ACS Publications. Most Trusted. Most Cited. Most Read
Cytotoxic Pyrroloiminoquinones from Four New Species of South African Latrunculid Sponges
My Activity
    Article

    Cytotoxic Pyrroloiminoquinones from Four New Species of South African Latrunculid Sponges
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Chemistry and Faculty of Pharmacy, Rhodes University, Grahamstown, South Africa, National Centre for Aquatic Biodiversity & Biosecurity, National Institute of Water & Atmospheric Research Ltd, Auckland, New Zealand, Department of Zoology, University of Durban Westville, Durban, South Africa, Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah 84112, and Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093-0212
    Other Access Options

    Journal of Natural Products

    Cite this: J. Nat. Prod. 2004, 67, 8, 1268–1276
    Click to copy citationCitation copied!
    https://doi.org/10.1021/np034084b
    Published May 20, 2004
    Copyright © 2004 American Chemical Society and American Society of Pharmacognosy

    Abstract

    Click to copy section linkSection link copied!

    An examination of organic extracts of four new species of South African latrunculid sponges, Tsitsikammapedunculata, T. favus, Latrunculia bellae, and Strongylodesma algoaensis, yielded 13 known and eight new pyrroloiminoquinone alkaloids, 3-dihydro-7,8-dehydrodiscorhabdin C (4), 14-bromo-3-dihydro-7,8-dehydrodiscorhabdin C (5), discorhabdin V (6), 14-bromo-1-hydroxydiscorhabdin V (7), tsitsikammamine A N-18 oxime (10), tsitsikammamine B N-18 oxime (11), 1-methoxydiscorhabdin D (12), and 1-aminodiscorhabdin D (13). Standard spectroscopic methods provided the structures of the pyrroloiminoquinone metabolites, while chiral GC−MS analysis of the acylated ozonolysis products of 21 confirmed the stereochemistry of the l-histidine residue in this compound. The anticancer activity of 20 pyrroloiminoquinone compounds was explored in the HCT-116 cancer cell line screen, and the DNA intercalation of the tsitsikammamines, together with their ability to cleave DNA through topoisomerase I inhibition, is discussed.

    Copyright © 2004 American Chemical Society and American Society of Pharmacognosy

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

     Dedicated to the late Dr. D. John Faulkner (Scripps) and the late Dr. Paul J. Scheuer (Hawaii) for their pioneering work on bioactive marine natural products.

     Department of Chemistry, Rhodes University.

    §

     Faculty of Pharmacy, Rhodes University.

     National Centre for Aquatic Biodiversity & Biosecurity.

     University of Durban Westville.

     University of Utah.

    °

     Scripps Institution of Oceanography.

    *

     To whom correspondence should be addressed. Tel:  +27 46 603 8264. Fax:  +27 46 6225109. E-mail:  [email protected].

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 85 publications.

    1. Griffin L. Barnes, Nicholas L. Magann, Daniele Perrotta, Fabian M. Hörmann, Sebastian Fernandez, Pratap Vydyam, Jae-Yeon Choi, Jacques Prudhomme, Armund Neal, Karine G. Le Roch, Choukri Ben Mamoun, Christopher D. Vanderwal. A Divergent Synthesis of Numerous Pyrroloiminoquinone Alkaloids Identifies Promising Antiprotozoal Agents. Journal of the American Chemical Society 2024, 146 (43) , 29883-29894. https://doi.org/10.1021/jacs.4c11897
    2. Maria Orfanoudaki, Masoumeh Dalilian, Lin Du, Cindy H. Chau, William D. Figg, Barry R. O’Keefe, Tanja Grkovic. New Discorhabdin D Analogues from Latrunculia spp. Sponges. Journal of Natural Products 2024, Article ASAP.
    3. Masashi Shimomura, Kohta Ide, Juri Sakata, Hidetoshi Tokuyama. Unified Divergent Total Synthesis of Discorhabdin B, H, K, and Aleutianamine via the Late-Stage Oxidative N,S-Acetal Formation. Journal of the American Chemical Society 2023, 145 (33) , 18233-18239. https://doi.org/10.1021/jacs.3c06578
    4. Michael T. Davies-Coleman, Kerry L. McPhail, Shirley Parker-Nance. A Quarter Century of Marine Biodiscovery in Algoa Bay, South Africa. Journal of Natural Products 2023, 86 (3) , 638-652. https://doi.org/10.1021/acs.jnatprod.2c00987
    5. Fengjie Li, Pankaj Pandey, Dorte Janussen, Amar G. Chittiboyina, Daneel Ferreira, Deniz Tasdemir. Tridiscorhabdin and Didiscorhabdin, the First Discorhabdin Oligomers Linked with a Direct C–N Bridge from the Sponge Latrunculia biformis Collected from the Deep Sea in Antarctica. Journal of Natural Products 2020, 83 (3) , 706-713. https://doi.org/10.1021/acs.jnatprod.0c00023
    6. Andrew K. L. Goey, Cindy H. Chau, Tristan M. Sissung, Kristina M. Cook, David J. Venzon, Amaya Castro, Tanya R. Ransom, Curtis J. Henrich, Tawnya C. McKee, James B. McMahon, Tanja Grkovic, Melissa M. Cadelis, Brent R. Copp, Kirk R. Gustafson, and William D. Figg . Screening and Biological Effects of Marine Pyrroloiminoquinone Alkaloids: Potential Inhibitors of the HIF-1α/p300 Interaction. Journal of Natural Products 2016, 79 (5) , 1267-1275. https://doi.org/10.1021/acs.jnatprod.5b00846
    7. Rohan A. Davis, Malcolm S. Buchanan, Sandra Duffy, Vicky M. Avery, Susan A. Charman, William N. Charman, Karen L. White, David M. Shackleford, Michael D. Edstein, Katherine T. Andrews, David Camp, and Ronald J. Quinn . Antimalarial Activity of Pyrroloiminoquinones from the Australian Marine Sponge Zyzzya sp.. Journal of Medicinal Chemistry 2012, 55 (12) , 5851-5858. https://doi.org/10.1021/jm3002795
    8. Jin-Feng Hu, Hui Fan, Juan Xiong, and Shi-Biao Wu . Discorhabdins and Pyrroloiminoquinone-Related Alkaloids. Chemical Reviews 2011, 111 (9) , 5465-5491. https://doi.org/10.1021/cr100435g
    9. Mostafa I. Fekry, Nathan E. Price, Hong Zang, Chaofeng Huang, Michael Harmata, Paul Brown, J. Scott Daniels, and Kent S. Gates . Thiol-Activated DNA Damage by α-Bromo-2-cyclopentenone. Chemical Research in Toxicology 2011, 24 (2) , 217-228. https://doi.org/10.1021/tx100282b
    10. Tanja Grkovic, A. Norrie Pearce, Murray H. G. Munro, John W. Blunt, Michael T. Davies-Coleman, and Brent R. Copp. Isolation and Characterization of Diastereomers of Discorhabdins H and K and Assignment of Absolute Configuration to Discorhabdins D, N, Q, S, T, and U. Journal of Natural Products 2010, 73 (10) , 1686-1693. https://doi.org/10.1021/np100443c
    11. MinKyun Na, Yuanqing Ding, Bin Wang, Babu L. Tekwani, Raymond F. Schinazi, Scott Franzblau, Michelle Kelly, Robert Stone, Xing-Cong Li, Daneel Ferreira and Mark T. Hamann. Anti-infective Discorhabdins from a Deep-Water Alaskan Sponge of the Genus Latrunculia. Journal of Natural Products 2010, 73 (3) , 383-387. https://doi.org/10.1021/np900281r
    12. Ju-eun Jeon, Zeyei Na, Misong Jung, Hyi-Seung Lee, Chung J. Sim, Keepyung Nahm, Ki-Bong Oh and Jongheon Shin. Discorhabdins from the Korean Marine Sponge Sceptrella sp.. Journal of Natural Products 2010, 73 (2) , 258-262. https://doi.org/10.1021/np9005629
    13. Tanja Grkovic, Yuanqing Ding, Xing-Cong Li, Victoria L. Webb, Daneel Ferreira and Brent R. Copp . Enantiomeric Discorhabdin Alkaloids and Establishment of Their Absolute Configurations Using Theoretical Calculations of Electronic Circular Dichroism Spectra. The Journal of Organic Chemistry 2008, 73 (22) , 9133-9136. https://doi.org/10.1021/jo801622n
    14. Silke Peters and, Peter Spiteller. Sanguinones A and B, Blue Pyrroloquinoline Alkaloids from the Fruiting Bodies of the Mushroom Mycena sanguinolenta. Journal of Natural Products 2007, 70 (8) , 1274-1277. https://doi.org/10.1021/np070179s
    15. Romeo Romagnoli,, Pier Giovanni Baraldi,, Mojgan Aghazadeh Tabrizi,, Jaime Bermejo,, Francisco Estévez,, Monica Borgatti, and, Roberto Gambari. Design, Synthesis, and Biological Evaluation of Hybrid Molecules Containing α-Methylene-γ-Butyrolactones and α-Bromoacryloyl Moieties. Journal of Medicinal Chemistry 2005, 48 (24) , 7906-7910. https://doi.org/10.1021/jm058012o
    16. Gerhard Lang,, André Pinkert,, John W. Blunt, and, Murray H. G. Munro. Discorhabdin W, the First Dimeric Discorhabdin. Journal of Natural Products 2005, 68 (12) , 1796-1798. https://doi.org/10.1021/np050333f
    17. Natalia K. Utkina,, Aleksandra E. Makarchenko, and, Vladimir A. Denisenko. Zyzzyanones B−D, Dipyrroloquinones from the Marine Sponge Zyzzya fuliginosa. Journal of Natural Products 2005, 68 (9) , 1424-1427. https://doi.org/10.1021/np050154y
    18. Robert A. Keyzers,, Catherine E. Arendse,, Denver T. Hendricks,, Toufiek Samaai, and, Michael T. Davies-Coleman. Makaluvic Acids from the South African Latrunculid Sponge Strongylodesma aliwaliensis. Journal of Natural Products 2005, 68 (4) , 506-510. https://doi.org/10.1021/np049589w
    19. Afsona Khatun, Kuntal Hazra, Belarani Mahato, Ritabrata Koley, Rajshekhar Ghorai, Anupam Adhikary, Biplab Debnath, Shaileyee Das. Studies of chemical distribution and pharmacological activities of porifera-derived alkaloids: A review (2000–2023). European Journal of Medicinal Chemistry Reports 2024, 11 , 100158. https://doi.org/10.1016/j.ejmcr.2024.100158
    20. Petra Králová, Miroslav Soural. Biological properties of pyrroloquinoline and pyrroloisoquinoline derivatives. European Journal of Medicinal Chemistry 2024, 57 , 116287. https://doi.org/10.1016/j.ejmech.2024.116287
    21. Brandon C. Derstine, Alina J. Cook, James D. Collings, Joseph Gair, Josep Saurí, Eugene E. Kwan, Noah Z. Burns. Total Synthesis of (+)‐Discorhabdin V**. Angewandte Chemie International Edition 2024, 63 (1) https://doi.org/10.1002/anie.202315284
    22. Brandon C. Derstine, Alina J. Cook, James D. Collings, Joseph Gair, Josep Saurí, Eugene E. Kwan, Noah Z. Burns. Total Synthesis of (+)‐Discorhabdin V**. Angewandte Chemie 2024, 136 (1) https://doi.org/10.1002/ange.202315284
    23. Juri Sakata, Masashi Shimomura, Hidetoshi Tokuyama. The Asymmetric Total Synthesis of Discorhabdin B, H, K, and Aleutianamine. 2024, 103-125. https://doi.org/10.1007/978-981-97-1619-7_5
    24. Zijie Zhou, Ling Ye, Lu Yang, Xinying Li, Zhigang Zhao, Xuefeng Li. Enantioselective synthesis of pyrroloquinolines via a three-component Povarov reaction with aminoindoles. Organic Chemistry Frontiers 2023, 10 (24) , 6219-6224. https://doi.org/10.1039/D3QO01563G
    25. Maria Orfanoudaki, Emily A. Smith, Natasha T. Hill, Khalid A. Garman, Isaac Brownell, Brent R. Copp, Tanja Grkovic, Curtis J. Henrich. An Investigation of Structure–Activity Relationships and Cell Death Mechanisms of the Marine Alkaloids Discorhabdins in Merkel Cell Carcinoma Cells. Marine Drugs 2023, 21 (9) , 474. https://doi.org/10.3390/md21090474
    26. Zilong Zhang, Yuze Li, Yu Sun, Wei Wang, Xiaomei Song, Dongdong Zhang. Chemical diversity and biological activities of marine-derived sulphur containing alkaloids: A comprehensive update. Arabian Journal of Chemistry 2023, 16 (9) , 105011. https://doi.org/10.1016/j.arabjc.2023.105011
    27. Byron Mubaiwa, Mookho S. Lerata, Nicole R. S. Sibuyi, Mervin Meyer, Toufiek Samaai, John J. Bolton, Edith M. Antunes, Denzil R. Beukes. Green Synthesized sAuNPs as a Potential Delivery Platform for Cytotoxic Alkaloids. Materials 2023, 16 (3) , 1319. https://doi.org/10.3390/ma16031319
    28. Jarmo-Charles J. Kalinski, Alexandros Polyzois, Samantha C. Waterworth, Xavier Siwe Noundou, Rosemary A. Dorrington. Current Perspectives on Pyrroloiminoquinones: Distribution, Biosynthesis and Drug Discovery Potential. Molecules 2022, 27 (24) , 8724. https://doi.org/10.3390/molecules27248724
    29. Elisabete Lima, Jorge Medeiros. Marine Organisms as Alkaloid Biosynthesizers of Potential Anti-Alzheimer Agents. Marine Drugs 2022, 20 (1) , 75. https://doi.org/10.3390/md20010075
    30. Neda Baghban, , Gholam Hossien Mohebbi, , Masoud Zarea, , Iraj Nabipour, . Sea God- Sponges: Toxins and Secondary Metabolites. Iranian South Medical Journal 2021, 24 (4) , 341-434. https://doi.org/10.52547/ismj.24.4.341
    31. Jarmo-Charles J. Kalinski, Rui W. M. Krause, Shirley Parker-Nance, Samantha C. Waterworth, Rosemary A. Dorrington. Unlocking the Diversity of Pyrroloiminoquinones Produced by Latrunculid Sponge Species. Marine Drugs 2021, 19 (2) , 68. https://doi.org/10.3390/md19020068
    32. Ahmed M. Elissawy, Ebrahim Soleiman Dehkordi, Negin Mehdinezhad, Mohamed L. Ashour, Pardis Mohammadi Pour. Cytotoxic Alkaloids Derived from Marine Sponges: A Comprehensive Review. Biomolecules 2021, 11 (2) , 258. https://doi.org/10.3390/biom11020258
    33. Fengjie Li, Michelle Kelly, Deniz Tasdemir. Chemistry, Chemotaxonomy and Biological Activity of the Latrunculid Sponges (Order Poecilosclerida, Family Latrunculiidae). Marine Drugs 2021, 19 (1) , 27. https://doi.org/10.3390/md19010027
    34. Nagarajan Manivel, Sanjeev Kumar Shukla, Sundararaman Muthuraman. Nanogram and Nanomolar Active Marine Antiplasmodial Antibiotics. 2020, 2365-2409. https://doi.org/10.1002/9781119143802.ch107
    35. Fengjie Li, Dorte Janussen, Deniz Tasdemir. New Discorhabdin B Dimers with Anticancer Activity from the Antarctic Deep-Sea Sponge Latrunculia biformis. Marine Drugs 2020, 18 (2) , 107. https://doi.org/10.3390/md18020107
    36. Shirley Parker-Nance, Storm Hilliar, Samantha Waterworth, Tara Walmsley, Rosemary Dorrington. New species in the sponge genus Tsitsikamma (Poecilosclerida, Latrunculiidae) from South Africa. ZooKeys 2019, 874 , 121-126. https://doi.org/10.3897/zookeys.874.32268
    37. Lindon W. K. Moodie, Kristina Sepčić, Tom Turk, Robert Frangež, Johan Svenson. Natural cholinesterase inhibitors from marine organisms. Natural Product Reports 2019, 36 (8) , 1053-1092. https://doi.org/10.1039/C9NP00010K
    38. Fengjie Li, Christian Peifer, Dorte Janussen, Deniz Tasdemir. New Discorhabdin Alkaloids from the Antarctic Deep-Sea Sponge Latrunculia biformis. Marine Drugs 2019, 17 (8) , 439. https://doi.org/10.3390/md17080439
    39. Taitusi Taufa, Rose M.A. Gordon, Muhammad Ali Hashmi, Kainat Hira, John H. Miller, Matthias Lein, Jane Fromont, Peter T. Northcote, Robert A. Keyzers. Pyrroloquinoline derivatives from a Tongan specimen of the marine sponge Strongylodesma tongaensis. Tetrahedron Letters 2019, 60 (28) , 1825-1829. https://doi.org/10.1016/j.tetlet.2019.06.014
    40. Bing-Nan Han, Li-Li Hong, Bin-Bin Gu, Yang-Ting Sun, Jie Wang, Jin-Tang Liu, Hou-Wen Lin. Natural Products from Sponges. 2019, 329-463. https://doi.org/10.1007/978-94-024-1612-1_15
    41. Arnold Amusengeri, Özlem Tastan Bishop. Discorhabdin N, a South African Natural Compound, for Hsp72 and Hsc70 Allosteric Modulation: Combined Study of Molecular Modeling and Dynamic Residue Network Analysis. Molecules 2019, 24 (1) , 188. https://doi.org/10.3390/molecules24010188
    42. Jarmo-Charles J. Kalinski, Samantha C. Waterworth, Xavier Siwe Noundou, Meesbah Jiwaji, Shirley Parker-Nance, Rui W. M. Krause, Kerry L. McPhail, Rosemary A. Dorrington. Molecular Networking Reveals Two Distinct Chemotypes in Pyrroloiminoquinone-Producing Tsitsikamma favus Sponges. Marine Drugs 2019, 17 (1) , 60. https://doi.org/10.3390/md17010060
    43. Fengjie Li, Dorte Janussen, Christian Peifer, Ignacio Pérez-Victoria, Deniz Tasdemir. Targeted Isolation of Tsitsikammamines from the Antarctic Deep-Sea Sponge Latrunculia biformis by Molecular Networking and Anticancer Activity. Marine Drugs 2018, 16 (8) , 268. https://doi.org/10.3390/md16080268
    44. Emily M. Harris, Jonathan D. Strope, Shaunna L. Beedie, Phoebe A. Huang, Andrew K. L. Goey, Kristina M. Cook, Christopher J. Schofield, Cindy H. Chau, Melissa M. Cadelis, Brent R. Copp, Kirk R. Gustafson, William D. Figg. Preclinical Evaluation of Discorhabdins in Antiangiogenic and Antitumor Models. Marine Drugs 2018, 16 (7) , 241. https://doi.org/10.3390/md16070241
    45. Tanja Botić, Andrea Defant, Pietro Zanini, Monika Cecilija Žužek, Robert Frangež, Dorte Janussen, Daniel Kersken, Željko Knez, Ines Mancini, Kristina Sepčić. Discorhabdin alkaloids from Antarctic Latrunculia spp. sponges as a new class of cholinesterase inhibitors. European Journal of Medicinal Chemistry 2017, 136 , 294-304. https://doi.org/10.1016/j.ejmech.2017.05.019
    46. Cary F.C. Lam, Melissa M. Cadelis, Brent R. Copp. Exploration of the influence of spiro-dienone moiety on biological activity of the cytotoxic marine alkaloid discorhabdin P. Tetrahedron 2017, 73 (32) , 4779-4785. https://doi.org/10.1016/j.tet.2017.06.057
    47. Gwynneth F. Matcher, Samantha C. Waterworth, Tara A. Walmsley, Tendayi Matsatsa, Shirley Parker‐Nance, Michael T. Davies‐Coleman, Rosemary A. Dorrington. Keeping it in the family: Coevolution of latrunculid sponges and their dominant bacterial symbionts. MicrobiologyOpen 2017, 6 (2) https://doi.org/10.1002/mbo3.417
    48. Relebohile Matobole, Leonardo Van Zyl, Shirley Parker‐Nance, Michael Davies‐Coleman, Marla Trindade. Antibacterial Activities of Bacteria Isolated from the Marine Sponges Isodictya compressa and Higginsia bidentifera Collected from Algoa Bay, South Africa. Marine Drugs 2017, 15 (2) , 47. https://doi.org/10.3390/md15020047
    49. Sylvain Daunay, Remi Lebel, Laurence Farescour, Jean-Claude Yadan, Irene Erdelmeier. Short protecting-group-free synthesis of 5-acetylsulfanyl-histidines in water: novel precursors of 5-sulfanyl-histidine and its analogues. Organic & Biomolecular Chemistry 2016, 14 (44) , 10473-10480. https://doi.org/10.1039/C6OB01870J
    50. Bhavitavya NIJAMPATNAM, Shilpa DUTTA, Sadanandan E. VELU. Recent advances in isolation, synthesis, and evaluation of bioactivities of bispyrroloquinone alkaloids of marine origin. Chinese Journal of Natural Medicines 2015, 13 (8) , 561-577. https://doi.org/10.1016/S1875-5364(15)30052-2
    51. Natalie Netz, Till Opatz. Marine Indole Alkaloids. Marine Drugs 2015, 13 (8) , 4814-4914. https://doi.org/10.3390/md13084814
    52. Reshma Rani, Carlotta Granchi. Bioactive heterocycles containing endocyclic N-hydroxy groups. European Journal of Medicinal Chemistry 2015, 97 , 505-524. https://doi.org/10.1016/j.ejmech.2014.11.031
    53. Christian Bailly. Anticancer Properties of Lamellarins. Marine Drugs 2015, 13 (3) , 1105-1123. https://doi.org/10.3390/md13031105
    54. Jean‐Michel Kornprobst. Porifera (Sponges)–2. 2014, 703-792. https://doi.org/10.1002/9783527335855.marprod192
    55. Jean‐Michel Kornprobst. Porifera (Sponges)–5. 2014, 951-1086. https://doi.org/10.1002/9783527335855.marprod195
    56. Kunal Nepali, Sahil Sharma, Manmohan Sharma, P.M.S. Bedi, K.L. Dhar. Rational approaches, design strategies, structure activity relationship and mechanistic insights for anticancer hybrids. European Journal of Medicinal Chemistry 2014, 77 , 422-487. https://doi.org/10.1016/j.ejmech.2014.03.018
    57. Dwayaja H. Nadkarni, Srinivasan Murugesan, Sadanandan E. Velu. Total synthesis of zyzzyanones A–D. Tetrahedron 2013, 69 (20) , 4105-4113. https://doi.org/10.1016/j.tet.2013.03.052
    58. Hiromichi Fujioka, Yasuyuki Kita. Marine Pyrroloiminoquinone Alkaloids, Makaluvamines and Discorhabdins, and Marine Pyrrole-Imidazole Alkaloids. 2013, 251-283. https://doi.org/10.1007/978-3-642-22144-6_40
    59. Eduard Dolušić, Pierre Larrieu, Céline Meinguet, Delphine Colette, Arnaud Rives, Sébastien Blanc, Thierry Ferain, Luc Pilotte, Vincent Stroobant, Johan Wouters, Benoît Van den Eynde, Bernard Masereel, Evelyne Delfourne, Raphaël Frédérick. Indoleamine 2,3-dioxygenase inhibitory activity of derivatives of marine alkaloid tsitsikammamine A. Bioorganic & Medicinal Chemistry Letters 2013, 23 (1) , 47-54. https://doi.org/10.1016/j.bmcl.2012.11.036
    60. Tara A. Walmsley, Gwynneth F. Matcher, Fan Zhang, Russell T. Hill, Michael T. Davies-Coleman, Rosemary A. Dorrington. Diversity of Bacterial Communities Associated with the Indian Ocean Sponge Tsitsikamma favus That Contains the Bioactive Pyrroloiminoquinones, Tsitsikammamine A and B. Marine Biotechnology 2012, 14 (6) , 681-691. https://doi.org/10.1007/s10126-012-9430-y
    61. Adrienne L. Edkins, Gregory L. Blatch. Targeting Conserved Pathways as a Strategy for Novel Drug Development: Disabling the Cellular Stress Response. 2012, 85-99. https://doi.org/10.1007/978-3-642-28175-4_4
    62. Gordon W. Gribble. Occurrence of Halogenated Alkaloids. 2012, 1-165. https://doi.org/10.1016/B978-0-12-398282-7.00001-1
    63. John W. Blunt, Brent R. Copp, Robert A. Keyzers, Murray H. G. Munro, Michèle R. Prinsep. Marine natural products. Nat. Prod. Rep. 2012, 29 (2) , 144-222. https://doi.org/10.1039/C2NP00090C
    64. Cary F. C. Lam, Tanja Grkovic, A. Norrie Pearce, Brent R. Copp. Investigation of the electrophilic reactivity of the cytotoxic marine alkaloid discorhabdin B. Organic & Biomolecular Chemistry 2012, 10 (15) , 3092. https://doi.org/10.1039/c2ob07090a
    65. Yasuyuki Kita, Hiromichi Fujioka. Marine Pyrroloiminoquinone Alkaloids. 2011, 131-162. https://doi.org/10.1007/128_2011_134
    66. Yasufumi Wada, Hiromichi Fujioka, Yasuyuki Kita. Synthesis of the Marine Pyrroloiminoquinone Alkaloids, Discorhabdins. Marine Drugs 2010, 8 (4) , 1394-1416. https://doi.org/10.3390/md8041394
    67. T. N. Makar’eva, V. B. Krasokhin, A. G. Guzii, V. A. Stonik. STRONG ETHANOL SOLVATE OF DISCORHABDIN A ISOLATED FROM THE FAR-EAST SPONGE Latruculia oparinae. Chemistry of Natural Compounds 2010, 46 (1) , 152-153. https://doi.org/10.1007/s10600-010-9553-1
    68. Toufiek Samaai, Mark J. Gibbons, Michelle Kelly. A revision of the genus Strongylodesma Lévi (Porifera: Demospongiae: Latrunculiidae) with descriptions of four new species. Journal of the Marine Biological Association of the United Kingdom 2009, 89 (8) , 1689-1702. https://doi.org/10.1017/S0025315409000101
    69. Romeo Romagnoli, Pier Giovanni Baraldi, Olga Cruz‐Lopez, Delia Preti, Jaime Bermejo, Francisco Estévez. α‐Bromoacrylamido N‐Substituted Isatin Derivatives as Potent Inducers of Apoptosis in Human Myeloid Leukemia Cells. ChemMedChem 2009, 4 (10) , 1668-1676. https://doi.org/10.1002/cmdc.200900245
    70. Tanja Grkovic, Brent R. Copp. New natural products in the discorhabdin A- and B-series from New Zealand-sourced Latrunculia spp. sponges. Tetrahedron 2009, 65 (32) , 6335-6340. https://doi.org/10.1016/j.tet.2009.06.012
    71. Srinivasan Murugesan, Dwayaja H. Nadkarni, Sadanandan E. Velu. A facile synthesis of bispyrroloquinone and bispyrroloiminoquinone ring system of marine alkaloids. Tetrahedron Letters 2009, 50 (25) , 3074-3076. https://doi.org/10.1016/j.tetlet.2009.04.021
    72. Romeo Romagnoli, Pier Giovanni Baraldi, Maria Dora Carrion, Olga Cruz-Lopez, Carlota Lopez Cara, Jan Balzarini, Ernest Hamel, Alessandro Canella, Enrica Fabbri, Roberto Gambari, Giuseppe Basso, Giampietro Viola. Hybrid α-bromoacryloylamido chalcones. Design, synthesis and biological evaluation. Bioorganic & Medicinal Chemistry Letters 2009, 19 (7) , 2022-2028. https://doi.org/10.1016/j.bmcl.2009.02.038
    73. Arnaud Rives, Tamara Delaine, Laurent Legentil, Evelyne Delfourne. Total synthesis of the marine pyrroloiminoquinone alkaloid tsitsikammamine A. Tetrahedron Letters 2009, 50 (10) , 1128-1130. https://doi.org/10.1016/j.tetlet.2008.12.078
    74. Gordon W. Gribble. Structure and Biosynthesis of Halogenated Alkaloids. 2007, 591-618. https://doi.org/10.1002/9783527621071.ch19
    75. Romeo Romagnoli, Pier Giovanni Baraldi, Maria Dora Carrion, Olga Cruz-Lopez, Delia Preti, Mojgan Aghazadeh Tabrizi, Francesca Fruttarolo, Jörg Heilmann, Jaime Bermejo, Francisco Estévez. Hybrid molecules containing benzo[4,5]imidazo[1,2-d][1,2,4]thiadiazole and α-bromoacryloyl moieties as potent apoptosis inducers on human myeloid leukaemia cells. Bioorganic & Medicinal Chemistry Letters 2007, 17 (10) , 2844-2848. https://doi.org/10.1016/j.bmcl.2007.02.048
    76. Alejandro M.S. Mayer, Kirk R. Gustafson. Marine pharmacology in 2003–2004: Anti-tumour and cytotoxic compounds. European Journal of Cancer 2006, 42 (14) , 2241-2270. https://doi.org/10.1016/j.ejca.2006.05.019
    77. Laurent Legentil, Brigitte Lesur, Evelyne Delfourne. Aza-analogues of the marine pyrroloquinoline alkaloids wakayin and tsitsikammamines: Synthesis and topoisomerase inhibition. Bioorganic & Medicinal Chemistry Letters 2006, 16 (2) , 427-429. https://doi.org/10.1016/j.bmcl.2005.09.063
    78. Zhong Jin. Imidazole, oxazole and thiazole alkaloids. Natural Product Reports 2006, 23 (3) , 464. https://doi.org/10.1039/b502166a
    79. John W. Blunt, Brent R. Copp, Murray H. G. Munro, Peter T. Northcote, Michèle R. Prinsep. Marine natural products. Natural Product Reports 2006, 23 (1) , 26. https://doi.org/10.1039/b502792f
    80. Edith M. Antunes, Suzanne E. Maree, Tebello Nyokong, Mike T. Davies-Coleman, M. David Maree. The effect of structure on the electrochemical properties of 14 marine pyrroloquinoline metabolites. Journal of Chemical Research 2005, 2005 (12) , 780-783. https://doi.org/10.3184/030823405775146915
    81. Lingfeng He, Thomas E. Beesley. Applications of Enantiomeric Gas Chromatography: A Review. Journal of Liquid Chromatography & Related Technologies 2005, 28 (7-8) , 1075-1114. https://doi.org/10.1081/JLC-200052997
    82. Edith M. Antunes, Brent R. Copp, Michael T. Davies-Coleman, Toufiek Samaai. Pyrroloiminoquinone and related metabolites from marine sponges. Natural Product Reports 2005, 22 (1) , 62. https://doi.org/10.1039/b407299p
    83. Tomomi Kawasaki, Kazuhiro Higuchi. Simple indole alkaloids and those with a nonrearranged monoterpenoid unit. Natural Product Reports 2005, 22 (6) , 761. https://doi.org/10.1039/b502162f
    84. Robert A. Keyzers, Toufiek Samaai, Michael T. Davies-Coleman. Novel pyrroloquinoline ribosides from the South African latrunculid sponge Strongylodesma aliwaliensis. Tetrahedron Letters 2004, 45 (51) , 9415-9418. https://doi.org/10.1016/j.tetlet.2004.10.106
    85. . Biosynthesis of Bioactive Metabolites of Marine Organisms. , 125-150. https://doi.org/10.1007/1-4020-3484-9_6

    Journal of Natural Products

    Cite this: J. Nat. Prod. 2004, 67, 8, 1268–1276
    Click to copy citationCitation copied!
    https://doi.org/10.1021/np034084b
    Published May 20, 2004
    Copyright © 2004 American Chemical Society and American Society of Pharmacognosy

    Article Views

    1440

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.