ACS Publications. Most Trusted. Most Cited. Most Read
Halicylindramides D and E, Antifungal Peptides from the Marine Sponge Halichondria cylindrata
My Activity
    Note

    Halicylindramides D and E, Antifungal Peptides from the Marine Sponge Halichondria cylindrata 1
    Click to copy article linkArticle link copied!

    View Author Information
    Laboratory of Aquatic Natural Products Chemistry, Graduate School of Agriculture and Agricultural Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113, Japan
    Other Access Options

    Journal of Natural Products

    Cite this: J. Nat. Prod. 1996, 59, 2, 163–166
    Click to copy citationCitation copied!
    https://doi.org/10.1021/np9600309
    Published February 22, 1996
    Copyright © 1996 American Chemical Society and American Society of Pharmacognosy

    Abstract

    Click to copy section linkSection link copied!

    Halicylindramides D (1) and E (2) have been isolated from the marine sponge Halichondria cylindrata. Halicylindramide D is a tridecapeptide with the N-terminus blocked by a formyl group and the C-terminus lactonized with a threonine residue, while halicylindramide E is a truncated linear peptide with a C-terminal amide. Their structures, including absolute stereochemistry, were determined by a combination of spectral and chemical methods. Halicylindramide D was antifungal against Mortierella ramanniana and cytotoxic against P-388 murine leukemia cells.

    Copyright © 1996 American Chemical Society and American Society of Pharmacognosy

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    *

     To whom correspondence should be addressed. Tel:  +81-3-3812-2111 ext. 5299. Fax:  +81-3-5684-0622. E-mail:  [email protected].

     Abstract published in Advance ACS Abstracts, January 1, 1996.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 34 publications.

    1. Min Wang, Dandan Chen, Qunfei Zhao, Wen Liu. Isolation, Structure Elucidation, and Biosynthesis of a Cysteate-Containing Nonribosomal Peptide in Streptomyces lincolnensis. The Journal of Organic Chemistry 2018, 83 (13) , 7102-7108. https://doi.org/10.1021/acs.joc.8b00044
    2. Gajan Santhakumar and Richard J. Payne . Total Synthesis of Polydiscamides B, C, and D via a Convergent Native Chemical Ligation–Oxidation Strategy. Organic Letters 2014, 16 (17) , 4500-4503. https://doi.org/10.1021/ol502045u
    3. Marcy J. Balunas, Roger G. Linington, Kevin Tidgewell, Amanda M. Fenner, Luis-David Ureña, Gina Della Togna, Dennis E. Kyle and William H. Gerwick. Dragonamide E, a Modified Linear Lipopeptide from Lyngbya majuscula with Antileishmanial Activity. Journal of Natural Products 2010, 73 (1) , 60-66. https://doi.org/10.1021/np900622m
    4. Hyunju Seo and Dongyeol Lim. Total Synthesis of Halicylindramide A. The Journal of Organic Chemistry 2009, 74 (2) , 906-909. https://doi.org/10.1021/jo802213q
    5. Hiyoung Kim, Jiyeong Ahn, Jaebum Kim, Hahk-Soo Kang, . Metagenomic insights and biosynthetic potential of Candidatus Entotheonella symbiont associated with Halichondria marine sponges. Microbiology Spectrum 2025, 13 (1) https://doi.org/10.1128/spectrum.02355-24
    6. Tolulope Joshua Ashaolu, Bang Phuong Pham, Zoltán Molnár, László Varga, Babett Greff. The structure–activity relationship of marine peptides: a review. International Journal of Food Science and Technology 2024, 59 (7) , 4437-4445. https://doi.org/10.1111/ijfs.17248
    7. M.S. Aishwarya, R.S. Rachanamol, A.R. Sarika, J. Selvin, A.P. Lipton. Antimicrobial peptides from marine environment. 2023, 197-217. https://doi.org/10.1016/B978-0-323-85682-9.00008-8
    8. Maria Wanna Figueiredo Sena Macedo, Nicolau Brito da Cunha, Juliana Araújo Carneiro, Rosiane Andrade da Costa, Sergio Amorim de Alencar, Marlon Henrique Cardoso, Octávio Luiz Franco, Simoni Campos Dias. Marine Organisms as a Rich Source of Biologically Active Peptides. Frontiers in Marine Science 2021, 8 https://doi.org/10.3389/fmars.2021.667764
    9. Kiran Mustafa, Javaria Kanwal, Sara Musaddiq, Samia Khakwani. Bioactive Peptides and Their Natural Sources. 2020, 75-97. https://doi.org/10.1007/978-3-030-42319-3_5
    10. Bing-Nan Han, Li-Li Hong, Bin-Bin Gu, Yang-Ting Sun, Jie Wang, Jin-Tang Liu, Hou-Wen Lin. Natural Products from Sponges. 2019, 329-463. https://doi.org/10.1007/978-94-024-1612-1_15
    11. Oleksandr O. Grygorenko, Angelina V. Biitseva, Serhii Zhersh. Amino sulfonic acids, peptidosulfonamides and other related compounds. Tetrahedron 2018, 74 (13) , 1355-1421. https://doi.org/10.1016/j.tet.2018.01.033
    12. Yeji Lee, Chanvorleak Phat, Soon-Cheol Hong. Structural diversity of marine cyclic peptides and their molecular mechanisms for anticancer, antibacterial, antifungal, and other clinical applications. Peptides 2017, 95 , 94-105. https://doi.org/10.1016/j.peptides.2017.06.002
    13. Kirtikumar B. Jadhav, Claudia Stein, Oliwia Makarewicz, Gabriele Pradel, Roman J. Lichtenecker, Holger Sack, Stefan H. Heinemann, Hans-Dieter Arndt. Bioactivity of topologically confined gramicidin A dimers. Bioorganic & Medicinal Chemistry 2017, 25 (1) , 261-268. https://doi.org/10.1016/j.bmc.2016.10.033
    14. Irudayaraj Rajendran. Typification of Chemical Compounds of Marine Sponge Metabolites. 2016, 167-256. https://doi.org/10.1007/978-81-322-2794-6_11
    15. Toshiyuki Wakimoto, Karen Co Tan, Hiroki Tajima, Ikuro Abe. Cytotoxic Cyclic Peptides from the Marine Sponges. 2015, 113-144. https://doi.org/10.1007/978-3-319-07145-9_6
    16. Jean‐Michel Kornprobst. Porifera (Sponges)–2. 2014, 703-792. https://doi.org/10.1002/9783527335855.marprod192
    17. Jean‐Michel Kornprobst. Porifera (Sponges)–5. 2014, 951-1086. https://doi.org/10.1002/9783527335855.marprod195
    18. Xiukun Lin, Lanhong Zheng. Development of Marine Peptides as Anticancer Agents. 2013, 73-93. https://doi.org/10.1002/9781118412893.ch4
    19. Marta Pelay-Gimeno, Judit Tulla-Puche, Fernando Albericio. “Head-to-Side-Chain” Cyclodepsipeptides of Marine Origin. Marine Drugs 2013, 11 (5) , 1693-1717. https://doi.org/10.3390/md11051693
    20. Sherif S. Ebada, Peter Proksch. The Chemistry of Marine Sponges∗. 2012, 191-293. https://doi.org/10.1007/978-90-481-3834-0_4
    21. Lan-Hong Zheng, Yue-Jun Wang, Jun Sheng, Fang Wang, Yuan Zheng, Xiu-Kun Lin, Mi Sun. Antitumor Peptides from Marine Organisms. Marine Drugs 2011, 9 (10) , 1840-1859. https://doi.org/10.3390/md9101840
    22. Sang-Hyuk Yeo, Hyun-Ju Seo, Dong-Yeol Lim. Synthesis of Halicylindramide A Mimetics Containing Lactone Isosteres. Bulletin of the Korean Chemical Society 2011, 32 (spc8) , 2916-2920. https://doi.org/10.5012/bkcs.2011.32.8.2916
    23. Hunsa Prawat, Chulabhorn Mahidol, Sawangjitt Wittayalai, Pakamas Intachote, Tripetch Kanchanapoom, Somsak Ruchirawat. Nitrogenous sesquiterpenes from the Thai marine sponge Halichondria sp.. Tetrahedron 2011, 67 (31) , 5651-5655. https://doi.org/10.1016/j.tet.2011.05.094
    24. S. Ravichandran, S. Wahidullah, L. D’souza, R. M. Anbuchezhian. Antimicrobial activity of marine sponge Clathria indica (Dendy, 1889). Russian Journal of Bioorganic Chemistry 2011, 37 (4) , 428-435. https://doi.org/10.1134/S106816201104011X
    25. Rajiv Dahiya, Akhilesh Kumar, Rajul Gupta. Synthesis, Cytotoxic and Antimicrobial Screening of a Proline-Rich Cyclopolypeptide. Chemical and Pharmaceutical Bulletin 2009, 57 (2) , 214-217. https://doi.org/10.1248/cpb.57.214
    26. Roberto G.S. Berlinck, Miriam H. Kossuga. Guanidine Alkaloids from Marine Invertebrates. 2007, 305-337. https://doi.org/10.1002/9783527621071.ch11
    27. Y. L. Janin. Peptides with anticancer use or potential. Amino Acids 2003, 25 (1) , 1-40. https://doi.org/10.1007/s00726-002-0349-x
    28. Michèle R. Prinsep. Sulfur-Containing Natural Products from Marine Invertebrates. 2003, 617-751. https://doi.org/10.1016/S1572-5995(03)80151-5
    29. M.J. Abad, P. Bermejo. Bioactive natural products from marine sources. 2001, 683-755. https://doi.org/10.1016/S1572-5995(01)80021-1
    30. Carlos Jiménez. Marine sulfur-containing natural products. 2001, 811-917. https://doi.org/10.1016/S1572-5995(01)80023-5
    31. Masashi Tsuda, Haruaki Ishiyama, Kanami Masuko, Toshifumi Takao, Yasutsugu Shimonishi, Jun'ichi Kobayashi. Keramamides M and N, two new cyclic peptides with a sulfate ester from Theonella sponge. Tetrahedron 1999, 55 (43) , 12543-12548. https://doi.org/10.1016/S0040-4020(99)00744-9
    32. J. Buckingham. H. 1998, 162-190. https://doi.org/10.1007/978-1-4899-3314-0_8
    33. D. John Faulkner. Marine natural products. Natural Product Reports 1998, 15 (2) , 113. https://doi.org/10.1039/a815113y
    34. Jean-Luc Morel, Hervé Drobecq, Pierre Sautiere, André Tartar, Jean Mironneau, Janti Qar, Jean-Louis Lavie, Michel Hugues. Purification of a New Dimeric Protein from Cliona vastifica Sponge, which Specifically Blocks a Non-L-Type Calcium Channel in Mouse Duodenal Myocytes. Molecular Pharmacology 1997, 51 (6) , 1042-1052. https://doi.org/10.1124/mol.51.6.1042

    Journal of Natural Products

    Cite this: J. Nat. Prod. 1996, 59, 2, 163–166
    Click to copy citationCitation copied!
    https://doi.org/10.1021/np9600309
    Published February 22, 1996
    Copyright © 1996 American Chemical Society and American Society of Pharmacognosy

    Article Views

    538

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.