ACS Publications. Most Trusted. Most Cited. Most Read
Aurilides B and C, Cancer Cell Toxins from a Papua New Guinea Collection of the Marine Cyanobacterium Lyngbya majuscula
My Activity
    Article

    Aurilides B and C, Cancer Cell Toxins from a Papua New Guinea Collection of the Marine Cyanobacterium Lyngbya majuscula
    Click to copy article linkArticle link copied!

    View Author Information
    College of Pharmacy, Oregon State University, Corvallis, Oregon 97331, and Southwest Foundation for Biomedical Research, San Antonio, Texas 78245
    Other Access OptionsSupporting Information (1)

    Journal of Natural Products

    Cite this: J. Nat. Prod. 2006, 69, 4, 572–575
    Click to copy citationCitation copied!
    https://doi.org/10.1021/np0503911
    Published February 11, 2006
    Copyright © 2006 American Chemical Society and American Society of Pharmacognosy

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Cytotoxicity-guided fractionation of a strain of the marine cyanobacterium Lyngbya majuscula collected from Papua New Guinea led to the isolation of aurilides B (1) and C (2). The planar structures of 1 and 2 were established by spectroscopic analysis, including HR-FABMS, 1D 1H and 13C NMR, and 2D COSY, HSQC, HSQC-TOCSY, and HMBC spectra. The absolute configuration was determined by spectroscopic analysis and chiral HPLC analysis of acid hydrolysates of 1 and 2. Both aurilides B and C showed in vitro cytotoxicity toward NCI-H460 human lung tumor and the neuro-2a mouse neuroblastoma cell lines, with LC50 values between 0.01 and 0.13 μM. Aurilide B (1) was evaluated in the NCI 60 cell line panel and found to exhibit a high level of cytotoxicity (the mean panel GI50 concentration was less than 10 nM) and to be particularly active against leukemia, renal, and prostate cancer cell lines.

    Copyright © 2006 American Chemical Society and American Society of Pharmacognosy

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

     Oregon State University.

    §

     Current address:  Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California at San Diego, 9500 Gilman Dr., M/C 0212, La Jolla, CA 92093-0212.

     Southwest Foundation for Biomedical Research.

    *

     To whom correspondence should be addressed. Tel:  (858) 534-0578. Fax:  (858) 534-0529. E-mail:  [email protected].

    Supporting Information Available

    Click to copy section linkSection link copied!

    1H NMR, 13C NMR, and 2D NMR spectra in C6D6 for aurilide B (1) and 1H and 13C NMR for aurilide C (2). This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 112 publications.

    1. Naoaki Kurisawa, Ghulam Jeelani, Tomoyoshi Nozaki, Adnan Luthfi Agusta, Kiyotake Suenaga, Arihiro Iwasaki. Wajeepeptin, a Cytotoxic and Antitrypanosomal Cyclic Depsipeptide from a Marine Moorena sp. Cyanobacterium. Journal of Natural Products 2024, 87 (7) , 1838-1843. https://doi.org/10.1021/acs.jnatprod.4c00499
    2. Jan Gorges, Uli Kazmaier. Matteson Homologation-Based Total Synthesis of Lagunamide A. Organic Letters 2018, 20 (7) , 2033-2036. https://doi.org/10.1021/acs.orglett.8b00576
    3. Ashootosh Tripathi, Jonathan Puddick, Michèle R. Prinsep, Matthias Rottmann, and Lik Tong Tan. Lagunamides A and B: Cytotoxic and Antimalarial Cyclodepsipeptides from the Marine Cyanobacterium Lyngbya majuscula. Journal of Natural Products 2010, 73 (11) , 1810-1814. https://doi.org/10.1021/np100442x
    4. Mahesh S. Majik, Umesh B. Gawas, Prachi S. Torney. Natural products from marine cyanobacteria for drug discovery. 2025, 259-279. https://doi.org/10.1016/B978-0-443-21674-9.00016-7
    5. Ajit Kumar Bishoyi, Chinmayee Priyadarsani Mandhata, Chita Ranjan Sahoo, Sudhir Kumar Paidesetty, Rabindra Nath Padhy. Nanosynthesis, phycochemical constituents, and pharmacological properties of cyanobacterium Oscillatoria sp.. Naunyn-Schmiedeberg's Archives of Pharmacology 2024, 397 (3) , 1347-1375. https://doi.org/10.1007/s00210-023-02719-8
    6. Serena Mirra, Gemma Marfany. From Beach to the Bedside: Harnessing Mitochondrial Function in Human Diseases Using New Marine-Derived Strategies. International Journal of Molecular Sciences 2024, 25 (2) , 834. https://doi.org/10.3390/ijms25020834
    7. Lubna Anjum Minhas, Muhammad Kaleem, Hafiz Muhammad Umer Farooqi, Farzana Kausar, Rooma Waqar, Theophilus Bhatti, Shahid Aziz, Dong Won Jung, Abdul Samad Mumtaz. Algae-derived bioactive compounds as potential nutraceuticals for cancer therapy: A comprehensive review. Algal Research 2024, 149 , 103396. https://doi.org/10.1016/j.algal.2024.103396
    8. Sandeep Kaur Saggu, Shiv Kumar. Value-Added Chemicals from Algae: Extraction and Refining. 2024, 213-236. https://doi.org/10.1007/978-981-97-1662-3_10
    9. Sadaf Gul, Laila Shahnaz, Sana Raiz, Muhammad Farrakh Nawaz. Microalgae: Production, Consumption and Challenges. 2024, 31-59. https://doi.org/10.1007/978-981-97-2371-3_2
    10. Abdelhakim Bouyahya, Saad Bakrim, Imane Chamkhi, Douae Taha, Nasreddine El Omari, Naoual El Mneyiy, Naoufal El Hachlafi, Mohamed El-Shazly, Asaad Khalid, Ashraf N. Abdalla, Khang Wen Goh, Long Chiau Ming, Bey Hing Goh, Tarik Aanniz. Bioactive substances of cyanobacteria and microalgae: Sources, metabolism, and anticancer mechanism insights. Biomedicine & Pharmacotherapy 2024, 170 , 115989. https://doi.org/10.1016/j.biopha.2023.115989
    11. Hendrik Luesch, Emma K. Ellis, Qi-Yin Chen, Ranjala Ratnayake. Progress in the discovery and development of anticancer agents from marine cyanobacteria. Natural Product Reports 2024, 20 https://doi.org/10.1039/D4NP00019F
    12. Taufiq Nawaz, Liping Gu, Shah Fahad, Shah Saud, Zhaoyu Jiang, Shah Hassan, Matthew Tom Harrison, Ke Liu, Mushtaq Ahmad Khan, Haitao Liu, Khaled El‐Kahtany, Chao Wu, Mo Zhu, Ruanbao Zhou. A comprehensive review of the therapeutic potential of cyanobacterial marine bioactives: Unveiling the hidden treasures of the sea. Food and Energy Security 2023, 12 (5) https://doi.org/10.1002/fes3.495
    13. Danmeng Luo, Ranjala Ratnayake, Kalina R. Atanasova, Valerie J. Paul, Hendrik Luesch. Targeted and functional genomics approaches to the mechanism of action of lagunamide D, a mitochondrial cytotoxin from marine cyanobacteria. Biochemical Pharmacology 2023, 213 , 115608. https://doi.org/10.1016/j.bcp.2023.115608
    14. Ajit Kumar Bishoyi, Chita Ranjan Sahoo, Rabindra Nath Padhy. Recent progression of cyanobacteria and their pharmaceutical utility: an update. Journal of Biomolecular Structure and Dynamics 2023, 41 (9) , 4219-4252. https://doi.org/10.1080/07391102.2022.2062051
    15. Salman Ahmed, Waqas Alam, Michael Aschner, Rosanna Filosa, Wai San Cheang, Philippe Jeandet, Luciano Saso, Haroon Khan. Marine Cyanobacterial Peptides in Neuroblastoma: Search for Better Therapeutic Options. Cancers 2023, 15 (9) , 2515. https://doi.org/10.3390/cancers15092515
    16. Chiara Lauritano, Eleonora Montuori, Gabriele De Falco, Sabrina Carrella. In Silico Methodologies to Improve Antioxidants’ Characterization from Marine Organisms. Antioxidants 2023, 12 (3) , 710. https://doi.org/10.3390/antiox12030710
    17. Mingyuan Zeng, Jianyun Tao, Shuang Xu, Xuelian Bai, Huawei Zhang. Marine Organisms as a Prolific Source of Bioactive Depsipeptides. Marine Drugs 2023, 21 (2) , 120. https://doi.org/10.3390/md21020120
    18. Hussein E. Touliabah, Dina A. Refaay. Enhancement of Anticancer, Antibacterial, and Acetylcholinesterase Inhibition Activities from Oscillatoria sancta under Starvation Conditions. Water 2023, 15 (4) , 664. https://doi.org/10.3390/w15040664
    19. Eleonora Montuori, Caroline A. C. Hyde, Francesco Crea, Jon Golding, Chiara Lauritano. Marine Natural Products with Activities against Prostate Cancer: Recent Discoveries. International Journal of Molecular Sciences 2023, 24 (2) , 1435. https://doi.org/10.3390/ijms24021435
    20. Dennis Schulze, Michael Kohlstedt, Judith Becker, Edern Cahoreau, Lindsay Peyriga, Alexander Makowka, Sarah Hildebrandt, Kirstin Gutekunst, Jean-Charles Portais, Christoph Wittmann. GC/MS-based 13C metabolic flux analysis resolves the parallel and cyclic photomixotrophic metabolism of Synechocystis sp. PCC 6803 and selected deletion mutants including the Entner-Doudoroff and phosphoketolase pathways. Microbial Cell Factories 2022, 21 (1) https://doi.org/10.1186/s12934-022-01790-9
    21. Ewa Żymańczyk-Duda, Sunday Ocholi Samson, Małgorzata Brzezińska-Rodak, Magdalena Klimek-Ochab. Versatile Applications of Cyanobacteria in Biotechnology. Microorganisms 2022, 10 (12) , 2318. https://doi.org/10.3390/microorganisms10122318
    22. Emily Curren, Chui Pin Leaw, Po Teen Lim, Sandric Chee Yew Leong. The toxic cosmopolitan cyanobacteria Moorena producens: insights into distribution, ecophysiology and toxicity. Environmental Science and Pollution Research 2022, 29 (52) , 78178-78206. https://doi.org/10.1007/s11356-022-23096-4
    23. Deepti Diwan, Lei Cheng, Zeba Usmani, Minaxi Sharma, Nicola Holden, Nicholas Willoughby, Neelam Sangwan, Rama Raju Baadhe, Chenchen Liu, Vijai Kumar Gupta. Microbial cancer therapeutics: A promising approach. Seminars in Cancer Biology 2022, 86 , 931-950. https://doi.org/10.1016/j.semcancer.2021.05.003
    24. Bahareh Nowruzi. Cyanobacteria Natural Products as Sources for Future Directions in Antibiotic Drug Discovery. 2022https://doi.org/10.5772/intechopen.106364
    25. Mirza S. Baig, Sajjan Rajpoot, Tomokazu Ohishi, Rajkumar Savai, Sascha Seidel, Nina A. Kamennaya, Evgeny E. Bezsonov, Alexander N. Orekhov, Pratik Mahajan, Kundan Solanki, Uzma Saqib. Anti-lung cancer properties of cyanobacterial bioactive compounds. Archives of Microbiology 2022, 204 (10) https://doi.org/10.1007/s00203-022-03194-0
    26. Aqsa Shahid, Mohsin Khurshid, Bilal Aslam, Saima Muzammil, Hafiza Mahreen Mehwish, Muhammad Shahid Riaz Rajoka, Hafiz Fakhar Hayat, Muhammad Hassan Sarfraz, Muhammad Khuram Razzaq, Muhammad Atif Nisar, Muhammad Waseem. Cyanobacteria derived compounds: Emerging drugs for cancer management. Journal of Basic Microbiology 2022, 62 (9) , 1125-1142. https://doi.org/10.1002/jobm.202100459
    27. Valery M. Dembitsky. Hydrobiological Aspects of Fatty Acids: Unique, Rare, and Unusual Fatty Acids Incorporated into Linear and Cyclic Lipopeptides and Their Biological Activity. Hydrobiology 2022, 1 (3) , 331-432. https://doi.org/10.3390/hydrobiology1030024
    28. Salman Ahmed, Waqas Alam, Philippe Jeandet, Michael Aschner, Khalaf F. Alsharif, Luciano Saso, Haroon Khan. Therapeutic Potential of Marine Peptides in Prostate Cancer: Mechanistic Insights. Marine Drugs 2022, 20 (8) , 466. https://doi.org/10.3390/md20080466
    29. Benjamín Robles-Bañuelos, Lorena María Durán-Riveroll, Edgar Rangel-López, Hugo Isidro Pérez-López, Leticia González-Maya. Marine Cyanobacteria as Sources of Lead Anticancer Compounds: A Review of Families of Metabolites with Cytotoxic, Antiproliferative, and Antineoplastic Effects. Molecules 2022, 27 (15) , 4814. https://doi.org/10.3390/molecules27154814
    30. Dalifa Ramadhani, Rani Maharani, Amirah Mohd Gazzali, Muchtaridi Muchtaridi. Cyclic Peptides for the Treatment of Cancers: A Review. Molecules 2022, 27 (14) , 4428. https://doi.org/10.3390/molecules27144428
    31. Hamed Ahari, Bahareh Nowruzi, Amir Ali Anvar, Samaneh Jafari Porzani. The Toxicity Testing of Cyanobacterial Toxins In vivo and In vitro by Mouse Bioassay: A Review. Mini-Reviews in Medicinal Chemistry 2022, 22 (8) , 1131-1151. https://doi.org/10.2174/1389557521666211101162030
    32. Mabroka H. Saad, Esmail M. El-Fakharany, Marwa S. Salem, Nagwa M. Sidkey. The use of cyanobacterial metabolites as natural medical and biotechnological tools: review article. Journal of Biomolecular Structure and Dynamics 2022, 40 (6) , 2828-2850. https://doi.org/10.1080/07391102.2020.1838948
    33. Aiswarya Girija, Mallika Vijayanathan, Sweda Sreekumar, Jasim Basheer, Tara G. Menon, Radhakrishnan E. Krishnankutty, Eppurathu V. Soniya. Harnessing the Natural Pool of Polyketide and Non-ribosomal Peptide Family: A Route Map towards Novel Drug Development. Current Molecular Pharmacology 2022, 15 (2) , 265-291. https://doi.org/10.2174/1874467214666210319145816
    34. Ishtiaq Ahmed, Muhammad Asgher, Farooq Sher, Syed Hussain, Nadia Nazish, Navneet Joshi, Ashutosh Sharma, Roberto Parra-Saldívar, Muhammad Bilal, Hafiz Iqbal. Exploring Marine as a Rich Source of Bioactive Peptides: Challenges and Opportunities from Marine Pharmacology. Marine Drugs 2022, 20 (3) , 208. https://doi.org/10.3390/md20030208
    35. Masoumeh Eghtedari, Samaneh Jafari Porzani, Bahareh Nowruzi. Anticancer potential of natural peptides from terrestrial and marine environments: A review. Phytochemistry Letters 2021, 42 , 87-103. https://doi.org/10.1016/j.phytol.2021.02.008
    36. Jia-Nan Zhang, Yi-Xuan Xia, Hong-Jie Zhang. Natural Cyclopeptides as Anticancer Agents in the Last 20 Years. International Journal of Molecular Sciences 2021, 22 (8) , 3973. https://doi.org/10.3390/ijms22083973
    37. Synthia Michon, Florine Cavelier, Xavier J. Salom-Roig. Synthesis and Biological Activities of Cyclodepsipeptides of Aurilide Family from Marine Origin. Marine Drugs 2021, 19 (2) , 55. https://doi.org/10.3390/md19020055
    38. Qi-Ting Zhang, Ze-Dong Liu, Ze Wang, Tao Wang, Nan Wang, Ning Wang, Bin Zhang, Yu-Fen Zhao. Recent Advances in Small Peptides of Marine Origin in Cancer Therapy. Marine Drugs 2021, 19 (2) , 115. https://doi.org/10.3390/md19020115
    39. S. Koushalya, Rashi Vishwakarma, Anushree Malik. Unraveling the diversity of algae and its biomacromolecules. 2021, 179-204. https://doi.org/10.1016/B978-0-12-820084-1.00008-9
    40. Hojun Lee, Stephen Depuydt, Soyeon Choi, Geonhee Kim, Youngdo Kim, Lalit K. Pandey, Donat-P. Häder, Taejun Han, Jihae Park. Potential use of nuisance cyanobacteria as a source of anticancer agents. 2021, 203-231. https://doi.org/10.1016/B978-0-12-820655-3.00010-0
    41. Ragaa A. Hamouda, Noura El-Ahmady El-Naggar. Cyanobacteria-based microbial cell factories for production of industrial products. 2021, 277-302. https://doi.org/10.1016/B978-0-12-821477-0.00007-6
    42. Nasreen Amin, Vinod K. Kannaujiya. Metabolic pathways for production of anticancer compounds in cyanobacteria. 2021, 127-154. https://doi.org/10.1016/B978-0-12-821710-8.00006-0
    43. Atif Khurshid Wani, Nahid Akhtar, Banhishikha Datta, Janmejay Pandey, M. Amin-ul Mannan. Cyanobacteria-derived small molecules: a new class of drugs. 2021, 283-303. https://doi.org/10.1016/B978-0-12-824523-1.00003-1
    44. Hina Qamar, Kashif Hussain, Aishwarya Soni, Anish Khan, Touseef Hussain, Benoît Chénais. Cyanobacteria as Natural Therapeutics and Pharmaceutical Potential: Role in Antitumor Activity and as Nanovectors. Molecules 2021, 26 (1) , 247. https://doi.org/10.3390/molecules26010247
    45. Conxita Avila, Carlos Angulo-Preckler. Bioactive Compounds from Marine Heterobranchs. Marine Drugs 2020, 18 (12) , 657. https://doi.org/10.3390/md18120657
    46. Víctor Tena Pérez, Luis Apaza Ticona, Alfredo H. Cabanillas, Santiago Maderuelo Corral, Josefina Perles, Diego Fernando Rosero Valencia, Antera Martel Quintana, Montserrat Ortega Domenech, Ángel Rumbero Sánchez. Antitumoral potential of carbamidocyclophanes and carbamidocylindrofridin A isolated from the cyanobacterium Cylindrospermum stagnale BEA 0605B. Phytochemistry 2020, 180 , 112529. https://doi.org/10.1016/j.phytochem.2020.112529
    47. Jianzhou Xu, Ting Zhang, Jiaxiao Yao, Jian Lu, Zhiwen Liu, Lijian Ding. Recent advances in chemistry and bioactivity of marine cyanobacteria Moorea species. European Journal of Medicinal Chemistry 2020, 201 , 112473. https://doi.org/10.1016/j.ejmech.2020.112473
    48. Arijit Mondal, Sankhadip Bose, Sabyasachi Banerjee, Jayanta Kumar Patra, Jai Malik, Sudip Kumar Mandal, Kaitlyn L. Kilpatrick, Gitishree Das, Rout George Kerry, Carmela Fimognari, Anupam Bishayee. Marine Cyanobacteria and Microalgae Metabolites—A Rich Source of Potential Anticancer Drugs. Marine Drugs 2020, 18 (9) , 476. https://doi.org/10.3390/md18090476
    49. Shailendra P. Singh, Rajeshwar P. Sinha. Marine Photosynthetic Microorganisms. 2020, 2229-2245. https://doi.org/10.1002/9781119143802.ch101
    50. Harika Atmaca Ilhan, Çisil Çamlı Pulat. Cytotoxic and Antitumor Compounds from Marine Invertebrates. 2020, 2529-2584. https://doi.org/10.1002/9781119143802.ch115
    51. Bahareh Nowruzi, Gisoo Sarvari, Saúl Blanco. Applications of cyanobacteria in biomedicine. 2020, 441-453. https://doi.org/10.1016/B978-0-12-818305-2.00028-0
    52. Arundhati Mehta, Vivek Kumar Soni, Dhananjay Shukla, Naveen Kumar Vishvakarma. Cyanobacteria: a potential source of anticancer drugs. 2020, 369-384. https://doi.org/10.1016/B978-0-12-819311-2.00024-3
    53. I-Shuo Huang, Paul V. Zimba. Cyanobacterial bioactive metabolites—A review of their chemistry and biology. Harmful Algae 2019, 86 , 139-209. https://doi.org/10.1016/j.hal.2019.05.001
    54. Justine Demay, Cécile Bernard, Anita Reinhardt, Benjamin Marie. Natural Products from Cyanobacteria: Focus on Beneficial Activities. Marine Drugs 2019, 17 (6) , 320. https://doi.org/10.3390/md17060320
    55. I-Shuo Huang, Paul V. Zimba. Cyanobacterial bioactive metabolites—A review of their chemistry and biology. Harmful Algae 2019, 83 , 42-94. https://doi.org/10.1016/j.hal.2018.11.008
    56. Danmeng Luo, Masteria Y. Putra, Tao Ye, Valerie J. Paul, Hendrik Luesch. Isolation, Structure Elucidation and Biological Evaluation of Lagunamide D: A New Cytotoxic Macrocyclic Depsipeptide from Marine Cyanobacteria. Marine Drugs 2019, 17 (2) , 83. https://doi.org/10.3390/md17020083
    57. Karolina Szubert, Magda Wiglusz, Hanna Mazur-Marzec. Bioactive metabolites produced by Spirulina subsalsa from the Baltic Sea. Oceanologia 2018, 60 (3) , 245-255. https://doi.org/10.1016/j.oceano.2017.11.003
    58. Ana Regueiras, Sandra Pereira, Maria Sofia Costa, Vitor Vasconcelos. Differential Toxicity of Cyanobacteria Isolated from Marine Sponges towards Echinoderms and Crustaceans. Toxins 2018, 10 (7) , 297. https://doi.org/10.3390/toxins10070297
    59. Hee Kang, Moon-Chang Choi, Chang Seo, Yoonkyung Park. Therapeutic Properties and Biological Benefits of Marine-Derived Anticancer Peptides. International Journal of Molecular Sciences 2018, 19 (3) , 919. https://doi.org/10.3390/ijms19030919
    60. Ye’ Zaw Phyo, João Ribeiro, Carla Fernandes, Anake Kijjoa, Madalena M. M. Pinto. Marine Natural Peptides: Determination of Absolute Configuration Using Liquid Chromatography Methods and Evaluation of Bioactivities. Molecules 2018, 23 (2) , 306. https://doi.org/10.3390/molecules23020306
    61. Julianne P. Sexton, Michael W. Lomas. Microalgal Systematics. 2018, 73-107. https://doi.org/10.1016/B978-0-12-811405-6.00004-9
    62. Vedanjali Gogineni, Mark T. Hamann. Marine natural product peptides with therapeutic potential: Chemistry, biosynthesis, and pharmacology. Biochimica et Biophysica Acta (BBA) - General Subjects 2018, 1862 (1) , 81-196. https://doi.org/10.1016/j.bbagen.2017.08.014
    63. Shohei Takase, Rumi Kurokawa, Daisuke Arai, Kind Kanemoto Kanto, Tatsufumi Okino, Yoichi Nakao, Tetsuo Kushiro, Minoru Yoshida, Ken Matsumoto. A quantitative shRNA screen identifies ATP1A1 as a gene that regulates cytotoxicity by aurilide B. Scientific Reports 2017, 7 (1) https://doi.org/10.1038/s41598-017-02016-4
    64. Shivankar Agrawal, Debabrata Acharya, Alok Adholeya, Colin J. Barrow, Sunil K. Deshmukh. Nonribosomal Peptides from Marine Microbes and Their Antimicrobial and Anticancer Potential. Frontiers in Pharmacology 2017, 8 https://doi.org/10.3389/fphar.2017.00828
    65. Lik Tong Tan. Molecular Targets of Clinically Relevant Natural Products from Filamentous Marine Cyanobacteria. 2017, 19-43. https://doi.org/10.1002/9783527805921.ch2
    66. Maria Letizia Ciavatta, Florence Lefranc, Marianna Carbone, Ernesto Mollo, Margherita Gavagnin, Tania Betancourt, Ramesh Dasari, Alexander Kornienko, Robert Kiss. Marine Mollusk‐Derived Agents with Antiproliferative Activity as Promising Anticancer Agents to Overcome Chemotherapy Resistance. Medicinal Research Reviews 2017, 37 (4) , 702-801. https://doi.org/10.1002/med.21423
    67. Rachana Singh, Parul Parihar, Madhulika Singh, Andrzej Bajguz, Jitendra Kumar, Samiksha Singh, Vijay P. Singh, Sheo M. Prasad. Uncovering Potential Applications of Cyanobacteria and Algal Metabolites in Biology, Agriculture and Medicine: Current Status and Future Prospects. Frontiers in Microbiology 2017, 8 https://doi.org/10.3389/fmicb.2017.00515
    68. Rajneesh, Shailendra P. Singh, Jainendra Pathak, Rajeshwer P. Sinha. Cyanobacterial factories for the production of green energy and value-added products: An integrated approach for economic viability. Renewable and Sustainable Energy Reviews 2017, 69 , 578-595. https://doi.org/10.1016/j.rser.2016.11.110
    69. Kosuke Sueyoshi, Masato Kaneda, Shinpei Sumimoto, Shinya Oishi, Nobutaka Fujii, Kiyotake Suenaga, Toshiaki Teruya. Odoamide, a cytotoxic cyclodepsipeptide from the marine cyanobacterium Okeania sp.. Tetrahedron 2016, 72 (35) , 5472-5478. https://doi.org/10.1016/j.tet.2016.07.031
    70. Masato Kaneda, Kosuke Sueyoshi, Toshiaki Teruya, Hiroaki Ohno, Nobutaka Fujii, Shinya Oishi. Total synthesis of odoamide, a novel cyclic depsipeptide, from an Okinawan marine cyanobacterium. Organic & Biomolecular Chemistry 2016, 14 (38) , 9093-9104. https://doi.org/10.1039/C6OB01583B
    71. Shasank S. Swain, Rabindra N. Padhy, Pawan K. Singh. Anticancer compounds from cyanobacterium Lyngbya species: a review. Antonie van Leeuwenhoek 2015, 108 (2) , 223-265. https://doi.org/10.1007/s10482-015-0487-2
    72. Maria Sofia Costa, Margarida Costa, Vítor Ramos, Pedro N. Leão, Aldo Barreiro, Vítor Vasconcelos, Rosário Martins. Picocyanobacteria From a Clade of Marine Cyanobium Revealed Bioactive Potential Against Microalgae, Bacteria, and Marine Invertebrates. Journal of Toxicology and Environmental Health, Part A 2015, 78 (7) , 432-442. https://doi.org/10.1080/15287394.2014.991466
    73. Peng Zhang, Xiao-Ming Li, Jia-Ning Wang, Xin Li, Bin-Gui Wang. Prenylated indole alkaloids from the marine-derived fungus Paecilomyces variotii. Chinese Chemical Letters 2015, 26 (3) , 313-316. https://doi.org/10.1016/j.cclet.2014.11.020
    74. Subramaniyan Vijayakumar, Muniraj Menakha. Pharmaceutical applications of cyanobacteria—A review. Journal of Acute Medicine 2015, 5 (1) , 15-23. https://doi.org/10.1016/j.jacme.2015.02.004
    75. Zhengyu Cao, Xichun Li, Xiaohan Zou, Michael Greenwood, William Gerwick, Thomas Murray. Involvement of JNK and Caspase Activation in Hoiamide A-Induced Neurotoxicity in Neocortical Neurons. Marine Drugs 2015, 13 (2) , 903-919. https://doi.org/10.3390/md13020903
    76. Lik Tong Tan, Deepak Kumar Gupta. Molecular Targets of Anticancer Agents from Filamentous Marine Cyanobacteria. 2015, 571-592. https://doi.org/10.1007/978-3-319-07145-9_27
    77. Maria do Rosário Martins, Margarida Costa. Marine Cyanobacteria Compounds with Anticancer Properties: Implication of Apoptosis. 2015, 621-647. https://doi.org/10.1007/978-3-319-07145-9_29
    78. Hideo Kigoshi, Masaki Kita. Antitumor Effects of Sea Hare-Derived Compounds in Cancer. 2015, 701-739. https://doi.org/10.1007/978-3-319-07145-9_33
    79. Lilibeth A. Salvador-Reyes, Hendrik Luesch. Biological targets and mechanisms of action of natural products from marine cyanobacteria. Natural Product Reports 2015, 32 (3) , 478-503. https://doi.org/10.1039/C4NP00104D
    80. Zahira Yaakob, Ehsan Ali, Afifi Zainal, Masita Mohamad, Mohd Sobri Takriff. An overview: biomolecules from microalgae for animal feed and aquaculture. Journal of Biological Research-Thessaloniki 2014, 21 (1) https://doi.org/10.1186/2241-5793-21-6
    81. Jean‐Michel Kornprobst. Mollusks–1. 2014, 1333-1419. https://doi.org/10.1002/9783527335855.marprod023
    82. Jean‐Michel Kornprobst. Mollusks–2. 2014, 1419-1460. https://doi.org/10.1002/9783527335855.marprod232
    83. Margarida Costa, Mónica Garcia, João Costa-Rodrigues, Maria Costa, Maria Ribeiro, Maria Fernandes, Piedade Barros, Aldo Barreiro, Vitor Vasconcelos, Rosário Martins. Exploring Bioactive Properties of Marine Cyanobacteria Isolated from the Portuguese Coast: High Potential as a Source of Anticancer Compounds. Marine Drugs 2014, 12 (1) , 98-114. https://doi.org/10.3390/md12010098
    84. Rakhi Bajpai Dixit, M. R. Suseela. Cyanobacteria: potential candidates for drug discovery. Antonie van Leeuwenhoek 2013, 103 (5) , 947-961. https://doi.org/10.1007/s10482-013-9898-0
    85. João Varela, Catarina Vizetto‐Duarte, Luísa Custódio, Luísa Barreira, Fernando Albericio. Marine Peptides and Proteins with Cytotoxic and Antitumoral Properties. 2013, 407-430. https://doi.org/10.1002/9781118375082.ch19
    86. V. Maruthanayagam, M. Nagarajan, M. Sundararaman. Cytotoxicity assessment of cultivable marine cyanobacterial extracts in Artemia salina (brine shrimp) larvae and cancer cell lines. Toxin Reviews 2013, 32 (1) , 1-9. https://doi.org/10.3109/15569543.2012.754772
    87. Ajai Prakash Gupta, Pankaj Pandotra, Rajni Sharma, Manoj Kushwaha, Suphla Gupta. Marine Resource. 2013, 229-325. https://doi.org/10.1016/B978-0-444-59603-1.00008-4
    88. Margarida Costa, João Costa-Rodrigues, Maria Helena Fernandes, Piedade Barros, Vitor Vasconcelos, Rosário Martins. Marine Cyanobacteria Compounds with Anticancer Properties: A Review on the Implication of Apoptosis. Marine Drugs 2012, 10 (10) , 2181-2207. https://doi.org/10.3390/md10102181
    89. Ashootosh Tripathi, Wanru Fang, David Tai Leong, Lik Tong Tan. Biochemical Studies of the Lagunamides, Potent Cytotoxic Cyclic Depsipeptides from the Marine Cyanobacterium Lyngbya majuscula. Marine Drugs 2012, 10 (5) , 1126-1137. https://doi.org/10.3390/md10051126
    90. M. Nagarajan, V. Maruthanayagam, M. Sundararaman. A review of pharmacological and toxicological potentials of marine cyanobacterial metabolites. Journal of Applied Toxicology 2012, 32 (3) , 153-185. https://doi.org/10.1002/jat.1717
    91. R. Jaiganesh, N.S. Sampath Kumar. Marine Bacterial Sources of Bioactive Compounds. 2012, 389-408. https://doi.org/10.1016/B978-0-12-416003-3.00025-1
    92. Jamal M. Arif, Alvina Farooqui, Mohammad Haris Siddiqui, Mohammed Al-Karrawi, Awdah Al-Hazmi, Othman A. Al-Sagair. Novel Bioactive Peptides from Cyanobacteria. 2012, 111-161. https://doi.org/10.1016/B978-0-444-53836-9.00022-0
    93. Yuuki Takada, Masahiro Umehara, Ryosuke Katsumata, Yoichi Nakao, Junji Kimura. The total synthesis and structure–activity relationships of a highly cytotoxic depsipeptide kulokekahilide-2 and its analogs. Tetrahedron 2012, 68 (2) , 659-669. https://doi.org/10.1016/j.tet.2011.10.094
    94. Ashootosh Tripathi, Jonathan Puddick, Michele R. Prinsep, Matthias Rottmann, Kok Ping Chan, David Yu-Kai Chen, Lik Tong Tan. Lagunamide C, a cytotoxic cyclodepsipeptide from the marine cyanobacterium Lyngbya majuscula. Phytochemistry 2011, 72 (18) , 2369-2375. https://doi.org/10.1016/j.phytochem.2011.08.019
    95. Bingnan Han, Uwe M. Reinscheid, William H. Gerwick, Harald Gross. The structure elucidation of isomalyngamide K from the marine cyanobacterium Lyngbya majuscula by experimental and DFT computational methods. Journal of Molecular Structure 2011, 989 (1-3) , 109-113. https://doi.org/10.1016/j.molstruc.2011.01.012
    96. Shin-ichi Sato, Asako Murata, Tsubasa Orihara, Takashi Shirakawa, Kiyotake Suenaga, Hideo Kigoshi, Motonari Uesugi. Marine Natural Product Aurilide Activates the OPA1-Mediated Apoptosis by Binding to Prohibitin. Chemistry & Biology 2011, 18 (1) , 131-139. https://doi.org/10.1016/j.chembiol.2010.10.017
    97. Martina Semenzato, Sara Cogliati, Luca Scorrano. Prohibitin(g) Cancer: Aurilide and Killing by Opa1-Dependent Cristae Remodeling. Chemistry & Biology 2011, 18 (1) , 8-9. https://doi.org/10.1016/j.chembiol.2011.01.001
    98. Lik Tong Tan. Filamentous tropical marine cyanobacteria: a rich source of natural products for anticancer drug discovery. Journal of Applied Phycology 2010, 22 (5) , 659-676. https://doi.org/10.1007/s10811-010-9506-x
    99. Pedro N. Leão, Alban R. Pereira, Wei-Ting Liu, Julio Ng, Pavel A. Pevzner, Pieter C. Dorrestein, Gabriele M. König, Vitor M. Vasconcelos, William H. Gerwick. Synergistic allelochemicals from a freshwater cyanobacterium. Proceedings of the National Academy of Sciences 2010, 107 (25) , 11183-11188. https://doi.org/10.1073/pnas.0914343107
    100. Lei Chen, Guangyu Wang, Tong Bu, Yunbin Zhang, Yixin Wang, Ming Liu, Xiukun Lin. Phylogenetic analysis and screening of antimicrobial and cytotoxic activities of moderately halophilic bacteria isolated from the Weihai Solar Saltern (China). World Journal of Microbiology and Biotechnology 2010, 26 (5) , 879-888. https://doi.org/10.1007/s11274-009-0247-4
    Load all citations

    Journal of Natural Products

    Cite this: J. Nat. Prod. 2006, 69, 4, 572–575
    Click to copy citationCitation copied!
    https://doi.org/10.1021/np0503911
    Published February 11, 2006
    Copyright © 2006 American Chemical Society and American Society of Pharmacognosy

    Article Views

    1291

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.