Acta 2010, 93 (6) , 1180-1186. https://doi.org/10.1002/hlca.200900352
    53. Li Liu, Kathleen S. Rein. New Peptides Isolated from Lyngbya Species: A Review. Marine Drugs 2010, 8 (6) , 1817-1837. https://doi.org/10.3390/md8061817
    54. Dawid Siodłak, Anna Janicki. Conformational properties of the residues connected by ester and methylated amide bonds: theoretical and solid state conformational studies. Journal of Peptide Science 2010, 16 (3) , 126-135. https://doi.org/10.1002/psc.1208
    55. Kevin Tidgewell, Benjamin R. Clark, William H. Gerwick. The Natural Products Chemistry of Cyanobacteria. 2010, 141-188. https://doi.org/10.1016/B978-008045382-8.00041-1
    56. Sven W. Meyer, Thorsten F. Mordhorst, Choonghwan Lee, Paul R. Jensen, William Fenical, Matthias Köck. Penilumamide, a novel lumazine peptide isolated from the marine-derived fungus, Penicillium sp. CNL-338. Organic & Biomolecular Chemistry 2010, 8 (9) , 2158. https://doi.org/10.1039/b910629d
    57. John W. Blunt, Brent R. Copp, Wan-Ping Hu, Murray H. G. Munro, Peter T. Northcote, Michèle R. Prinsep. Marine natural products. Natural Product Reports 2009, 26 (2) , 170. https://doi.org/10.1039/b805113p
    58. Susan Matthew, Cliff Ross, Valerie J. Paul, Hendrik Luesch. Pompanopeptins A and B, new cyclic peptides from the marine cyanobacterium Lyngbya confervoides. Tetrahedron 2008, 64 (18) , 4081-4089. https://doi.org/10.1016/j.tet.2008.02.035
    59. Lik Tong Tan. Bioactive natural products from marine cyanobacteria for drug discovery. Phytochemistry 2007, 68 (7) , 954-979. https://doi.org/10.1016/j.phytochem.2007.01.012
    60. Ryan M. Van Wagoner, Allison K. Drummond, Jeffrey L.C. Wright. Biogenetic Diversity of Cyanobacterial Metabolites. 2007, 89-217. https://doi.org/10.1016/S0065-2164(06)61004-6
    61. Martin Welker, Hans Von Döhren. Cyanobacterial peptides — Nature's own combinatorial biosynthesis. FEMS Microbiology Reviews 2006, 30 (4) , 530-563. https://doi.org/10.1111/j.1574-6976.2006.00022.x
    62. Erik Flahive, Jayaram Srirangam. The Dolastatins. 2005https://doi.org/10.1201/9781420039658.ch11
    63. Fumiaki Yokokawa, Akiko Inaizumi, Takayuki Shioiri. Synthetic studies of the cyclic depsipeptides bearing the 3-amino-6-hydroxy-2-piperidone (Ahp) unit. Total synthesis of the proposed structure of micropeptin T-20. Tetrahedron 2005, 61 (6) , 1459-1480. https://doi.org/10.1016/j.tet.2004.12.009
    64. Yohsuke Shiraishi, Hiroshi Yamauchi, Takashi Takamura, Hideki Kinoshita. A New Synthetic Method for Dipeptides Containing α,β-Didehydroamino Acids Utilizing an α-Tosylglycine Residue. Bulletin of the Chemical Society of Japan 2004, 77 (12) , 2219-2229. https://doi.org/10.1246/bcsj.77.2219
    65. M. Guyot, J.C. Doré, J. Devillers. Typology of secondary cyanobacterial metabolites from minimum spanning tree analysis. SAR and QSAR in Environmental Research 2004, 15 (2) , 101-114. https://doi.org/10.1080/10629360410001665866
    66. Y. L. Janin. Peptides with anticancer use or potential. Amino Acids 2003, 25 (1) , 1-40. https://doi.org/10.1007/s00726-002-0349-x
    67. Fumiaki Yokokawa, Takayuki Shioiri. Total synthesis of somamide A, an Ahp (3-amino-6-hydroxy-2-piperidone)-containing cyclic depsipeptide. Tetrahedron Letters 2002, 43 (48) , 8673-8677. https://doi.org/10.1016/S0040-4039(02)02178-0
    68. Ling Yang, Ren-xiang Tan, Qian Wang, Wei-yi Huang, Yong-xian Yin. Antifungal cyclopeptides from Halobacillus litoralis YS3106 of marine origin. Tetrahedron Letters 2002, 43 (37) , 6545-6548. https://doi.org/10.1016/S0040-4039(02)01458-2
    69. Dale G. Nagle, Inderjit. The chemistry and chemical ecology of biologically active cyanobacterial metabolites. 2002, 33-56. https://doi.org/10.1007/978-3-0348-8109-8_3
    70. . Bioactive Marine Peptides. , 278-328. https://doi.org/10.1007/1-4020-3484-9_10
    71. Tatsufumi Okino. Heterocycles from Cyanobacteria. , 1-19. https://doi.org/10.1007/7081_044

    Journal of Natural Products

    Cite this: J. Nat. Prod. 2001, 64, 6, 716–719
    Click to copy citationCitation copied!
    https://doi.org/10.1021/np000634j
    Published May 18, 2001
    Copyright © 2001 American Chemical Society and American Society of Pharmacognosy

    Article Views

    1049

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.