Neamphamide A, a New HIV-Inhibitory Depsipeptide from the Papua New Guinea Marine Sponge Neamphius huxleyi†Click to copy article linkArticle link copied!
- Naoya Oku
- Kirk R. Gustafson
- Laura K. Cartner
- Jennifer A. Wilson
- Nobuharu Shigematsu
- Sonja Hess
- Lewis K. Pannell
- Michael R. Boyd
- James B. McMahon
Abstract
A new HIV-inhibitory cyclic depsipeptide, neamphamide A (2), was isolated from a Papua New Guinea collection of the marine sponge Neamphius huxleyi. Its structure was established through interpretation of spectroscopic data and by acid hydrolysis, derivatization of the free amino acids, and LC-MS analysis of the derivatives. Neamphamide A (2) contains 11 amino acid residues and an amide-linked 3-hydroxy-2,4,6-trimethylheptanoic acid moiety. The amino acid constituents were identified as l-Leu, l-NMeGln, d-Arg, d- and l-Asn, two residues of d-allo-Thr, l-homoproline, (3S,4R)-3,4-dimethyl-l-glutamine, β-methoxytyrosine, and 4-amino-7-guanidino-2,3-dihydroxyheptanoic acid. In a cell-based XTT assay, 2 exhibited potent cytoprotective activity against HIV-1 infection with an EC50 of approximately 28 nM.
†
Dedicated to the late Dr. D. John Faulkner (Scripps) and the late Dr. Paul J. Scheuer (Hawaii) for their pioneering work on bioactive marine natural products.
‡
Molecular Targets Development Program, CCR, NCI.
*
To whom correspondence should be addressed. Tel: (301) 846-5391. Fax: (301) 846-6919.
§
SAIC-Frederick.
⊥
Laboratory of Bioorganic Chemistry, NIDDK.
‖
Present address: Exploratory Research Laboratories, Fujisawa Pharmaceutical Co. Ltd., 5-2-3 Tokodai, Tsukuba, Ibaraki, 300-2698, Japan.
∇
USA Cancer Research Institute.
○
Present address: USA Cancer Research Institute, College of Medicine, University of South Alabama, Mobile, AL 36688.
Cited By
This article is cited by 108 publications.
- Alexander Horn, Uli Kazmaier. Stereoselective Synthesis of a Protected Side Chain of Callipeltin A. Organic Letters 2022, 24
(39)
, 7072-7076. https://doi.org/10.1021/acs.orglett.2c02586
- Chang-Kwon Kim, Dongdong Wang, Heidi R. Bokesch, Richard W. Fuller, Emily Smith, Curtis J. Henrich, David E. Durrant, Deborah K. Morrison, Carole A. Bewley, Kirk R. Gustafson. Swinhopeptolides A and B: Cyclic Depsipeptides from the Sponge Theonella swinhoei That Inhibit Ras/Raf Interaction. Journal of Natural Products 2020, 83
(4)
, 1288-1294. https://doi.org/10.1021/acs.jnatprod.0c00136
- Carlos Urda, Rogelio Fernández, Jaime Rodríguez, Marta Pérez, Carlos Jiménez, and Carmen Cuevas . Daedophamide, a Cytotoxic Cyclodepsipeptide from a Daedalopelta sp. Sponge Collected in Indonesia. Journal of Natural Products 2017, 80
(11)
, 3054-3059. https://doi.org/10.1021/acs.jnatprod.7b00678
- Vedanjali Gogineni, Raymond F. Schinazi, and Mark T. Hamann . Role of Marine Natural Products in the Genesis of Antiviral Agents. Chemical Reviews 2015, 115
(18)
, 9655-9706. https://doi.org/10.1021/cr4006318
- Piotr Szcześniak, Agnieszka Październiok-Holewa, Urszula Klimczak, and Sebastian Stecko . Synthesis of β- and γ-Hydroxy α-Amino Acids via Enzymatic Kinetic Resolution and Cyanate-to-Isocyanate Rearrangement. The Journal of Organic Chemistry 2014, 79
(23)
, 11700-11713. https://doi.org/10.1021/jo502026a
- María Jesús Martín, Raquel Rodríguez-Acebes, Yésica García-Ramos, Valentín Martínez, Carmen Murcia, Isabel Digón, Isabel Marco, Marta Pelay-Gimeno, Rogelio Fernández, Fernando Reyes, Andrés M. Francesch, Simon Munt, Judit Tulla-Puche, Fernando Albericio, and Carmen Cuevas . Stellatolides, a New Cyclodepsipeptide Family from the Sponge Ecionemia acervus: Isolation, Solid-Phase Total Synthesis, and Full Structural Assignment of Stellatolide A. Journal of the American Chemical Society 2014, 136
(18)
, 6754-6762. https://doi.org/10.1021/ja502744a
- Laura Coello, Fernando Reyes, María Jesús Martín, Carmen Cuevas, and Rogelio Fernández . Isolation and Structures of Pipecolidepsins A and B, Cytotoxic Cyclic Depsipeptides from the Madagascan Sponge Homophymia lamellosa. Journal of Natural Products 2014, 77
(2)
, 298-303. https://doi.org/10.1021/np400888e
- Nanjundan Jaivel, Chokkalingam Uvarani, Ramasamy Rajesh, Devadasan Velmurugan, and Ponnusamy Marimuthu . Natural Occurrence of Organofluorine and Other Constituents from Streptomyces sp. TC1. Journal of Natural Products 2014, 77
(1)
, 2-8. https://doi.org/10.1021/np400360h
- Trong D. Tran, Ngoc B. Pham, Gregory Fechner, Dusan Zencak, Hoan T. Vu, John N. A. Hooper, and Ronald J. Quinn . Cytotoxic Cyclic Depsipeptides from the Australian Marine Sponge Neamphius huxleyi. Journal of Natural Products 2012, 75
(12)
, 2200-2208. https://doi.org/10.1021/np3006474
- Zhenyu Lu, Ryan M. Van Wagoner, Mary Kay Harper, Heather L. Baker, John N. A. Hooper, Carole A. Bewley, and Chris M. Ireland . Mirabamides E−H, HIV-Inhibitory Depsipeptides from the Sponge Stelletta clavosa. Journal of Natural Products 2011, 74
(2)
, 185-193. https://doi.org/10.1021/np100613p
- Kathlyn A. Parker and, Qiuzhe Xie. Asymmetric Catalysis Route to anti,anti Stereotriads, Illustrated by Applications. Organic Letters 2008, 10
(7)
, 1349-1352. https://doi.org/10.1021/ol702989g
- Alberto Plaza, Elena Gustchina, Heather L. Baker, Michelle Kelly and Carole A. Bewley. Mirabamides A–D, Depsipeptides from the Sponge Siliquariaspongia mirabilis That Inhibit HIV-1 Fusion. Journal of Natural Products 2007, 70
(11)
, 1753-1760. https://doi.org/10.1021/np070306k
- Lakshmikanthan Hemajha, Simran Singh, Catherin Ann Biji, Akshad Balde, Soottawat Benjakul, Rasool Abdul Nazeer. A review on inflammation modulating venom proteins/peptide therapeutics and their delivery strategies: A review. International Immunopharmacology 2024, 142 , 113130. https://doi.org/10.1016/j.intimp.2024.113130
- Skyler L. Owens, Shopno R. Ahmed, Rebecca M. Lang Harman, Laura E. Stewart, Shogo Mori. Natural Products That Contain Higher Homologated Amino Acids. ChemBioChem 2024, 25
(9)
https://doi.org/10.1002/cbic.202300822
- Daniel W. Armstrong, Alain Berthod. Occurrence of D-amino acids in natural products. Natural Products and Bioprospecting 2023, 13
(1)
https://doi.org/10.1007/s13659-023-00412-0
- Mirnawati Salampe, Sukamto Salang Mamada, Yayu Mulsiani Evary, Saikat Mitra, Talha Bin Emran, Harapan Harapan, Firzan Nainu, Jesus Simal-Gandara. Promising Marine Natural Products for Tackling Viral Outbreaks:
A Focus on Possible Targets and Structure-activity Relationship. Current Topics in Medicinal Chemistry 2023, 23
(14)
, 1352-1379. https://doi.org/10.2174/1568026622666220831114838
- M.S. Aishwarya, R.S. Rachanamol, A.R. Sarika, J. Selvin, A.P. Lipton. Antimicrobial peptides from marine environment. 2023, 197-217. https://doi.org/10.1016/B978-0-323-85682-9.00008-8
- Alexis C.R. Hoste, Sigrid Görgen, Philippe Jacques. Increasing the natural biodiversity of microbial lipopeptides using a synthetic biology approach. 2023, 203-247. https://doi.org/10.1016/B978-0-323-91697-4.00010-7
- Alexander Horn, Uli Kazmaier. Synthesis of the cyclic heptapeptide core of callipeltin A. Organic Chemistry Frontiers 2022, 9
(19)
, 5213-5218. https://doi.org/10.1039/D2QO01120D
- Abdur Rauf, Anees Ahmed Khalil, Muneeb Khan, Sirajudheen Anwar, Abdulwahab Alamri, Abdulmalik M. Alqarni, Adel Alghamdi, Farhan Alshammari, Kannan R. R. Rengasamy, Chunpeng Wan. Can be marine bioactive peptides (MBAs) lead the future of foodomics for human health?. Critical Reviews in Food Science and Nutrition 2022, 62
(25)
, 7072-7116. https://doi.org/10.1080/10408398.2021.1910482
- Valery M. Dembitsky. Hydrobiological Aspects of Fatty Acids: Unique, Rare, and Unusual Fatty Acids Incorporated into Linear and Cyclic Lipopeptides and Their Biological Activity. Hydrobiology 2022, 1
(3)
, 331-432. https://doi.org/10.3390/hydrobiology1030024
- Jameel Mohammed Al-Khayri, Waqas Asghar, Sipper Khan, Aqsa Akhtar, Haris Ayub, Nauman Khalid, Fatima Mohammed Alessa, Muneera Qassim Al-Mssallem, Adel Abdel-Sabour Rezk, Wael Fathi Shehata. Therapeutic Potential of Marine Bioactive Peptides against Human Immunodeficiency Virus: Recent Evidence, Challenges, and Future Trends. Marine Drugs 2022, 20
(8)
, 477. https://doi.org/10.3390/md20080477
- Alberto Falco, Mikolaj Adamek, Patricia Pereiro, David Hoole, José Encinar, Beatriz Novoa, Ricardo Mallavia. The Immune System of Marine Organisms as Source for Drugs against Infectious Diseases. Marine Drugs 2022, 20
(6)
, 363. https://doi.org/10.3390/md20060363
- Ricardo Ribeiro, Eugénia Pinto, Carla Fernandes, Emília Sousa. Marine Cyclic Peptides: Antimicrobial Activity and Synthetic Strategies. Marine Drugs 2022, 20
(6)
, 397. https://doi.org/10.3390/md20060397
- Pavani Sanapala, Sudhakar Pola, N. Nageswara Rao Reddy, Veera Bramchari Pallaval. Expanding Role of Marine Natural Compounds in Immunomodulation: Challenges and Future Perspectives. 2022, 307-349. https://doi.org/10.1007/978-981-16-5374-2_10
- Norma Flores-Holguín, Juan Frau, Daniel Glossman-Mitnik. An integrated molecular modeling protocol for drug screening based on conceptual density functional theory and chemoinformatics for the study of marine cyclopeptides. Journal of Molecular Modeling 2021, 27
(11)
https://doi.org/10.1007/s00894-021-04901-2
- Rachana Singh, Niketa Chauhan, Mohammed Kuddus. Exploring the therapeutic potential of marine-derived bioactive compounds against COVID-19. Environmental Science and Pollution Research 2021, 28
(38)
, 52798-52809. https://doi.org/10.1007/s11356-021-16104-6
- Garima Agarwal, Reema Gabrani. Antiviral Peptides: Identification and Validation. International Journal of Peptide Research and Therapeutics 2021, 27
(1)
, 149-168. https://doi.org/10.1007/s10989-020-10072-0
- Anjum Komal. Biologically active peptides from marine proteobacteria: Discussion article. Open Journal of Bacteriology 2021, 21 , 005-012. https://doi.org/10.17352/ojb.000018
- Donat-P. Häder. Marine sponges: source of novel biotechnological substances. 2021, 363-379. https://doi.org/10.1016/B978-0-12-820655-3.00018-5
- Natia Ochkhikidze, Giorgi Titvinidze, Marekhi Gverdtsiteli, Giuli Otinashvili, David Tugushi, Ramaz Katsarava. Synthesis of AABB-polydepsipeptides, poly(ester amide)s and functional polymers on the basis of O,O′-diacyl-bis-glycolic acids. Journal of Macromolecular Science, Part A 2020, 57
(12)
, 854-864. https://doi.org/10.1080/10601325.2020.1800411
- Amit G. Mirani, Tanvi K. Shah, Vandana B. Patravale. Marine Source‐derived Anti‐HIV Therapeutics. 2020, 2725-2753. https://doi.org/10.1002/9781119143802.ch121
- Reda A. Abdelhamid, Hiroyuki Konno. Cyclic Depsipeptides, Callipeltins. 2020, 297-316. https://doi.org/10.1007/7081_2020_47
- Smritilekha Bera, Dhananjoy Mondal. Natural Cyclic Peptides as Clinical and Future Therapeutics. Current Organic Chemistry 2019, 23
(1)
, 38-75. https://doi.org/10.2174/1385272823666190110103558
- Sonja Hess. A Universal HPLC-MS Method to Determine the Stereochemistry of Common and Unusual Amino Acids. 2019, 263-275. https://doi.org/10.1007/978-1-4939-9639-1_20
- Kiran Bajaj. Natural Bioactive Cyclic Peptides and Peptidomimetics. 2019, 343-376. https://doi.org/10.1016/B978-0-444-64185-4.00009-5
- Ameer Khusro, Chirom Aarti, Alberto Barbabosa-Pliego, Raymundo Rene Rivas-Cáceres, Moisés Cipriano-Salazar. Venom as therapeutic weapon to combat dreadful diseases of 21st century: A systematic review on cancer, TB, and HIV/AIDS. Microbial Pathogenesis 2018, 125 , 96-107. https://doi.org/10.1016/j.micpath.2018.09.003
- Shohei Nakamukai, Kentaro Takada, Kazuo Furihata, Yuji Ise, Shigeru Okada, Yasuhiro Morii, Nobuhiro Yamawaki, Tomohiro Takatani, Osamu Arakawa, Kirk R. Gustafson, Shigeki Matsunaga. Stellatolide H, a cytotoxic peptide lactone from a deep-sea sponge Discodermia sp.. Tetrahedron Letters 2018, 59
(26)
, 2532-2536. https://doi.org/10.1016/j.tetlet.2018.05.033
- Daniela Giordano, Maria Costantini, Daniela Coppola, Chiara Lauritano, Laura Núñez Pons, Nadia Ruocco, Guido di Prisco, Adrianna Ianora, Cinzia Verde. Biotechnological Applications of Bioactive Peptides From Marine Sources. 2018, 171-220. https://doi.org/10.1016/bs.ampbs.2018.05.002
- Vedanjali Gogineni, Mark T. Hamann. Marine natural product peptides with therapeutic potential: Chemistry, biosynthesis, and pharmacology. Biochimica et Biophysica Acta (BBA) - General Subjects 2018, 1862
(1)
, 81-196. https://doi.org/10.1016/j.bbagen.2017.08.014
- Élida Cleyse Gomes da Mata, Caroline Barbosa Farias Mourão, Marisa Rangel, Elisabeth Ferroni Schwartz. Antiviral activity of animal venom peptides and related compounds. Journal of Venomous Animals and Toxins including Tropical Diseases 2017, 23
(1)
https://doi.org/10.1186/s40409-016-0089-0
- Komal Anjum, Syed Qamar Abbas, Najeeb Akhter, Bibi Ibtesam Shagufta, Sayed Asmat Ali Shah, Syed Shams ul Hassan. Emerging biopharmaceuticals from bioactive peptides derived from marine organisms. Chemical Biology & Drug Design 2017, 90
(1)
, 12-30. https://doi.org/10.1111/cbdd.12925
- Ryo Yoshino, Yoshinori Tokairin, Hiroyuki Konno. Synthesis of fully protected (2 R ,3 R ,4 S )-4-amino-7-guanidino-2,3-dihydroxy heptanoic acid. Tetrahedron Letters 2017, 58
(16)
, 1604-1606. https://doi.org/10.1016/j.tetlet.2017.03.025
- Lini Nirmala, D. P. Zyju. Novel Sources of Antimicrobials. 2017, 327-349. https://doi.org/10.1007/978-981-10-4284-3_13
- In-Seung Jang, Sun Joo Park. A Spirulina maxima-derived peptide inhibits HIV-1 infection in a human T cell line MT4. Fisheries and Aquatic Sciences 2016, 19
(1)
https://doi.org/10.1186/s41240-016-0039-3
- In Seung Jang, Sun Joo Park. Hydroxyproline-containing collagen peptide derived from the skin of the Alaska pollack inhibits HIV-1 infection. Molecular Medicine Reports 2016, 14
(6)
, 5489-5494. https://doi.org/10.3892/mmr.2016.5949
- Rajiv Dahiya, Sunil Singh, Ajay Sharma, Suresh Chennupati, Sandeep Maharaj. First Total Synthesis and Biological Screening of a Proline-Rich Cyclopeptide from a Caribbean Marine Sponge. Marine Drugs 2016, 14
(12)
, 228. https://doi.org/10.3390/md14120228
- Mohammad Asif. Biologically active compounds from natural and marine natural organisms with antituberculosis, antimalarial, leishmaniasis, trypanosomiasis, anthelmintic, antibacterial, antifungal, antiprotozoal, and antiviral activities. TANG [HUMANITAS MEDICINE] 2016, 6
(4)
, 22.1-22.19. https://doi.org/10.5667/tang.2014.0017
- Marc Stierhof, Kine Østnes Hansen, Mukesh Sharma, Klaus Feussner, Karolina Subko, Fernando Fernández Díaz-Rullo, Johan Isaksson, Ignacio Pérez-Victoria, David Clarke, Espen Hansen, Marcel Jaspars, Jioji N. Tabudravu. New cytotoxic callipeltins from the Solomon Island marine sponge Asteropus sp.. Tetrahedron 2016, 72
(44)
, 6929-6934. https://doi.org/10.1016/j.tet.2016.09.016
- Shivankar Agrawal, Alok Adholeya, Sunil K. Deshmukh. The Pharmacological Potential of Non-ribosomal Peptides from Marine Sponge and Tunicates. Frontiers in Pharmacology 2016, 7 https://doi.org/10.3389/fphar.2016.00333
- Mari Kikuchi, Hiroyuki Konno. Cytotoxic evaluation of natural and synthetic callipeltins: a revision of cytotoxicity of callipeltin B. Bioscience, Biotechnology, and Biochemistry 2016, 80
(6)
, 1066-1069. https://doi.org/10.1080/09168451.2016.1148581
- Ramachandran Karthik, Ramachandran Saravanan. Proteoglycans from Marine Sponges and Their Biomedical Applications. 2016, 287-304. https://doi.org/10.1007/978-81-322-2794-6_13
- Cedric Pearce. Anti-Infective Agents from Marine Sources. 2015, 167-182. https://doi.org/10.1201/b19081-11
- Hee Jae Shin, Mohammad A. Rashid, Laura K. Cartner, Heidi R. Bokesch, Jennifer A. Wilson, James B. McMahon, Kirk R. Gustafson. Stellettapeptins A and B, HIV-inhibitory cyclic depsipeptides from the marine sponge Stelletta sp.. Tetrahedron Letters 2015, 56
(28)
, 4215-4219. https://doi.org/10.1016/j.tetlet.2015.05.058
- Yoshinori Tokairin, Sho Takeda, Mari Kikuchi, Hiroyuki Konno. Synthetic studies on homophymine B: solid phase synthesis of a cyclic fragment. Tetrahedron Letters 2015, 56
(21)
, 2809-2812. https://doi.org/10.1016/j.tetlet.2015.04.044
- Toshiyuki Wakimoto, Karen Co Tan, Hiroki Tajima, Ikuro Abe. Cytotoxic Cyclic Peptides from the Marine Sponges. 2015, 113-144. https://doi.org/10.1007/978-3-319-07145-9_6
- Shiming Fan, Shouxin Liu, Hubo Zhang, Ying Liu, Yihuang Yang, Longyi Jin. Biocatalytic Synthesis of Enantiopure β‐Methoxy‐β‐arylalanine Derivatives. European Journal of Organic Chemistry 2014, 2014
(25)
, 5591-5597. https://doi.org/10.1002/ejoc.201402470
- Jean‐Michel Kornprobst. Porifera (Sponges)–2. 2014, 703-792. https://doi.org/10.1002/9783527335855.marprod192
- Jean‐Michel Kornprobst. Porifera (Sponges)–5. 2014, 951-1086. https://doi.org/10.1002/9783527335855.marprod195
- Juan Rubiolo, Eva Alonso, Eva Cagide. Marine Compounds as a Starting Point to Drugs. 2014, 1141-1178. https://doi.org/10.1201/b16662-48
- Hiroyuki Konno, Mari Kikuchi. Stereochemical Assignment of Four Diastereoisomers of 3,4-Dimethylpyroglutamic Acid, a Moiety of Callipeltin B. HETEROCYCLES 2014, 89
(7)
, 1620. https://doi.org/10.3987/COM-14-13003
- Marta Pelay-Gimeno, Yésica García-Ramos, Maria Jesús Martin, Jan Spengler, José Manuel Molina-Guijarro, Simon Munt, Andrés M. Francesch, Carmen Cuevas, Judit Tulla-Puche, Fernando Albericio. The first total synthesis of the cyclodepsipeptide pipecolidepsin A. Nature Communications 2013, 4
(1)
https://doi.org/10.1038/ncomms3352
- Christopher T. Walsh, Robert V. O'Brien, Chaitan Khosla. Nichtproteinogene Aminosäurebausteine für Peptidgerüste aus nichtribosomalen Peptiden und hybriden Polyketiden. Angewandte Chemie 2013, 125
(28)
, 7238-7265. https://doi.org/10.1002/ange.201208344
- Christopher T. Walsh, Robert V. O'Brien, Chaitan Khosla. Nonproteinogenic Amino Acid Building Blocks for Nonribosomal Peptide and Hybrid Polyketide Scaffolds. Angewandte Chemie International Edition 2013, 52
(28)
, 7098-7124. https://doi.org/10.1002/anie.201208344
- Marta Pelay-Gimeno, Judit Tulla-Puche, Fernando Albericio. “Head-to-Side-Chain” Cyclodepsipeptides of Marine Origin. Marine Drugs 2013, 11
(5)
, 1693-1717. https://doi.org/10.3390/md11051693
- Ruvini Liyanage, Barana C. Jayawardana, Suranga P. Kodithuwakku. Potential Novel Therapeutics: Some Biological Aspects of Marine‐derived Bioactive Peptides. 2013, 323-349. https://doi.org/10.1002/9781118375082.ch15
- Dai‐Hung Ngo, Thanh‐Sang Vo, Se‐Kwon Kim. Biological Activities of Marine Bioactive Peptides. 2013, 509-521. https://doi.org/10.1002/9781118375082.ch26
- Kalimuthu Senthilkumar, Se-Kwon Kim. Marine Invertebrate Natural Products for Anti-Inflammatory and Chronic Diseases. Evidence-Based Complementary and Alternative Medicine 2013, 2013 , 1-10. https://doi.org/10.1155/2013/572859
- Se-Kwon Kim, Dai-Hung Ngo, Thanh-Sang Vo, Dai-Nghiep Ngo. Pharmacological Effects of Marine-Derived Bioactive Peptides. 2012, 107-118. https://doi.org/10.1201/b13868-10
- Dai-Hung Ngo, Thanh-Sang Vo, Dai-Nghiep Ngo, Isuru Wijesekara, Se-Kwon Kim. Biological activities and potential health benefits of bioactive peptides derived from marine organisms. International Journal of Biological Macromolecules 2012, 51
(4)
, 378-383. https://doi.org/10.1016/j.ijbiomac.2012.06.001
- Jeffery C. Noro, John A. Kalaitzis, Brett A. Neilan. Bioactive Natural Products from Papua New Guinea Marine Sponges. Chemistry & Biodiversity 2012, 9
(10)
, 2077-2095. https://doi.org/10.1002/cbdv.201100292
- M HIMAJA, A Ranjitha, Sunil V Mali. Synthesis, docking and anticancer activity studies of D-proline-incorporated wainunuamide. Journal of Chemical Sciences 2012, 124
(5)
, 1049-1055. https://doi.org/10.1007/s12039-012-0301-x
- Yunjiang Feng, Rohan A. Davis, Melissa L. Sykes, Vicky M. Avery, Ronald J. Quinn. Iotrochamides A and B, antitrypanosomal compounds from the Australian marine sponge Iotrochota sp.. Bioorganic & Medicinal Chemistry Letters 2012, 22
(14)
, 4873-4876. https://doi.org/10.1016/j.bmcl.2012.05.029
- Yoshi Yamano, Masayoshi Arai, Motomasa Kobayashi. Neamphamide B, new cyclic depsipeptide, as an anti-dormant mycobacterial substance from a Japanese marine sponge of Neamphius sp.. Bioorganic & Medicinal Chemistry Letters 2012, 22
(14)
, 4877-4881. https://doi.org/10.1016/j.bmcl.2012.05.071
- Teppei Kawahara, Motoki Takagi, Kazuo Shin-ya. Three new depsipeptides, JBIR-113, JBIR-114 and JBIR-115, isolated from a marine sponge-derived Penicillium sp. fS36. The Journal of Antibiotics 2012, 65
(3)
, 147-150. https://doi.org/10.1038/ja.2011.126
- Sonja Hess. A Universal HPLC-MS Method to Determine the Stereochemistry of Common and Unusual Amino Acids. 2012, 63-75. https://doi.org/10.1007/978-1-61779-445-2_7
- Priscilla L. Winder, Shirley A. Pomponi, Amy E. Wright. Natural Products from the Lithistida: A Review of the Literature since 2000. Marine Drugs 2011, 9
(12)
, 2643-2682. https://doi.org/10.3390/md9122643
- Pritesh Prasad, William Aalbersberg, Klaus-D. Feussner, Ryan M. Van Wagoner. Papuamides E and F, cytotoxic depsipeptides from the marine sponge Melophlus sp.. Tetrahedron 2011, 67
(44)
, 8529-8531. https://doi.org/10.1016/j.tet.2011.08.100
- Mari Kikuchi, Yoshihisa Watanabe, Masaki Tanaka, Kenichi Akaji, Hiroyuki Konno. Synthesis and cytotoxicity of the depsipeptides analogues of callipeltin B. Bioorganic & Medicinal Chemistry Letters 2011, 21
(16)
, 4865-4868. https://doi.org/10.1016/j.bmcl.2011.06.026
- N. N. Romanova, T. G. Tallo, I. I. Rybalko, N. V. Zyk, V. K. Shvyadas. Biologically active cyclic polypeptides with fragments of β-amino acid derivatives isolated from marine organisms (review). Chemistry of Heterocyclic Compounds 2011, 47
(4)
, 395-417. https://doi.org/10.1007/s10593-011-0774-4
- Paco Cárdenas, Joana R. Xavier, Julie Reveillaud, Christoffer Schander, Hans Tore Rapp, . Molecular Phylogeny of the Astrophorida (Porifera, Demospongiaep) Reveals an Unexpected High Level of Spicule Homoplasy. PLoS ONE 2011, 6
(4)
, e18318. https://doi.org/10.1371/journal.pone.0018318
- Jiří Patočka. β-AMINO ACIDS AND THEIR NATURAL BIOLOGICALLY ACTIVE DERIVATIVES. 5. DERIVATIVES OF UNUSUAL ALICYCLIC AND HETEROCYCLIC β-AMIMO ACIDS. Military Medical Science Letters 2011, 80
(1)
, 2-11. https://doi.org/10.31482/mmsl.2011.001
- Thanh-Sang Vo, Se-Kwon Kim. Potential Anti-HIV Agents from Marine Resources: An Overview. Marine Drugs 2010, 8
(12)
, 2871-2892. https://doi.org/10.3390/md8122871
- Sabrin R.M. Ibrahim, Cho Cho Min, Franka Teuscher, Rainer Ebel, Christel Kakoschke, Wenhan Lin, Victor Wray, RuAngelie Edrada-Ebel, Peter Proksch. Callyaerins A–F and H, new cytotoxic cyclic peptides from the Indonesian marine sponge Callyspongia aerizusa. Bioorganic & Medicinal Chemistry 2010, 18
(14)
, 4947-4956. https://doi.org/10.1016/j.bmc.2010.06.012
- Jarred Yasuhara-Bell, Yuanan Lu. Marine compounds and their antiviral activities. Antiviral Research 2010, 86
(3)
, 231-240. https://doi.org/10.1016/j.antiviral.2010.03.009
- Simone Di Micco, Maria Giovanna Chini, Raffaele Riccio, Giuseppe Bifulco. Quantum Mechanical Calculation of NMR Parameters in the Stereostructural Determination of Natural Products. European Journal of Organic Chemistry 2010, 2010
(8)
, 1411-1434. https://doi.org/10.1002/ejoc.200901255
- Gowri Shankar Bagavananthem Andavan, Rosa Lemmens-Gruber. Cyclodepsipeptides from Marine Sponges: Natural Agents for Drug Research. Marine Drugs 2010, 8
(3)
, 810-834. https://doi.org/10.3390/md8030810
- Inder Pal Singh, Hardik S. Bodiwala. Recent advances in anti-HIV natural products. Natural Product Reports 2010, 27
(12)
, 1781. https://doi.org/10.1039/c0np00025f
- Hiroyuki Konno, Yoko Takebayashi, Kazuto Nosaka, Kenichi Akaji. Synthetic Studies on Callipeltins: Stereoselective Syntheses of (3S,4R)-3,4-Dimethyl-L-pyroglutamic Acid and Fmoc-D-allothreonine from Serine Derivatives. HETEROCYCLES 2010, 81
(1)
, 79. https://doi.org/10.3987/COM-09-11834
- Stephen A. Habay, Steve S. Park, Steven M. Kennedy, A. Richard Chamberlin. Methods for the Chemical Synthesis of Noncoded α‐Amino Acids found in Natural Product Peptides. 2009, 163-243. https://doi.org/10.1002/9783527631766.ch5
- Filomena Bellotta, Maria Valeria D'Auria, Valentina Sepe, Angela Zampella. Synthetic studies on homophymine A: stereoselective synthesis of (2R,3R,4R,6R)-3-hydroxy-2,4,6-trimethyloctanoic acid. Tetrahedron 2009, 65
(18)
, 3659-3663. https://doi.org/10.1016/j.tet.2009.02.069
- Delphine Kalch, Nicolas De Rycke, Xavier Moreau, Christine Greck. Efficient syntheses of enantioenriched (R)-pipecolic acid and (R)-proline via electrophilic organocatalytic amination. Tetrahedron Letters 2009, 50
(4)
, 492-494. https://doi.org/10.1016/j.tetlet.2008.11.054
- Angela Zampella, Valentina Sepe, Filomena Bellotta, Paolo Luciano, Maria Valeria D'Auria, Thierry Cresteil, Cécile Debitus, Sylvain Petek, Christiane Poupat, Alain Ahond. Homophymines B–E and A1–E1, a family of bioactive cyclodepsipeptides from the sponge Homophymia sp.. Organic & Biomolecular Chemistry 2009, 7
(19)
, 4037. https://doi.org/10.1039/b910015f
- Cynthia D. Andjelic, Vicente Planelles, Louis R. Barrows. Characterizing the Anti-HIV Activity of Papuamide A. Marine Drugs 2008, 6
(4)
, 528-549. https://doi.org/10.3390/md20080027
- Weiqing Xie, Derong Ding, Weiwei Zi, Guangyu Li, Dawei Ma. Total Synthesis and Structure Assignment of Papuamide B, A Potent Marine Cyclodepsipeptide with Anti‐HIV Properties. Angewandte Chemie 2008, 120
(15)
, 2886-2890. https://doi.org/10.1002/ange.200705557
- Weiqing Xie, Derong Ding, Weiwei Zi, Guangyu Li, Dawei Ma. Total Synthesis and Structure Assignment of Papuamide B, A Potent Marine Cyclodepsipeptide with Anti‐HIV Properties. Angewandte Chemie International Edition 2008, 47
(15)
, 2844-2848. https://doi.org/10.1002/anie.200705557
- Maria Jose Abad Martinez, Luis Miguel Bedoya Del Olmo, Paulina Bermejo Benito. Natural Marine Antiviral Products. 2008, 101-134. https://doi.org/10.1016/S1572-5995(08)80005-1
- Roberto G.S. Berlinck, Miriam H. Kossuga. Guanidine Alkaloids from Marine Invertebrates. 2007, 305-337. https://doi.org/10.1002/9783527621071.ch11
- Ravi Krishnamoorthy, Brooke L. Richardson, Mark A. Lipton. Synthesis and cytotoxicity of desmethoxycallipeltin B: Lack of a quinone methide for the cytotoxicity of callipeltin B. Bioorganic & Medicinal Chemistry Letters 2007, 17
(18)
, 5136-5138. https://doi.org/10.1016/j.bmcl.2007.07.003
- Alejandro M.S. Mayer, Abimael D. Rodríguez, Roberto G.S. Berlinck, Mark T. Hamann. Marine pharmacology in 2003–4: Marine compounds with anthelmintic antibacterial, anticoagulant, antifungal, anti-inflammatory, antimalarial, antiplatelet, antiprotozoal, antituberculosis, and antiviral activities; affecting the cardiovascular, immune and nervous systems, and other miscellaneous mechanisms of action. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 2007, 145
(4)
, 553-581. https://doi.org/10.1016/j.cbpc.2007.01.015
Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.
Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.
The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.