ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Antimalarial Peptides from Marine Cyanobacteria: Isolation and Structural Elucidation of Gallinamide A

View Author Information
Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, Instituto de Investigaciones Científicas Avanzados y Servicios de Alta Tecnología, INDICASAT, Clayton, Edificio 175, PO Box 7250, Panamá 5, Panamá, Department of Global Health, College of Public Health, University of South Florida, 3720 Spectrum Boulevard, Suite 304, Tampa, Florida 33612, and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, California 92093
* To whom correspondence should be addressed. Tel: (831) 459-3014. Fax: (831) 459-2935. E-mail: [email protected]
†Scripps Institution of Oceanography.
‡INDICASAT, Panamá.
§University of South Florida.
⊥Skaggs School of Pharmacy and Pharmaceutical Sciences.
∥Current address: Department of Chemistry and Biochemistry, University of California, Santa Cruz.
Cite this: J. Nat. Prod. 2009, 72, 1, 14–17
Publication Date (Web):December 31, 2008
https://doi.org/10.1021/np8003529
Copyright © 2008 The American Chemical Society and American Society of Pharmacognosy

    Article Views

    4600

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (83 KB)
    Supporting Info (1)»

    Abstract

    Abstract Image

    As part of a continuing program to identify novel treatments for neglected parasitic diseases, the Panama International Cooperative Biodiversity Group (ICBG) program has been investigating the antimalarial potential of secondary metabolites from Panamanian marine cyanobacteria. From over 60 strains of cyanobacteria evaluated in our biological screens, the organic extract of a Schizothrix species from a tropical reef near Piedras Gallinas (Caribbean coast of Panama) showed potent initial antimalarial activity against the W2 chloroquine-resistant strain of Plasmodium falciparum. Bioassay-guided fractionation followed by 2D NMR analysis afforded the planar structure of a new and highly functionalized linear peptide, gallinamide A. Subsequent degradation and derivatization methods were used to determine the absolute configuration at most stereogenic centers in this unusual new metabolite.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    1H and 13C NMR spectra of 1, interpretation of ROESY correlations for the Apa subunit, complete biological screening data, and a color photograph of the field-collected Schizothrix sp. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 134 publications.

    1. Kairi Umeda, Arihiro Iwasaki, Raimu Taguchi, Naoaki Kurisawa, Ghulam Jeelani, Tomoyoshi Nozaki, Kiyotake Suenaga. Isolation and Structure Determination of Akunolides, Macrolide Glycosides from a Marine Okeania sp. Cyanobacterium. Journal of Natural Products 2023, 86 (11) , 2529-2538. https://doi.org/10.1021/acs.jnatprod.3c00742
    2. Yung-Han Lo, Arihiro Iwasaki, Kiyotake Suenaga. Total Synthesis of Ikoamide, a Highly N-Methylated Antimalarial Lipopeptide. The Journal of Organic Chemistry 2023, 88 (15) , 10565-10573. https://doi.org/10.1021/acs.joc.3c00595
    3. Roger G. Linington, Lena Keller, Hyukjae Choi, Matthew J. Bertin. Special Issue in Honor of Professor William Gerwick. Journal of Natural Products 2022, 85 (3) , 459-461. https://doi.org/10.1021/acs.jnatprod.2c00100
    4. Elany Barbosa Da Silva, Vandna Sharma, Lilian Hernandez-Alvarez, Arthur H. Tang, Alexander Stoye, Anthony J. O’Donoghue, William H. Gerwick, Richard J. Payne, James H. McKerrow, Larissa M. Podust. Intramolecular Interactions Enhance the Potency of Gallinamide A Analogues against Trypanosoma cruzi. Journal of Medicinal Chemistry 2022, 65 (5) , 4255-4269. https://doi.org/10.1021/acs.jmedchem.1c02063
    5. Anneliese S. Ashhurst, Arthur H. Tang, Pavla Fajtová, Michael C. Yoon, Anupriya Aggarwal, Max J. Bedding, Alexander Stoye, Laura Beretta, Dustin Pwee, Aleksandra Drelich, Danielle Skinner, Linfeng Li, Thomas D. Meek, James H. McKerrow, Vivian Hook, Chien-Te Tseng, Mark Larance, Stuart Turville, William H. Gerwick, Anthony J. O’Donoghue, Richard J. Payne. Potent Anti-SARS-CoV-2 Activity by the Natural Product Gallinamide A and Analogues via Inhibition of Cathepsin L. Journal of Medicinal Chemistry 2022, 65 (4) , 2956-2970. https://doi.org/10.1021/acs.jmedchem.1c01494
    6. Arihiro Iwasaki, Kazuya Teranuma, Naoaki Kurisawa, Yulia Rahmawati, Ghulam Jeelani, Tomoyoshi Nozaki, William H. Gerwick, Kiyotake Suenaga. First Total Synthesis and Structure–Activity Relationship of Iheyamide A, an Antitrypanosomal Linear Peptide Isolated from a Dapis sp. Marine Cyanobacterium. Journal of Natural Products 2021, 84 (9) , 2587-2593. https://doi.org/10.1021/acs.jnatprod.1c00792
    7. Akira Ebihara, Arihiro Iwasaki, Youhei Miura, Ghulam Jeelani, Tomoyoshi Nozaki, Kiyotake Suenaga. Isolation and Total Synthesis of Bromoiesol sulfates, Antitrypanosomal arylethers from a Salileptolyngbya sp. Marine Cyanobacterium. The Journal of Organic Chemistry 2021, 86 (17) , 11763-11770. https://doi.org/10.1021/acs.joc.1c01214
    8. Jin Woo Lee, Jennifer E. Collins, Karen L. Wendt, Debopam Chakrabarti, Robert H. Cichewicz. Leveraging Peptaibol Biosynthetic Promiscuity for Next-Generation Antiplasmodial Therapeutics. Journal of Natural Products 2021, 84 (2) , 503-517. https://doi.org/10.1021/acs.jnatprod.0c01370
    9. Arihiro Iwasaki, Keisuke Ohtomo, Naoaki Kurisawa, Ikuma Shiota, Yulia Rahmawati, Ghulam Jeelani, Tomoyoshi Nozaki, Kiyotake Suenaga. Isolation, Structure Determination, and Total Synthesis of Hoshinoamide C, an Antiparasitic Lipopeptide from the Marine Cyanobacterium Caldora penicillata. Journal of Natural Products 2021, 84 (1) , 126-135. https://doi.org/10.1021/acs.jnatprod.0c01209
    10. Keitaro Iwasaki, Arihiro Iwasaki, Shimpei Sumimoto, Teruhiko Matsubara, Toshinori Sato, Tomoyoshi Nozaki, Yumiko Saito-Nakano, Kiyotake Suenaga. Ikoamide, an Antimalarial Lipopeptide from an Okeania sp. Marine Cyanobacterium. Journal of Natural Products 2020, 83 (2) , 481-488. https://doi.org/10.1021/acs.jnatprod.9b01147
    11. Paul D. Boudreau, Bailey W. Miller, Laura-Isobel McCall, Jehad Almaliti, Raphael Reher, Ken Hirata, Thu Le, Jair L. Siqueira-Neto, Vivian Hook, William H. Gerwick. Design of Gallinamide A Analogs as Potent Inhibitors of the Cysteine Proteases Human Cathepsin L and Trypanosoma cruzi Cruzain. Journal of Medicinal Chemistry 2019, 62 (20) , 9026-9044. https://doi.org/10.1021/acs.jmedchem.9b00294
    12. Alexander Stoye, Annette Juillard, Arthur H. Tang, Jennifer Legac, Jiri Gut, Karen L. White, Susan A. Charman, Philip J. Rosenthal, Georges E. R. Grau, Nicholas H. Hunt, Richard J. Payne. Falcipain Inhibitors Based on the Natural Product Gallinamide A Are Potent in Vitro and in Vivo Antimalarials. Journal of Medicinal Chemistry 2019, 62 (11) , 5562-5578. https://doi.org/10.1021/acs.jmedchem.9b00504
    13. Qingqing Chen, Yishu Bao, Xiuqin Yang, Zonghao Dai, Fulai Yang, Qingfa Zhou. Umpolung of o-Hydroxyaryl Azomethine Ylides: Entry to Functionalized γ-Aminobutyric Acid under Phosphine Catalysis. Organic Letters 2018, 20 (17) , 5380-5383. https://doi.org/10.1021/acs.orglett.8b02297
    14. Andrew T. Bockus, Katrina W. Lexa, Cameron R. Pye, Amit S. Kalgutkar, Jarret W. Gardner, Kathryn C. R. Hund, William M. Hewitt, Joshua A. Schwochert, Emerson Glassey, David A. Price, Alan M. Mathiowetz, Spiros Liras, Matthew P. Jacobson, and R. Scott Lokey . Probing the Physicochemical Boundaries of Cell Permeability and Oral Bioavailability in Lipophilic Macrocycles Inspired by Natural Products. Journal of Medicinal Chemistry 2015, 58 (11) , 4581-4589. https://doi.org/10.1021/acs.jmedchem.5b00128
    15. Oliver B. Vining, Rebecca A. Medina, Edward A. Mitchell, Patrick Videau, Dong Li, Jeffrey D. Serrill, Jane X. Kelly, William H. Gerwick, Philip J. Proteau, Jane E. Ishmael, and Kerry L. McPhail . Depsipeptide Companeramides from a Panamanian Marine Cyanobacterium Associated with the Coibamide Producer. Journal of Natural Products 2015, 78 (3) , 413-420. https://doi.org/10.1021/np5007907
    16. Trent Conroy, Jin T. Guo, Nabiha Elias, Katie M. Cergol, Jiri Gut, Jennifer Legac, Lubna Khatoon, Yang Liu, Sheena McGowan, Philip J. Rosenthal, Nicholas H. Hunt, and Richard J. Payne . Synthesis of Gallinamide A Analogues as Potent Falcipain Inhibitors and Antimalarials. Journal of Medicinal Chemistry 2014, 57 (24) , 10557-10563. https://doi.org/10.1021/jm501439w
    17. Hidayat Hussain, Ahmed Al-Harrasi, Ahmed Al-Rawahi, Ivan R. Green, and Simon Gibbons . Fruitful Decade for Antileishmanial Compounds from 2002 to Late 2011. Chemical Reviews 2014, 114 (20) , 10369-10428. https://doi.org/10.1021/cr400552x
    18. Bailey Miller, Aaron J. Friedman, Hyukjae Choi, James Hogan, J. Andrew McCammon, Vivian Hook, and William H. Gerwick . The Marine Cyanobacterial Metabolite Gallinamide A Is a Potent and Selective Inhibitor of Human Cathepsin L. Journal of Natural Products 2014, 77 (1) , 92-99. https://doi.org/10.1021/np400727r
    19. Christopher M. Pavlik, Christina Y. B. Wong, Sophia Ononye, Dioxelis D. Lopez, Niclas Engene, Kerry L. McPhail, William H. Gerwick, and Marcy J. Balunas . Santacruzamate A, a Potent and Selective Histone Deacetylase Inhibitor from the Panamanian Marine Cyanobacterium cf. Symploca sp.. Journal of Natural Products 2013, 76 (11) , 2026-2033. https://doi.org/10.1021/np400198r
    20. S. Shiva Shankar, Sushil N. Benke, Narem Nagendra, Prabhakar Lal Srivastava, Hirekodathakallu V. Thulasiram, and Hosahudya N. Gopi . Self-Assembly to Function: Design, Synthesis, and Broad Spectrum Antimicrobial Properties of Short Hybrid E-Vinylogous Lipopeptides. Journal of Medicinal Chemistry 2013, 56 (21) , 8468-8474. https://doi.org/10.1021/jm400884w
    21. Wei Huang, Rong-Guo Ren, Han-Qing Dong, Bang-Guo Wei, and Guo-Qiang Lin . Diverse Synthesis of Marine Cyclic Depsipeptide Lagunamide A and Its Analogues. The Journal of Organic Chemistry 2013, 78 (21) , 10747-10762. https://doi.org/10.1021/jo401687s
    22. Anupam Bandyopadhyay and Hosahudya N. Gopi . Hybrid Peptides: Direct Transformation of α/α, β-Unsaturated γ-Hybrid Peptides to α/γ-Hybrid Peptide 12-Helices. Organic Letters 2012, 14 (11) , 2770-2773. https://doi.org/10.1021/ol300987d
    23. Gavin Carr, Michael Poulsen, Jonathan L. Klassen, Yanpeng Hou, Thomas P. Wyche, Tim S. Bugni, Cameron R. Currie, and Jon Clardy . Microtermolides A and B from Termite-Associated Streptomyces sp. and Structural Revision of Vinylamycin. Organic Letters 2012, 14 (11) , 2822-2825. https://doi.org/10.1021/ol301043p
    24. Chu-Pei Xu, Pei-Qiang Huang, and Sandrine Py . SmI2-Mediated Coupling of Nitrones and tert-Butanesulfinyl Imines with Allenoates: Synthesis of β-Methylenyl-γ-lactams and Tetramic Acids. Organic Letters 2012, 14 (8) , 2034-2037. https://doi.org/10.1021/ol300550x
    25. Tadeusz F. Molinski, Kirk A. Reynolds, and Brandon I. Morinaka . Symplocin A, a Linear Peptide from the Bahamian Cyanobacterium Symploca sp. Configurational Analysis of N,N-Dimethylamino Acids by Chiral-Phase HPLC of Naphthacyl Esters. Journal of Natural Products 2012, 75 (3) , 425-431. https://doi.org/10.1021/np200861n
    26. Anupam Bandyopadhyay, Sachitanand M. Mali, Pooja Lunawat, K. Muruga Poopathi Raja, and Hosahudya N. Gopi . Synthesis and Structural Investigations of Functionalizable Hybrid β-Hairpin. Organic Letters 2011, 13 (17) , 4482-4485. https://doi.org/10.1021/ol201840p
    27. Trent Conroy, Jin T. Guo, Nicholas H. Hunt, and Richard J. Payne. Total Synthesis and Antimalarial Activity of Symplostatin 4. Organic Letters 2010, 12 (23) , 5576-5579. https://doi.org/10.1021/ol1024663
    28. Ashootosh Tripathi, Jonathan Puddick, Michèle R. Prinsep, Matthias Rottmann, and Lik Tong Tan. Lagunamides A and B: Cytotoxic and Antimalarial Cyclodepsipeptides from the Marine Cyanobacterium Lyngbya majuscula. Journal of Natural Products 2010, 73 (11) , 1810-1814. https://doi.org/10.1021/np100442x
    29. Marcelino Gutiérrez, Kevin Tidgewell, Todd L. Capson, Niclas Engene, Alejandro Almanza, Jörg Schemies, Manfred Jung and William H. Gerwick. Malyngolide Dimer, a Bioactive Symmetric Cyclodepside from the Panamanian Marine Cyanobacterium Lyngbya majuscula. Journal of Natural Products 2010, 73 (4) , 709-711. https://doi.org/10.1021/np9005184
    30. Manjeet Singh, Sachin A. Nalawade, DRGKoppalu. R. Puneeth Kumar, Kuruva Veeresh, Saikat Pahan, Sanjit Dey, Hosahudya N. Gopi. HBTU Mediated Synthesis of α,β‐Unsaturated γ‐Lactams from E ‐α,β‐Unsaturated γ‐Amino Acids. European Journal of Organic Chemistry 2023, 26 (37) https://doi.org/10.1002/ejoc.202300682
    31. Ian E. Cock, Matthew J. Cheesman. A Review of the Antimicrobial Properties of Cyanobacterial Natural Products. Molecules 2023, 28 (20) , 7127. https://doi.org/10.3390/molecules28207127
    32. Sabrina Swan Souza da Silva, Alexsandra Frazão de Andrade, Milena de Paiva-Cavalcanti, João Carlos Monteiro de Carvalho, Daniela de Araújo Viana-Marques, Carolina de Albuquerque Lima Duarte, Ana Lúcia Figueiredo Porto, Raquel Pedrosa Bezerra. Potential of bioactive molecules from photosynthetic microorganisms on Leishmania spp.: A review. Algal Research 2023, 75 , 103241. https://doi.org/10.1016/j.algal.2023.103241
    33. Arthur H. Tang, Richard J. Payne. Second generation synthesis of the anti-infective natural product gallinamide A. Tetrahedron 2023, 139 , 133445. https://doi.org/10.1016/j.tet.2023.133445
    34. Salman Ahmed, Waqas Alam, Michael Aschner, Rosanna Filosa, Wai San Cheang, Philippe Jeandet, Luciano Saso, Haroon Khan. Marine Cyanobacterial Peptides in Neuroblastoma: Search for Better Therapeutic Options. Cancers 2023, 15 (9) , 2515. https://doi.org/10.3390/cancers15092515
    35. Avinash A. K. Math, Meenakshi Kaushik, Elavarasan Krishnamoorthy. Preliminary Screening for Cytotoxicity and Antiplasmodial activity of Fish Protein Hydrolysates on Erythrocytes infected with Plasmodium falciparum 3D7. Research Journal of Pharmacy and Technology 2023, , 1721-1726. https://doi.org/10.52711/0974-360X.2023.00283
    36. Sachin A. Nalawade, Manjeet Singh, DRGKoppalu R. Puneeth Kumar, Sanjit Dey, Hosahudya N. Gopi. Stereoselective synthesis of backbone extended π-conjugated amino esters. Organic & Biomolecular Chemistry 2023, 21 (12) , 2586-2595. https://doi.org/10.1039/D3OB00090G
    37. Supratim Mandal. Marine Microorganisms: New Frontier in Antimicrobial Therapeutics. 2023, 36-60. https://doi.org/10.2174/9789815079609123010005
    38. Muhammad Adil, Pragya Tiwari, Mavara Iqbal, Shamsa Kanwal, Aisha Umar. Marine Bioactive Products as Potential Antileishmanial Therapeutics. 2023, 225-249. https://doi.org/10.4018/978-1-6684-6737-4.ch013
    39. Ravi Kumar Dhanalakshmi, Venkatesan Dharani, Valayutham Ravichandiran, Subhendu Bhowmik, Vajiravelu Sivamurugan. A Bird’s Eye View on Evaluation of Anti-Plasmodial Efficacy of Natural Products Isolated from Marine Sources. Current Bioactive Compounds 2023, 19 (2) https://doi.org/10.2174/1573407218666220516143742
    40. Mingyuan Zeng, Jianyun Tao, Shuang Xu, Xuelian Bai, Huawei Zhang. Marine Organisms as a Prolific Source of Bioactive Depsipeptides. Marine Drugs 2023, 21 (2) , 120. https://doi.org/10.3390/md21020120
    41. Walaa A. Negm, Shahira M. Ezzat, Ahmed Zayed. Marine organisms as potential sources of natural products for the prevention and treatment of malaria. RSC Advances 2023, 13 (7) , 4436-4475. https://doi.org/10.1039/D2RA07977A
    42. Arihiro Iwasaki. Sarco/Endoplasmic Reticulum Ca2+-ATPase (SERCA) Inhibitors Isolated from Subtropical Marine Cyanobacteria in Japan. 2023, 17-33. https://doi.org/10.1007/978-981-99-1714-3_2
    43. Joana Assunção, Helena M. Amaro, A. Catarina Guedes. Algae natural products for potential vector-borne disease management. 2023, 335-378. https://doi.org/10.1016/B978-0-323-91942-5.00007-0
    44. Fadia S. Youssef. Marine organisms as natural drug leads in combating vector-borne diseases. 2023, 171-199. https://doi.org/10.1016/B978-0-323-91942-5.00019-7
    45. Zhihong Xu, Barrett Eichler, Eytan A. Klausner, Jetty Duffy-Matzner, Weifan Zheng. Lead/Drug Discovery from Natural Resources. Molecules 2022, 27 (23) , 8280. https://doi.org/10.3390/molecules27238280
    46. Biswanath Dinda, Manikarna Dinda, Subhajit Dinda, Mithun Chakraborty. Some natural compounds and their analogues having potent anti- SARS-CoV-2 and anti-proteases activities as lead molecules in drug discovery for COVID-19. European Journal of Medicinal Chemistry Reports 2022, 6 , 100079. https://doi.org/10.1016/j.ejmcr.2022.100079
    47. Lakshmi Singh. Sub-Aerial Cyanobacteria: A Survey of Research with Antimicrobial Properties for Pharmaceutical Approaches. 2022https://doi.org/10.5772/intechopen.102696
    48. Zhonglei Wang, Ning Wang, Liyan Yang, Xian-qing Song. Bioactive natural products in COVID-19 therapy. Frontiers in Pharmacology 2022, 13 https://doi.org/10.3389/fphar.2022.926507
    49. Yang Hai, Zi-Mu Cai, Peng-Jie Li, Mei-Yan Wei, Chang-Yun Wang, Yu-Cheng Gu, Chang-Lun Shao. Trends of antimalarial marine natural products: progresses, challenges and opportunities. Natural Product Reports 2022, 39 (5) , 969-990. https://doi.org/10.1039/D1NP00075F
    50. David Wiseman Lamare, Neha Chaurasia. Microalgae and Cyanobacteria: A Potential Source for Drug Discovery Using Genome Mining Approach. 2022, 177-204. https://doi.org/10.1007/978-981-19-0680-0_9
    51. Prasat Kittakoop, Dhanushka Darshana, Rapeepat Sangsuwan, Chulabhorn Mahidol. Alkaloids and Alkaloid-Like Compounds are Potential Scaffolds of Antiviral Agents against SARS-CoV-2 (COVID-19) Virus. HETEROCYCLES 2022, 105 (1) , 115. https://doi.org/10.3987/REV-22-SR(R)3
    52. Ma Yadanar Phyo, Nursheena Parveen Katermeran, Jun Xian Goh, Lik Tong Tan. Trikoveramides A-C, cyclic depsipeptides from the marine cyanobacterium Symploca hydnoides. Phytochemistry 2021, 190 , 112879. https://doi.org/10.1016/j.phytochem.2021.112879
    53. Dipesh Dhakal, Manyun Chen, Hendrik Luesch, Yousong Ding. Heterologous production of cyanobacterial compounds. Journal of Industrial Microbiology and Biotechnology 2021, 48 (3-4) https://doi.org/10.1093/jimb/kuab003
    54. Baptiste Legrand, Ludovic T. Maillard. α,β‐Unsaturated γ‐Peptide Foldamers. ChemPlusChem 2021, 86 (4) , 629-645. https://doi.org/10.1002/cplu.202100045
    55. Manuel Jesús Chan-Bacab, María Manuela Reyes-Estebanez, Juan Carlos Camacho-Chab, Benjamín Otto Ortega-Morales. Microorganisms as a Potential Source of Molecules to Control Trypanosomatid Diseases. Molecules 2021, 26 (5) , 1388. https://doi.org/10.3390/molecules26051388
    56. Ragaa A. Hamouda, Noura El-Ahmady El-Naggar. Cyanobacteria-based microbial cell factories for production of industrial products. 2021, 277-302. https://doi.org/10.1016/B978-0-12-821477-0.00007-6
    57. Christopher A. Leber, C. Benjamin Naman, Lena Keller, Jehad Almaliti, Eduardo J. E. Caro-Diaz, Evgenia Glukhov, Valsamma Joseph, T. P. Sajeevan, Andres Joshua Reyes, Jason S. Biggs, Te Li, Ye Yuan, Shan He, Xiaojun Yan, William H. Gerwick. Applying a Chemogeographic Strategy for Natural Product Discovery from the Marine Cyanobacterium Moorena bouillonii. Marine Drugs 2020, 18 (10) , 515. https://doi.org/10.3390/md18100515
    58. Imam Fathoni, Julie G. Petitbois, Walied M. Alarif, Ahmed Abdel-Lateff, Sultan S. Al-Lihaibi, Erina Yoshimura, Yasuyuki Nogata, Charles S. Vairappan, Eti Nurwening Sholikhah, Tatsufumi Okino. Bioactivities of Lyngbyabellins from Cyanobacteria of Moorea and Okeania Genera. Molecules 2020, 25 (17) , 3986. https://doi.org/10.3390/molecules25173986
    59. Nagarajan Manivel, Sanjeev Kumar Shukla, Sundararaman Muthuraman. Nanogram and Nanomolar Active Marine Antiplasmodial Antibiotics. 2020, 2365-2409. https://doi.org/10.1002/9781119143802.ch107
    60. Fatma H. Al-Awadhi, Hendrik Luesch. Targeting eukaryotic proteases for natural products-based drug development. Natural Product Reports 2020, 37 (6) , 827-860. https://doi.org/10.1039/C9NP00060G
    61. Lik Tong Tan, Ma Yadanar Phyo. Marine Cyanobacteria: A Source of Lead Compounds and their Clinically-Relevant Molecular Targets. Molecules 2020, 25 (9) , 2197. https://doi.org/10.3390/molecules25092197
    62. Raúl G. Saraiva, George Dimopoulos. Bacterial natural products in the fight against mosquito-transmitted tropical diseases. Natural Product Reports 2020, 37 (3) , 338-354. https://doi.org/10.1039/C9NP00042A
    63. Anne Marie Sweeney-Jones, Kerstin Gagaring, Jenya Antonova-Koch, Hongyi Zhou, Nazia Mojib, Katy Soapi, Jeffrey Skolnick, Case W. McNamara, Julia Kubanek. Antimalarial Peptide and Polyketide Natural Products from the Fijian Marine Cyanobacterium Moorea producens. Marine Drugs 2020, 18 (3) , 167. https://doi.org/10.3390/md18030167
    64. Minghua Jiang, Senhua Chen, Jing Li, Lan Liu. The Biological and Chemical Diversity of Tetramic Acid Compounds from Marine-Derived Microorganisms. Marine Drugs 2020, 18 (2) , 114. https://doi.org/10.3390/md18020114
    65. Graham L. Patrick. Falcipains as drug targets in antimalarial therapy. 2020, 271-317. https://doi.org/10.1016/B978-0-08-101210-9.00008-1
    66. I-Shuo Huang, Paul V. Zimba. Cyanobacterial bioactive metabolites—A review of their chemistry and biology. Harmful Algae 2019, 86 , 139-209. https://doi.org/10.1016/j.hal.2019.05.001
    67. Luis Rivas, Verónica Rojas. Cyanobacterial peptides as a tour de force in the chemical space of antiparasitic agents. Archives of Biochemistry and Biophysics 2019, 664 , 24-39. https://doi.org/10.1016/j.abb.2019.01.030
    68. I-Shuo Huang, Paul V. Zimba. Cyanobacterial bioactive metabolites—A review of their chemistry and biology. Harmful Algae 2019, 83 , 42-94. https://doi.org/10.1016/j.hal.2018.11.008
    69. James B. McAlpine, Shao-Nong Chen, Andrei Kutateladze, John B. MacMillan, Giovanni Appendino, Andersson Barison, Mehdi A. Beniddir, Maique W. Biavatti, Stefan Bluml, Asmaa Boufridi, Mark S. Butler, Robert J. Capon, Young H. Choi, David Coppage, Phillip Crews, Michael T. Crimmins, Marie Csete, Pradeep Dewapriya, Joseph M. Egan, Mary J. Garson, Grégory Genta-Jouve, William H. Gerwick, Harald Gross, Mary Kay Harper, Precilia Hermanto, James M. Hook, Luke Hunter, Damien Jeannerat, Nai-Yun Ji, Tyler A. Johnson, David G. I. Kingston, Hiroyuki Koshino, Hsiau-Wei Lee, Guy Lewin, Jie Li, Roger G. Linington, Miaomiao Liu, Kerry L. McPhail, Tadeusz F. Molinski, Bradley S. Moore, Joo-Won Nam, Ram P. Neupane, Matthias Niemitz, Jean-Marc Nuzillard, Nicholas H. Oberlies, Fernanda M. M. Ocampos, Guohui Pan, Ronald J. Quinn, D. Sai Reddy, Jean-Hugues Renault, José Rivera-Chávez, Wolfgang Robien, Carla M. Saunders, Thomas J. Schmidt, Christoph Seger, Ben Shen, Christoph Steinbeck, Hermann Stuppner, Sonja Sturm, Orazio Taglialatela-Scafati, Dean J. Tantillo, Robert Verpoorte, Bin-Gui Wang, Craig M. Williams, Philip G. Williams, Julien Wist, Jian-Min Yue, Chen Zhang, Zhengren Xu, Charlotte Simmler, David C. Lankin, Jonathan Bisson, Guido F. Pauli. The value of universally available raw NMR data for transparency, reproducibility, and integrity in natural product research. Natural Product Reports 2019, 36 (1) , 35-107. https://doi.org/10.1039/C7NP00064B
    70. Nasib Singh, Pooja Devi Gautam, Puja Kumari Chauhan, Tanvir Kaur, Karan Singh, Joginder Singh, Sumit Singh Dagar. Antiparasitics from Microorganisms. 2019, 27-47. https://doi.org/10.1007/978-3-030-04675-0_2
    71. . Bibliography. 2019, 385-525. https://doi.org/10.1016/B978-0-12-812131-3.00018-5
    72. Jean Fotie. Marine natural products as strategic prototypes in the development of a new generation of antimalarial agents. 2019, 7-47. https://doi.org/10.1016/B978-0-12-815723-7.00002-X
    73. Yun Xue, Pengchao Zhao, Chunshan Quan, Zhanqin Zhao, Weina Gao, Jinghua Li, Xiangyang Zu, Dongliao Fu, Shuxiao Feng, Xuefei Bai, Yanjun Zuo, Ping Li. Cyanobacteria-derived peptide antibiotics discovered since 2000. Peptides 2018, 107 , 17-24. https://doi.org/10.1016/j.peptides.2018.08.002
    74. Shuangwei Liu, Xian Gao, Lisong Zhang, Shuanglin Qin, Mingming Wei, Ning Liu, Rui Zhao, Benlong Li, Ye Meng, Gang Lin, Cheng Lu, Xinhua Liu, Maodun Xie, Tongtong Liu, Honggang Zhou, Min Qi, Guang Yang, Cheng Yang. A novel Anti-Cancer Stem Cells compound optimized from the natural symplostatin 4 scaffold inhibits Wnt/β-catenin signaling pathway. European Journal of Medicinal Chemistry 2018, 156 , 21-42. https://doi.org/10.1016/j.ejmech.2018.06.046
    75. Anthony Fatino, Chelsea Weese, Salvador Valdez, Alberto Jiménez-Somarribas, Ryan J. Rafferty. Synthetic studies towards lagunamide C: Polyketide assembly investigations. Tetrahedron Letters 2018, 59 (7) , 624-627. https://doi.org/10.1016/j.tetlet.2017.12.083
    76. Vedanjali Gogineni, Mark T. Hamann. Marine natural product peptides with therapeutic potential: Chemistry, biosynthesis, and pharmacology. Biochimica et Biophysica Acta (BBA) - General Subjects 2018, 1862 (1) , 81-196. https://doi.org/10.1016/j.bbagen.2017.08.014
    77. Hao Xu, Yue Li, Yanyan Zhu, Xuchen Shang, Zhenhua Zhu, Mingsheng Tang. A theoretical study on synthesis mechanisms of α,β-unsaturated carbon γ-amino ester catalyzed by PPh3. Structural Chemistry 2017, 28 (6) , 1959-1968. https://doi.org/10.1007/s11224-017-0990-3
    78. Lik Tong Tan. Molecular Targets of Clinically Relevant Natural Products from Filamentous Marine Cyanobacteria. 2017, 19-43. https://doi.org/10.1002/9783527805921.ch2
    79. Jun-Jie Koh, Shuimu Lin, Roger W. Beuerman, Shouping Liu. Recent advances in synthetic lipopeptides as anti-microbial agents: designs and synthetic approaches. Amino Acids 2017, 49 (10) , 1653-1677. https://doi.org/10.1007/s00726-017-2476-4
    80. Yue Mi, Jinrong Zhang, Shan He, Xiaojun Yan. New Peptides Isolated from Marine Cyanobacteria, an Overview over the Past Decade. Marine Drugs 2017, 15 (5) , 132. https://doi.org/10.3390/md15050132
    81. Erica N. Parker, Samuel O. Odutola, Yifan Wang, Tracy E. Strecker, Rajeswari Mukherjee, Zhe Shi, David J. Chaplin, Mary Lynn Trawick, Kevin G. Pinney. Synthesis and biological evaluation of a water-soluble phosphate prodrug salt and structural analogues of KGP94, a lead inhibitor of cathepsin L. Bioorganic & Medicinal Chemistry Letters 2017, 27 (5) , 1304-1310. https://doi.org/10.1016/j.bmcl.2016.12.039
    82. Susanne Zweerink, Tanja Pollmann, Sabrina Ninck, Farnusch Kaschani, Markus Kaiser. Activity-Based Protein Profiling with Natural Product-Derived Chemical Probes in Human Cell Lysates. 2017, 23-46. https://doi.org/10.1007/978-1-4939-6439-0_3
    83. Lu-Ping Shao, Chang-Mei Si, Zhuo-Ya Mao, Wen Zhou, Tadeusz F. Molinski, Bang-Guo Wei, Guo-Qiang Lin. Synthesis and structure revision of symplocin A. Organic Chemistry Frontiers 2017, 4 (6) , 995-1004. https://doi.org/10.1039/C7QO00052A
    84. Shweta Sinha, Ashutosh Singh, Bikash Medhi, Rakesh Sehgal. Systematic Review: Insight into Antimalarial Peptide. International Journal of Peptide Research and Therapeutics 2016, 22 (3) , 325-340. https://doi.org/10.1007/s10989-016-9512-1
    85. Sophie Mazard, Anahit Penesyan, Martin Ostrowski, Ian Paulsen, Suhelen Egan. Tiny Microbes with a Big Impact: The Role of Cyanobacteria and Their Metabolites in Shaping Our Future. Marine Drugs 2016, 14 (5) , 97. https://doi.org/10.3390/md14050097
    86. Adam Żak, Alicja Kosakowska. Cyanobacterial and microalgal bioactive compounds – the role of secondary metabolites in allelopathic interactions. Oceanological and Hydrobiological Studies 2016, 45 (1) , 131-143. https://doi.org/10.1515/ohs-2016-0013
    87. Andreu Vidal-Albalat, Florenci V. González. Natural Products as Cathepsin Inhibitors. 2016, 179-213. https://doi.org/10.1016/B978-0-444-63749-9.00006-2
    88. John W. Blunt, Brent R. Copp, Robert A. Keyzers, Murray H. G. Munro, Michèle R. Prinsep. Marine natural products. Natural Product Reports 2016, 33 (3) , 382-431. https://doi.org/10.1039/C5NP00156K
    89. Anupam Bandyopadhyay, Rajkumar Misra, Hosahudya N. Gopi. Structural features and molecular aggregations of designed triple-stranded β-sheets in single crystals. Chemical Communications 2016, 52 (27) , 4938-4941. https://doi.org/10.1039/C6CC00127K
    90. Natesan Sivakumar, Gopal Selvakumar. Marine cyanobacteria: A prolific source of antimicrobial natural products. 2015, 203-232. https://doi.org/10.1201/b19224-14
    91. Ryan Young, Eva-­Rachele Pesce. Screening for Antiparasitic Marine Natural Products. 2015, 183-246. https://doi.org/10.1201/b19081-12
    92. Pei‐Qiang Huang, Wei Ou, Jian‐Liang Ye. Towards Reaction Control: An Expeditious Access to Racemic 5‐Substituted Tetramates and 5‐Substituted Tetramic Acids from Malimides. Chinese Journal of Chemistry 2015, 33 (6) , 655-662. https://doi.org/10.1002/cjoc.201400762
    93. Qing-Fa Zhou, Kui Zhang, Ohyun Kwon. Stereoselective syntheses of α,β-unsaturated γ-amino esters through phosphine-catalyzed γ-umpolung additions of sulfonamides to γ-substituted allenoates. Tetrahedron Letters 2015, 56 (23) , 3273-3276. https://doi.org/10.1016/j.tetlet.2015.01.120
    94. Sushanta Kumar Saha, Edward McHugh, Patrick Murray, Daniel J. Walsh. Microalgae as a source of nutraceuticals. 2015, 255-291. https://doi.org/10.1002/9781118500354.ch12
    95. Lik Tong Tan, Deepak Kumar Gupta. Molecular Targets of Anticancer Agents from Filamentous Marine Cyanobacteria. 2015, 571-592. https://doi.org/10.1007/978-3-319-07145-9_27
    96. Erin T. Pelkey, Sarah J. Pelkey, Jessica G. Greger. De Novo Synthesis of 3-Pyrrolin-2-Ones. 2015, 151-285. https://doi.org/10.1016/bs.aihch.2015.04.001
    97. Lilibeth A. Salvador-Reyes, Hendrik Luesch. Biological targets and mechanisms of action of natural products from marine cyanobacteria. Natural Product Reports 2015, 32 (3) , 478-503. https://doi.org/10.1039/C4NP00104D
    98. Mothukuri Ganesh Kumar, Sushil N. Benke, K. Muruga Poopathi Raja, Hosahudya N. Gopi. Engineering polypeptide folding through trans double bonds: transformation of miniature β-meanders to hybrid helices. Chemical Communications 2015, 51 (69) , 13397-13399. https://doi.org/10.1039/C5CC04523A
    99. Amit Mahindra, Rahul P. Gangwal, Sunil Bansal, Nathan E. Goldfarb, Ben M. Dunn, Abhay T. Sangamwar, Rahul Jain. Antiplasmodial activity of short peptide-based compounds. RSC Advances 2015, 5 (29) , 22674-22684. https://doi.org/10.1039/C5RA00779H
    100. Hee Kang, Chang Seo, Yoonkyung Park. Marine Peptides and Their Anti-Infective Activities. Marine Drugs 2015, 13 (1) , 618-654. https://doi.org/10.3390/md13010618
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect