ACS Publications. Most Trusted. Most Cited. Most Read
Neamphamide A, a New HIV-Inhibitory Depsipeptide from the Papua New Guinea Marine Sponge Neamphius huxleyi
My Activity
    Note

    Neamphamide A, a New HIV-Inhibitory Depsipeptide from the Papua New Guinea Marine Sponge Neamphius huxleyi
    Click to copy article linkArticle link copied!

    View Author Information
    Molecular Targets Development Program, Center for Cancer Research, National Cancer Institute, Building 1052, Room 121, Frederick, Maryland 21702-1201, Intramural Research Support Program, SAIC-Frederick, Frederick, Maryland 21702-1201, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Disease, Bethesda, Maryland 20892-0805, and USA Cancer Research Institute, College of Medicine, University of South Alabama, 307 University Boulevard, MSB 2310, Mobile, Alabama 36688
    Other Access OptionsSupporting Information (1)

    Journal of Natural Products

    Cite this: J. Nat. Prod. 2004, 67, 8, 1407–1411
    Click to copy citationCitation copied!
    https://doi.org/10.1021/np040003f
    Published June 30, 2004
    Copyright © 2004 American Chemical Society and American Society of Pharmacognosy

    Abstract

    Click to copy section linkSection link copied!

    A new HIV-inhibitory cyclic depsipeptide, neamphamide A (2), was isolated from a Papua New Guinea collection of the marine sponge Neamphius huxleyi. Its structure was established through interpretation of spectroscopic data and by acid hydrolysis, derivatization of the free amino acids, and LC-MS analysis of the derivatives. Neamphamide A (2) contains 11 amino acid residues and an amide-linked 3-hydroxy-2,4,6-trimethylheptanoic acid moiety. The amino acid constituents were identified as l-Leu, l-NMeGln, d-Arg, d- and l-Asn, two residues of d-allo-Thr, l-homoproline, (3S,4R)-3,4-dimethyl-l-glutamine, β-methoxytyrosine, and 4-amino-7-guanidino-2,3-dihydroxyheptanoic acid. In a cell-based XTT assay, 2 exhibited potent cytoprotective activity against HIV-1 infection with an EC50 of approximately 28 nM.

    Copyright © 2004 American Chemical Society and American Society of Pharmacognosy

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

     Dedicated to the late Dr. D. John Faulkner (Scripps) and the late Dr. Paul J. Scheuer (Hawaii) for their pioneering work on bioactive marine natural products.

     Molecular Targets Development Program, CCR, NCI.

    *

     To whom correspondence should be addressed. Tel:  (301) 846-5391. Fax:  (301) 846-6919.

    §

     SAIC-Frederick.

     Laboratory of Bioorganic Chemistry, NIDDK.

     Present address:  Exploratory Research Laboratories, Fujisawa Pharmaceutical Co. Ltd., 5-2-3 Tokodai, Tsukuba, Ibaraki, 300-2698, Japan.

     USA Cancer Research Institute.

     Present address:  USA Cancer Research Institute, College of Medicine, University of South Alabama, Mobile, AL 36688.

    Supporting Information Available

    Click to copy section linkSection link copied!

    1H, 13C, gCOSY45, gTOCSY, gHSQC, gHMBC, gNOESY, and gROESY spectra of compound 2. This material is available free of charge via the Internet at http:// pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 108 publications.

    1. Alexander Horn, Uli Kazmaier. Stereoselective Synthesis of a Protected Side Chain of Callipeltin A. Organic Letters 2022, 24 (39) , 7072-7076. https://doi.org/10.1021/acs.orglett.2c02586
    2. Chang-Kwon Kim, Dongdong Wang, Heidi R. Bokesch, Richard W. Fuller, Emily Smith, Curtis J. Henrich, David E. Durrant, Deborah K. Morrison, Carole A. Bewley, Kirk R. Gustafson. Swinhopeptolides A and B: Cyclic Depsipeptides from the Sponge Theonella swinhoei That Inhibit Ras/Raf Interaction. Journal of Natural Products 2020, 83 (4) , 1288-1294. https://doi.org/10.1021/acs.jnatprod.0c00136
    3. Carlos Urda, Rogelio Fernández, Jaime Rodríguez, Marta Pérez, Carlos Jiménez, and Carmen Cuevas . Daedophamide, a Cytotoxic Cyclodepsipeptide from a Daedalopelta sp. Sponge Collected in Indonesia. Journal of Natural Products 2017, 80 (11) , 3054-3059. https://doi.org/10.1021/acs.jnatprod.7b00678
    4. Vedanjali Gogineni, Raymond F. Schinazi, and Mark T. Hamann . Role of Marine Natural Products in the Genesis of Antiviral Agents. Chemical Reviews 2015, 115 (18) , 9655-9706. https://doi.org/10.1021/cr4006318
    5. Piotr Szcześniak, Agnieszka Październiok-Holewa, Urszula Klimczak, and Sebastian Stecko . Synthesis of β- and γ-Hydroxy α-Amino Acids via Enzymatic Kinetic Resolution and Cyanate-to-Isocyanate Rearrangement. The Journal of Organic Chemistry 2014, 79 (23) , 11700-11713. https://doi.org/10.1021/jo502026a
    6. María Jesús Martín, Raquel Rodríguez-Acebes, Yésica García-Ramos, Valentín Martínez, Carmen Murcia, Isabel Digón, Isabel Marco, Marta Pelay-Gimeno, Rogelio Fernández, Fernando Reyes, Andrés M. Francesch, Simon Munt, Judit Tulla-Puche, Fernando Albericio, and Carmen Cuevas . Stellatolides, a New Cyclodepsipeptide Family from the Sponge Ecionemia acervus: Isolation, Solid-Phase Total Synthesis, and Full Structural Assignment of Stellatolide A. Journal of the American Chemical Society 2014, 136 (18) , 6754-6762. https://doi.org/10.1021/ja502744a
    7. Laura Coello, Fernando Reyes, María Jesús Martín, Carmen Cuevas, and Rogelio Fernández . Isolation and Structures of Pipecolidepsins A and B, Cytotoxic Cyclic Depsipeptides from the Madagascan Sponge Homophymia lamellosa. Journal of Natural Products 2014, 77 (2) , 298-303. https://doi.org/10.1021/np400888e
    8. Nanjundan Jaivel, Chokkalingam Uvarani, Ramasamy Rajesh, Devadasan Velmurugan, and Ponnusamy Marimuthu . Natural Occurrence of Organofluorine and Other Constituents from Streptomyces sp. TC1. Journal of Natural Products 2014, 77 (1) , 2-8. https://doi.org/10.1021/np400360h
    9. Trong D. Tran, Ngoc B. Pham, Gregory Fechner, Dusan Zencak, Hoan T. Vu, John N. A. Hooper, and Ronald J. Quinn . Cytotoxic Cyclic Depsipeptides from the Australian Marine Sponge Neamphius huxleyi. Journal of Natural Products 2012, 75 (12) , 2200-2208. https://doi.org/10.1021/np3006474
    10. Zhenyu Lu, Ryan M. Van Wagoner, Mary Kay Harper, Heather L. Baker, John N. A. Hooper, Carole A. Bewley, and Chris M. Ireland . Mirabamides E−H, HIV-Inhibitory Depsipeptides from the Sponge Stelletta clavosa. Journal of Natural Products 2011, 74 (2) , 185-193. https://doi.org/10.1021/np100613p
    11. Kathlyn A. Parker and, Qiuzhe Xie. Asymmetric Catalysis Route to anti,anti Stereotriads, Illustrated by Applications. Organic Letters 2008, 10 (7) , 1349-1352. https://doi.org/10.1021/ol702989g
    12. Alberto Plaza, Elena Gustchina, Heather L. Baker, Michelle Kelly and Carole A. Bewley. Mirabamides A–D, Depsipeptides from the Sponge Siliquariaspongia mirabilis That Inhibit HIV-1 Fusion. Journal of Natural Products 2007, 70 (11) , 1753-1760. https://doi.org/10.1021/np070306k
    13. Lakshmikanthan Hemajha, Simran Singh, Catherin Ann Biji, Akshad Balde, Soottawat Benjakul, Rasool Abdul Nazeer. A review on inflammation modulating venom proteins/peptide therapeutics and their delivery strategies: A review. International Immunopharmacology 2024, 142 , 113130. https://doi.org/10.1016/j.intimp.2024.113130
    14. Skyler L. Owens, Shopno R. Ahmed, Rebecca M. Lang Harman, Laura E. Stewart, Shogo Mori. Natural Products That Contain Higher Homologated Amino Acids. ChemBioChem 2024, 25 (9) https://doi.org/10.1002/cbic.202300822
    15. Daniel W. Armstrong, Alain Berthod. Occurrence of D-amino acids in natural products. Natural Products and Bioprospecting 2023, 13 (1) https://doi.org/10.1007/s13659-023-00412-0
    16. Mirnawati Salampe, Sukamto Salang Mamada, Yayu Mulsiani Evary, Saikat Mitra, Talha Bin Emran, Harapan Harapan, Firzan Nainu, Jesus Simal-Gandara. Promising Marine Natural Products for Tackling Viral Outbreaks: A Focus on Possible Targets and Structure-activity Relationship. Current Topics in Medicinal Chemistry 2023, 23 (14) , 1352-1379. https://doi.org/10.2174/1568026622666220831114838
    17. M.S. Aishwarya, R.S. Rachanamol, A.R. Sarika, J. Selvin, A.P. Lipton. Antimicrobial peptides from marine environment. 2023, 197-217. https://doi.org/10.1016/B978-0-323-85682-9.00008-8
    18. Alexis C.R. Hoste, Sigrid Görgen, Philippe Jacques. Increasing the natural biodiversity of microbial lipopeptides using a synthetic biology approach. 2023, 203-247. https://doi.org/10.1016/B978-0-323-91697-4.00010-7
    19. Alexander Horn, Uli Kazmaier. Synthesis of the cyclic heptapeptide core of callipeltin A. Organic Chemistry Frontiers 2022, 9 (19) , 5213-5218. https://doi.org/10.1039/D2QO01120D
    20. Abdur Rauf, Anees Ahmed Khalil, Muneeb Khan, Sirajudheen Anwar, Abdulwahab Alamri, Abdulmalik M. Alqarni, Adel Alghamdi, Farhan Alshammari, Kannan R. R. Rengasamy, Chunpeng Wan. Can be marine bioactive peptides (MBAs) lead the future of foodomics for human health?. Critical Reviews in Food Science and Nutrition 2022, 62 (25) , 7072-7116. https://doi.org/10.1080/10408398.2021.1910482
    21. Valery M. Dembitsky. Hydrobiological Aspects of Fatty Acids: Unique, Rare, and Unusual Fatty Acids Incorporated into Linear and Cyclic Lipopeptides and Their Biological Activity. Hydrobiology 2022, 1 (3) , 331-432. https://doi.org/10.3390/hydrobiology1030024
    22. Jameel Mohammed Al-Khayri, Waqas Asghar, Sipper Khan, Aqsa Akhtar, Haris Ayub, Nauman Khalid, Fatima Mohammed Alessa, Muneera Qassim Al-Mssallem, Adel Abdel-Sabour Rezk, Wael Fathi Shehata. Therapeutic Potential of Marine Bioactive Peptides against Human Immunodeficiency Virus: Recent Evidence, Challenges, and Future Trends. Marine Drugs 2022, 20 (8) , 477. https://doi.org/10.3390/md20080477
    23. Alberto Falco, Mikolaj Adamek, Patricia Pereiro, David Hoole, José Encinar, Beatriz Novoa, Ricardo Mallavia. The Immune System of Marine Organisms as Source for Drugs against Infectious Diseases. Marine Drugs 2022, 20 (6) , 363. https://doi.org/10.3390/md20060363
    24. Ricardo Ribeiro, Eugénia Pinto, Carla Fernandes, Emília Sousa. Marine Cyclic Peptides: Antimicrobial Activity and Synthetic Strategies. Marine Drugs 2022, 20 (6) , 397. https://doi.org/10.3390/md20060397
    25. Pavani Sanapala, Sudhakar Pola, N. Nageswara Rao Reddy, Veera Bramchari Pallaval. Expanding Role of Marine Natural Compounds in Immunomodulation: Challenges and Future Perspectives. 2022, 307-349. https://doi.org/10.1007/978-981-16-5374-2_10
    26. Norma Flores-Holguín, Juan Frau, Daniel Glossman-Mitnik. An integrated molecular modeling protocol for drug screening based on conceptual density functional theory and chemoinformatics for the study of marine cyclopeptides. Journal of Molecular Modeling 2021, 27 (11) https://doi.org/10.1007/s00894-021-04901-2
    27. Rachana Singh, Niketa Chauhan, Mohammed Kuddus. Exploring the therapeutic potential of marine-derived bioactive compounds against COVID-19. Environmental Science and Pollution Research 2021, 28 (38) , 52798-52809. https://doi.org/10.1007/s11356-021-16104-6
    28. Garima Agarwal, Reema Gabrani. Antiviral Peptides: Identification and Validation. International Journal of Peptide Research and Therapeutics 2021, 27 (1) , 149-168. https://doi.org/10.1007/s10989-020-10072-0
    29. Anjum Komal. Biologically active peptides from marine proteobacteria: Discussion article. Open Journal of Bacteriology 2021, 21 , 005-012. https://doi.org/10.17352/ojb.000018
    30. Donat-P. Häder. Marine sponges: source of novel biotechnological substances. 2021, 363-379. https://doi.org/10.1016/B978-0-12-820655-3.00018-5
    31. Natia Ochkhikidze, Giorgi Titvinidze, Marekhi Gverdtsiteli, Giuli Otinashvili, David Tugushi, Ramaz Katsarava. Synthesis of AABB-polydepsipeptides, poly(ester amide)s and functional polymers on the basis of O,O′-diacyl-bis-glycolic acids. Journal of Macromolecular Science, Part A 2020, 57 (12) , 854-864. https://doi.org/10.1080/10601325.2020.1800411
    32. Amit G. Mirani, Tanvi K. Shah, Vandana B. Patravale. Marine Source‐derived Anti‐HIV Therapeutics. 2020, 2725-2753. https://doi.org/10.1002/9781119143802.ch121
    33. Reda A. Abdelhamid, Hiroyuki Konno. Cyclic Depsipeptides, Callipeltins. 2020, 297-316. https://doi.org/10.1007/7081_2020_47
    34. Smritilekha Bera, Dhananjoy Mondal. Natural Cyclic Peptides as Clinical and Future Therapeutics. Current Organic Chemistry 2019, 23 (1) , 38-75. https://doi.org/10.2174/1385272823666190110103558
    35. Sonja Hess. A Universal HPLC-MS Method to Determine the Stereochemistry of Common and Unusual Amino Acids. 2019, 263-275. https://doi.org/10.1007/978-1-4939-9639-1_20
    36. Kiran Bajaj. Natural Bioactive Cyclic Peptides and Peptidomimetics. 2019, 343-376. https://doi.org/10.1016/B978-0-444-64185-4.00009-5
    37. Ameer Khusro, Chirom Aarti, Alberto Barbabosa-Pliego, Raymundo Rene Rivas-Cáceres, Moisés Cipriano-Salazar. Venom as therapeutic weapon to combat dreadful diseases of 21st century: A systematic review on cancer, TB, and HIV/AIDS. Microbial Pathogenesis 2018, 125 , 96-107. https://doi.org/10.1016/j.micpath.2018.09.003
    38. Shohei Nakamukai, Kentaro Takada, Kazuo Furihata, Yuji Ise, Shigeru Okada, Yasuhiro Morii, Nobuhiro Yamawaki, Tomohiro Takatani, Osamu Arakawa, Kirk R. Gustafson, Shigeki Matsunaga. Stellatolide H, a cytotoxic peptide lactone from a deep-sea sponge Discodermia sp.. Tetrahedron Letters 2018, 59 (26) , 2532-2536. https://doi.org/10.1016/j.tetlet.2018.05.033
    39. Daniela Giordano, Maria Costantini, Daniela Coppola, Chiara Lauritano, Laura Núñez Pons, Nadia Ruocco, Guido di Prisco, Adrianna Ianora, Cinzia Verde. Biotechnological Applications of Bioactive Peptides From Marine Sources. 2018, 171-220. https://doi.org/10.1016/bs.ampbs.2018.05.002
    40. Vedanjali Gogineni, Mark T. Hamann. Marine natural product peptides with therapeutic potential: Chemistry, biosynthesis, and pharmacology. Biochimica et Biophysica Acta (BBA) - General Subjects 2018, 1862 (1) , 81-196. https://doi.org/10.1016/j.bbagen.2017.08.014
    41. Élida Cleyse Gomes da Mata, Caroline Barbosa Farias Mourão, Marisa Rangel, Elisabeth Ferroni Schwartz. Antiviral activity of animal venom peptides and related compounds. Journal of Venomous Animals and Toxins including Tropical Diseases 2017, 23 (1) https://doi.org/10.1186/s40409-016-0089-0
    42. Komal Anjum, Syed Qamar Abbas, Najeeb Akhter, Bibi Ibtesam Shagufta, Sayed Asmat Ali Shah, Syed Shams ul Hassan. Emerging biopharmaceuticals from bioactive peptides derived from marine organisms. Chemical Biology & Drug Design 2017, 90 (1) , 12-30. https://doi.org/10.1111/cbdd.12925
    43. Ryo Yoshino, Yoshinori Tokairin, Hiroyuki Konno. Synthesis of fully protected (2 R ,3 R ,4 S )-4-amino-7-guanidino-2,3-dihydroxy heptanoic acid. Tetrahedron Letters 2017, 58 (16) , 1604-1606. https://doi.org/10.1016/j.tetlet.2017.03.025
    44. Lini Nirmala, D. P. Zyju. Novel Sources of Antimicrobials. 2017, 327-349. https://doi.org/10.1007/978-981-10-4284-3_13
    45. In-Seung Jang, Sun Joo Park. A Spirulina maxima-derived peptide inhibits HIV-1 infection in a human T cell line MT4. Fisheries and Aquatic Sciences 2016, 19 (1) https://doi.org/10.1186/s41240-016-0039-3
    46. In Seung Jang, Sun Joo Park. Hydroxyproline-containing collagen peptide derived from the skin of the Alaska pollack inhibits HIV-1 infection. Molecular Medicine Reports 2016, 14 (6) , 5489-5494. https://doi.org/10.3892/mmr.2016.5949
    47. Rajiv Dahiya, Sunil Singh, Ajay Sharma, Suresh Chennupati, Sandeep Maharaj. First Total Synthesis and Biological Screening of a Proline-Rich Cyclopeptide from a Caribbean Marine Sponge. Marine Drugs 2016, 14 (12) , 228. https://doi.org/10.3390/md14120228
    48. Mohammad Asif. Biologically active compounds from natural and marine natural organisms with antituberculosis, antimalarial, leishmaniasis, trypanosomiasis, anthelmintic, antibacterial, antifungal, antiprotozoal, and antiviral activities. TANG [HUMANITAS MEDICINE] 2016, 6 (4) , 22.1-22.19. https://doi.org/10.5667/tang.2014.0017
    49. Marc Stierhof, Kine Østnes Hansen, Mukesh Sharma, Klaus Feussner, Karolina Subko, Fernando Fernández Díaz-Rullo, Johan Isaksson, Ignacio Pérez-Victoria, David Clarke, Espen Hansen, Marcel Jaspars, Jioji N. Tabudravu. New cytotoxic callipeltins from the Solomon Island marine sponge Asteropus sp.. Tetrahedron 2016, 72 (44) , 6929-6934. https://doi.org/10.1016/j.tet.2016.09.016
    50. Shivankar Agrawal, Alok Adholeya, Sunil K. Deshmukh. The Pharmacological Potential of Non-ribosomal Peptides from Marine Sponge and Tunicates. Frontiers in Pharmacology 2016, 7 https://doi.org/10.3389/fphar.2016.00333
    51. Mari Kikuchi, Hiroyuki Konno. Cytotoxic evaluation of natural and synthetic callipeltins: a revision of cytotoxicity of callipeltin B. Bioscience, Biotechnology, and Biochemistry 2016, 80 (6) , 1066-1069. https://doi.org/10.1080/09168451.2016.1148581
    52. Ramachandran Karthik, Ramachandran Saravanan. Proteoglycans from Marine Sponges and Their Biomedical Applications. 2016, 287-304. https://doi.org/10.1007/978-81-322-2794-6_13
    53. Cedric Pearce. Anti-­Infective Agents from Marine Sources. 2015, 167-182. https://doi.org/10.1201/b19081-11
    54. Hee Jae Shin, Mohammad A. Rashid, Laura K. Cartner, Heidi R. Bokesch, Jennifer A. Wilson, James B. McMahon, Kirk R. Gustafson. Stellettapeptins A and B, HIV-inhibitory cyclic depsipeptides from the marine sponge Stelletta sp.. Tetrahedron Letters 2015, 56 (28) , 4215-4219. https://doi.org/10.1016/j.tetlet.2015.05.058
    55. Yoshinori Tokairin, Sho Takeda, Mari Kikuchi, Hiroyuki Konno. Synthetic studies on homophymine B: solid phase synthesis of a cyclic fragment. Tetrahedron Letters 2015, 56 (21) , 2809-2812. https://doi.org/10.1016/j.tetlet.2015.04.044
    56. Toshiyuki Wakimoto, Karen Co Tan, Hiroki Tajima, Ikuro Abe. Cytotoxic Cyclic Peptides from the Marine Sponges. 2015, 113-144. https://doi.org/10.1007/978-3-319-07145-9_6
    57. Shiming Fan, Shouxin Liu, Hubo Zhang, Ying Liu, Yihuang Yang, Longyi Jin. Biocatalytic Synthesis of Enantiopure β‐Methoxy‐β‐arylalanine Derivatives. European Journal of Organic Chemistry 2014, 2014 (25) , 5591-5597. https://doi.org/10.1002/ejoc.201402470
    58. Jean‐Michel Kornprobst. Porifera (Sponges)–2. 2014, 703-792. https://doi.org/10.1002/9783527335855.marprod192
    59. Jean‐Michel Kornprobst. Porifera (Sponges)–5. 2014, 951-1086. https://doi.org/10.1002/9783527335855.marprod195
    60. Juan Rubiolo, Eva Alonso, Eva Cagide. Marine Compounds as a Starting Point to Drugs. 2014, 1141-1178. https://doi.org/10.1201/b16662-48
    61. Hiroyuki Konno, Mari Kikuchi. Stereochemical Assignment of Four Diastereoisomers of 3,4-Dimethylpyroglutamic Acid, a Moiety of Callipeltin B. HETEROCYCLES 2014, 89 (7) , 1620. https://doi.org/10.3987/COM-14-13003
    62. Marta Pelay-Gimeno, Yésica García-Ramos, Maria Jesús Martin, Jan Spengler, José Manuel Molina-Guijarro, Simon Munt, Andrés M. Francesch, Carmen Cuevas, Judit Tulla-Puche, Fernando Albericio. The first total synthesis of the cyclodepsipeptide pipecolidepsin A. Nature Communications 2013, 4 (1) https://doi.org/10.1038/ncomms3352
    63. Christopher T. Walsh, Robert V. O'Brien, Chaitan Khosla. Nichtproteinogene Aminosäurebausteine für Peptidgerüste aus nichtribosomalen Peptiden und hybriden Polyketiden. Angewandte Chemie 2013, 125 (28) , 7238-7265. https://doi.org/10.1002/ange.201208344
    64. Christopher T. Walsh, Robert V. O'Brien, Chaitan Khosla. Nonproteinogenic Amino Acid Building Blocks for Nonribosomal Peptide and Hybrid Polyketide Scaffolds. Angewandte Chemie International Edition 2013, 52 (28) , 7098-7124. https://doi.org/10.1002/anie.201208344
    65. Marta Pelay-Gimeno, Judit Tulla-Puche, Fernando Albericio. “Head-to-Side-Chain” Cyclodepsipeptides of Marine Origin. Marine Drugs 2013, 11 (5) , 1693-1717. https://doi.org/10.3390/md11051693
    66. Ruvini Liyanage, Barana C. Jayawardana, Suranga P. Kodithuwakku. Potential Novel Therapeutics: Some Biological Aspects of Marine‐derived Bioactive Peptides. 2013, 323-349. https://doi.org/10.1002/9781118375082.ch15
    67. Dai‐Hung Ngo, Thanh‐Sang Vo, Se‐Kwon Kim. Biological Activities of Marine Bioactive Peptides. 2013, 509-521. https://doi.org/10.1002/9781118375082.ch26
    68. Kalimuthu Senthilkumar, Se-Kwon Kim. Marine Invertebrate Natural Products for Anti-Inflammatory and Chronic Diseases. Evidence-Based Complementary and Alternative Medicine 2013, 2013 , 1-10. https://doi.org/10.1155/2013/572859
    69. Se-Kwon Kim, Dai-Hung Ngo, Thanh-Sang Vo, Dai-Nghiep Ngo. Pharmacological Effects of Marine-Derived Bioactive Peptides. 2012, 107-118. https://doi.org/10.1201/b13868-10
    70. Dai-Hung Ngo, Thanh-Sang Vo, Dai-Nghiep Ngo, Isuru Wijesekara, Se-Kwon Kim. Biological activities and potential health benefits of bioactive peptides derived from marine organisms. International Journal of Biological Macromolecules 2012, 51 (4) , 378-383. https://doi.org/10.1016/j.ijbiomac.2012.06.001
    71. Jeffery C. Noro, John A. Kalaitzis, Brett A. Neilan. Bioactive Natural Products from Papua New Guinea Marine Sponges. Chemistry & Biodiversity 2012, 9 (10) , 2077-2095. https://doi.org/10.1002/cbdv.201100292
    72. M HIMAJA, A Ranjitha, Sunil V Mali. Synthesis, docking and anticancer activity studies of D-proline-incorporated wainunuamide. Journal of Chemical Sciences 2012, 124 (5) , 1049-1055. https://doi.org/10.1007/s12039-012-0301-x
    73. Yunjiang Feng, Rohan A. Davis, Melissa L. Sykes, Vicky M. Avery, Ronald J. Quinn. Iotrochamides A and B, antitrypanosomal compounds from the Australian marine sponge Iotrochota sp.. Bioorganic & Medicinal Chemistry Letters 2012, 22 (14) , 4873-4876. https://doi.org/10.1016/j.bmcl.2012.05.029
    74. Yoshi Yamano, Masayoshi Arai, Motomasa Kobayashi. Neamphamide B, new cyclic depsipeptide, as an anti-dormant mycobacterial substance from a Japanese marine sponge of Neamphius sp.. Bioorganic & Medicinal Chemistry Letters 2012, 22 (14) , 4877-4881. https://doi.org/10.1016/j.bmcl.2012.05.071
    75. Teppei Kawahara, Motoki Takagi, Kazuo Shin-ya. Three new depsipeptides, JBIR-113, JBIR-114 and JBIR-115, isolated from a marine sponge-derived Penicillium sp. fS36. The Journal of Antibiotics 2012, 65 (3) , 147-150. https://doi.org/10.1038/ja.2011.126
    76. Sonja Hess. A Universal HPLC-MS Method to Determine the Stereochemistry of Common and Unusual Amino Acids. 2012, 63-75. https://doi.org/10.1007/978-1-61779-445-2_7
    77. Priscilla L. Winder, Shirley A. Pomponi, Amy E. Wright. Natural Products from the Lithistida: A Review of the Literature since 2000. Marine Drugs 2011, 9 (12) , 2643-2682. https://doi.org/10.3390/md9122643
    78. Pritesh Prasad, William Aalbersberg, Klaus-D. Feussner, Ryan M. Van Wagoner. Papuamides E and F, cytotoxic depsipeptides from the marine sponge Melophlus sp.. Tetrahedron 2011, 67 (44) , 8529-8531. https://doi.org/10.1016/j.tet.2011.08.100
    79. Mari Kikuchi, Yoshihisa Watanabe, Masaki Tanaka, Kenichi Akaji, Hiroyuki Konno. Synthesis and cytotoxicity of the depsipeptides analogues of callipeltin B. Bioorganic & Medicinal Chemistry Letters 2011, 21 (16) , 4865-4868. https://doi.org/10.1016/j.bmcl.2011.06.026
    80. N. N. Romanova, T. G. Tallo, I. I. Rybalko, N. V. Zyk, V. K. Shvyadas. Biologically active cyclic polypeptides with fragments of β-amino acid derivatives isolated from marine organisms (review). Chemistry of Heterocyclic Compounds 2011, 47 (4) , 395-417. https://doi.org/10.1007/s10593-011-0774-4
    81. Paco Cárdenas, Joana R. Xavier, Julie Reveillaud, Christoffer Schander, Hans Tore Rapp, . Molecular Phylogeny of the Astrophorida (Porifera, Demospongiaep) Reveals an Unexpected High Level of Spicule Homoplasy. PLoS ONE 2011, 6 (4) , e18318. https://doi.org/10.1371/journal.pone.0018318
    82. Jiří Patočka. β-AMINO ACIDS AND THEIR NATURAL BIOLOGICALLY ACTIVE DERIVATIVES. 5. DERIVATIVES OF UNUSUAL ALICYCLIC AND HETEROCYCLIC β-AMIMO ACIDS. Military Medical Science Letters 2011, 80 (1) , 2-11. https://doi.org/10.31482/mmsl.2011.001
    83. Thanh-Sang Vo, Se-Kwon Kim. Potential Anti-HIV Agents from Marine Resources: An Overview. Marine Drugs 2010, 8 (12) , 2871-2892. https://doi.org/10.3390/md8122871
    84. Sabrin R.M. Ibrahim, Cho Cho Min, Franka Teuscher, Rainer Ebel, Christel Kakoschke, Wenhan Lin, Victor Wray, RuAngelie Edrada-Ebel, Peter Proksch. Callyaerins A–F and H, new cytotoxic cyclic peptides from the Indonesian marine sponge Callyspongia aerizusa. Bioorganic & Medicinal Chemistry 2010, 18 (14) , 4947-4956. https://doi.org/10.1016/j.bmc.2010.06.012
    85. Jarred Yasuhara-Bell, Yuanan Lu. Marine compounds and their antiviral activities. Antiviral Research 2010, 86 (3) , 231-240. https://doi.org/10.1016/j.antiviral.2010.03.009
    86. Simone Di Micco, Maria Giovanna Chini, Raffaele Riccio, Giuseppe Bifulco. Quantum Mechanical Calculation of NMR Parameters in the Stereostructural Determination of Natural Products. European Journal of Organic Chemistry 2010, 2010 (8) , 1411-1434. https://doi.org/10.1002/ejoc.200901255
    87. Gowri Shankar Bagavananthem Andavan, Rosa Lemmens-Gruber. Cyclodepsipeptides from Marine Sponges: Natural Agents for Drug Research. Marine Drugs 2010, 8 (3) , 810-834. https://doi.org/10.3390/md8030810
    88. Inder Pal Singh, Hardik S. Bodiwala. Recent advances in anti-HIV natural products. Natural Product Reports 2010, 27 (12) , 1781. https://doi.org/10.1039/c0np00025f
    89. Hiroyuki Konno, Yoko Takebayashi, Kazuto Nosaka, Kenichi Akaji. Synthetic Studies on Callipeltins: Stereoselective Syntheses of (3S,4R)-3,4-Dimethyl-L-pyroglutamic Acid and Fmoc-D-allothreonine from Serine Derivatives. HETEROCYCLES 2010, 81 (1) , 79. https://doi.org/10.3987/COM-09-11834
    90. Stephen A. Habay, Steve S. Park, Steven M. Kennedy, A. Richard Chamberlin. Methods for the Chemical Synthesis of Noncoded α‐Amino Acids found in Natural Product Peptides. 2009, 163-243. https://doi.org/10.1002/9783527631766.ch5
    91. Filomena Bellotta, Maria Valeria D'Auria, Valentina Sepe, Angela Zampella. Synthetic studies on homophymine A: stereoselective synthesis of (2R,3R,4R,6R)-3-hydroxy-2,4,6-trimethyloctanoic acid. Tetrahedron 2009, 65 (18) , 3659-3663. https://doi.org/10.1016/j.tet.2009.02.069
    92. Delphine Kalch, Nicolas De Rycke, Xavier Moreau, Christine Greck. Efficient syntheses of enantioenriched (R)-pipecolic acid and (R)-proline via electrophilic organocatalytic amination. Tetrahedron Letters 2009, 50 (4) , 492-494. https://doi.org/10.1016/j.tetlet.2008.11.054
    93. Angela Zampella, Valentina Sepe, Filomena Bellotta, Paolo Luciano, Maria Valeria D'Auria, Thierry Cresteil, Cécile Debitus, Sylvain Petek, Christiane Poupat, Alain Ahond. Homophymines B–E and A1–E1, a family of bioactive cyclodepsipeptides from the sponge Homophymia sp.. Organic & Biomolecular Chemistry 2009, 7 (19) , 4037. https://doi.org/10.1039/b910015f
    94. Cynthia D. Andjelic, Vicente Planelles, Louis R. Barrows. Characterizing the Anti-HIV Activity of Papuamide A. Marine Drugs 2008, 6 (4) , 528-549. https://doi.org/10.3390/md20080027
    95. Weiqing Xie, Derong Ding, Weiwei Zi, Guangyu Li, Dawei Ma. Total Synthesis and Structure Assignment of Papuamide B, A Potent Marine Cyclodepsipeptide with Anti‐HIV Properties. Angewandte Chemie 2008, 120 (15) , 2886-2890. https://doi.org/10.1002/ange.200705557
    96. Weiqing Xie, Derong Ding, Weiwei Zi, Guangyu Li, Dawei Ma. Total Synthesis and Structure Assignment of Papuamide B, A Potent Marine Cyclodepsipeptide with Anti‐HIV Properties. Angewandte Chemie International Edition 2008, 47 (15) , 2844-2848. https://doi.org/10.1002/anie.200705557
    97. Maria Jose Abad Martinez, Luis Miguel Bedoya Del Olmo, Paulina Bermejo Benito. Natural Marine Antiviral Products. 2008, 101-134. https://doi.org/10.1016/S1572-5995(08)80005-1
    98. Roberto G.S. Berlinck, Miriam H. Kossuga. Guanidine Alkaloids from Marine Invertebrates. 2007, 305-337. https://doi.org/10.1002/9783527621071.ch11
    99. Ravi Krishnamoorthy, Brooke L. Richardson, Mark A. Lipton. Synthesis and cytotoxicity of desmethoxycallipeltin B: Lack of a quinone methide for the cytotoxicity of callipeltin B. Bioorganic & Medicinal Chemistry Letters 2007, 17 (18) , 5136-5138. https://doi.org/10.1016/j.bmcl.2007.07.003
    100. Alejandro M.S. Mayer, Abimael D. Rodríguez, Roberto G.S. Berlinck, Mark T. Hamann. Marine pharmacology in 2003–4: Marine compounds with anthelmintic antibacterial, anticoagulant, antifungal, anti-inflammatory, antimalarial, antiplatelet, antiprotozoal, antituberculosis, and antiviral activities; affecting the cardiovascular, immune and nervous systems, and other miscellaneous mechanisms of action. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 2007, 145 (4) , 553-581. https://doi.org/10.1016/j.cbpc.2007.01.015
    Load all citations

    Journal of Natural Products

    Cite this: J. Nat. Prod. 2004, 67, 8, 1407–1411
    Click to copy citationCitation copied!
    https://doi.org/10.1021/np040003f
    Published June 30, 2004
    Copyright © 2004 American Chemical Society and American Society of Pharmacognosy

    Article Views

    1102

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.