Halicylindramides D and E, Antifungal Peptides from the Marine Sponge Halichondria cylindrata 1Click to copy article linkArticle link copied!
Abstract
Halicylindramides D (1) and E (2) have been isolated from the marine sponge Halichondria cylindrata. Halicylindramide D is a tridecapeptide with the N-terminus blocked by a formyl group and the C-terminus lactonized with a threonine residue, while halicylindramide E is a truncated linear peptide with a C-terminal amide. Their structures, including absolute stereochemistry, were determined by a combination of spectral and chemical methods. Halicylindramide D was antifungal against Mortierella ramanniana and cytotoxic against P-388 murine leukemia cells.
*
To whom correspondence should be addressed. Tel: +81-3-3812-2111 ext. 5299. Fax: +81-3-5684-0622. E-mail: [email protected].
✗
Abstract published in Advance ACS Abstracts, January 1, 1996.
Cited By
Smart citations by scite.ai include citation statements extracted from the full text of the citing article. The number of the statements may be higher than the number of citations provided by ACS Publications if one paper cites another multiple times or lower if scite has not yet processed some of the citing articles.
This article is cited by 34 publications.
- Min Wang, Dandan Chen, Qunfei Zhao, Wen Liu. Isolation, Structure Elucidation, and Biosynthesis of a Cysteate-Containing Nonribosomal Peptide in Streptomyces lincolnensis. The Journal of Organic Chemistry 2018, 83
(13)
, 7102-7108. https://doi.org/10.1021/acs.joc.8b00044
- Gajan Santhakumar and Richard J. Payne . Total Synthesis of Polydiscamides B, C, and D via a Convergent Native Chemical Ligation–Oxidation Strategy. Organic Letters 2014, 16
(17)
, 4500-4503. https://doi.org/10.1021/ol502045u
- Marcy J. Balunas, Roger G. Linington, Kevin Tidgewell, Amanda M. Fenner, Luis-David Ureña, Gina Della Togna, Dennis E. Kyle and William H. Gerwick. Dragonamide E, a Modified Linear Lipopeptide from Lyngbya majuscula with Antileishmanial Activity. Journal of Natural Products 2010, 73
(1)
, 60-66. https://doi.org/10.1021/np900622m
- Hyunju Seo and Dongyeol Lim. Total Synthesis of Halicylindramide A. The Journal of Organic Chemistry 2009, 74
(2)
, 906-909. https://doi.org/10.1021/jo802213q
- Hiyoung Kim, Jiyeong Ahn, Jaebum Kim, Hahk-Soo Kang, . Metagenomic insights and biosynthetic potential of
Candidatus
Entotheonella symbiont associated with
Halichondria
marine sponges. Microbiology Spectrum 2025, 13
(1)
https://doi.org/10.1128/spectrum.02355-24
- Tolulope Joshua Ashaolu, Bang Phuong Pham, Zoltán Molnár, László Varga, Babett Greff. The structure–activity relationship of marine peptides: a review. International Journal of Food Science and Technology 2024, 59
(7)
, 4437-4445. https://doi.org/10.1111/ijfs.17248
- M.S. Aishwarya, R.S. Rachanamol, A.R. Sarika, J. Selvin, A.P. Lipton. Antimicrobial peptides from marine environment. 2023, 197-217. https://doi.org/10.1016/B978-0-323-85682-9.00008-8
- Maria Wanna Figueiredo Sena Macedo, Nicolau Brito da Cunha, Juliana Araújo Carneiro, Rosiane Andrade da Costa, Sergio Amorim de Alencar, Marlon Henrique Cardoso, Octávio Luiz Franco, Simoni Campos Dias. Marine Organisms as a Rich Source of Biologically Active Peptides. Frontiers in Marine Science 2021, 8 https://doi.org/10.3389/fmars.2021.667764
- Kiran Mustafa, Javaria Kanwal, Sara Musaddiq, Samia Khakwani. Bioactive Peptides and Their Natural Sources. 2020, 75-97. https://doi.org/10.1007/978-3-030-42319-3_5
- Bing-Nan Han, Li-Li Hong, Bin-Bin Gu, Yang-Ting Sun, Jie Wang, Jin-Tang Liu, Hou-Wen Lin. Natural Products from Sponges. 2019, 329-463. https://doi.org/10.1007/978-94-024-1612-1_15
- Oleksandr O. Grygorenko, Angelina V. Biitseva, Serhii Zhersh. Amino sulfonic acids, peptidosulfonamides and other related compounds. Tetrahedron 2018, 74
(13)
, 1355-1421. https://doi.org/10.1016/j.tet.2018.01.033
- Yeji Lee, Chanvorleak Phat, Soon-Cheol Hong. Structural diversity of marine cyclic peptides and their molecular mechanisms for anticancer, antibacterial, antifungal, and other clinical applications. Peptides 2017, 95 , 94-105. https://doi.org/10.1016/j.peptides.2017.06.002
- Kirtikumar B. Jadhav, Claudia Stein, Oliwia Makarewicz, Gabriele Pradel, Roman J. Lichtenecker, Holger Sack, Stefan H. Heinemann, Hans-Dieter Arndt. Bioactivity of topologically confined gramicidin A dimers. Bioorganic & Medicinal Chemistry 2017, 25
(1)
, 261-268. https://doi.org/10.1016/j.bmc.2016.10.033
- Irudayaraj Rajendran. Typification of Chemical Compounds of Marine Sponge Metabolites. 2016, 167-256. https://doi.org/10.1007/978-81-322-2794-6_11
- Toshiyuki Wakimoto, Karen Co Tan, Hiroki Tajima, Ikuro Abe. Cytotoxic Cyclic Peptides from the Marine Sponges. 2015, 113-144. https://doi.org/10.1007/978-3-319-07145-9_6
- Jean‐Michel Kornprobst. Porifera (Sponges)–2. 2014, 703-792. https://doi.org/10.1002/9783527335855.marprod192
- Jean‐Michel Kornprobst. Porifera (Sponges)–5. 2014, 951-1086. https://doi.org/10.1002/9783527335855.marprod195
- Xiukun Lin, Lanhong Zheng. Development of Marine Peptides as Anticancer Agents. 2013, 73-93. https://doi.org/10.1002/9781118412893.ch4
- Marta Pelay-Gimeno, Judit Tulla-Puche, Fernando Albericio. “Head-to-Side-Chain” Cyclodepsipeptides of Marine Origin. Marine Drugs 2013, 11
(5)
, 1693-1717. https://doi.org/10.3390/md11051693
- Sherif S. Ebada, Peter Proksch. The Chemistry of Marine Sponges∗. 2012, 191-293. https://doi.org/10.1007/978-90-481-3834-0_4
- Lan-Hong Zheng, Yue-Jun Wang, Jun Sheng, Fang Wang, Yuan Zheng, Xiu-Kun Lin, Mi Sun. Antitumor Peptides from Marine Organisms. Marine Drugs 2011, 9
(10)
, 1840-1859. https://doi.org/10.3390/md9101840
- Sang-Hyuk Yeo, Hyun-Ju Seo, Dong-Yeol Lim. Synthesis of Halicylindramide A Mimetics Containing Lactone Isosteres. Bulletin of the Korean Chemical Society 2011, 32
(spc8)
, 2916-2920. https://doi.org/10.5012/bkcs.2011.32.8.2916
- Hunsa Prawat, Chulabhorn Mahidol, Sawangjitt Wittayalai, Pakamas Intachote, Tripetch Kanchanapoom, Somsak Ruchirawat. Nitrogenous sesquiterpenes from the Thai marine sponge Halichondria sp.. Tetrahedron 2011, 67
(31)
, 5651-5655. https://doi.org/10.1016/j.tet.2011.05.094
- S. Ravichandran, S. Wahidullah, L. D’souza, R. M. Anbuchezhian. Antimicrobial activity of marine sponge Clathria indica (Dendy, 1889). Russian Journal of Bioorganic Chemistry 2011, 37
(4)
, 428-435. https://doi.org/10.1134/S106816201104011X
- Rajiv Dahiya, Akhilesh Kumar, Rajul Gupta. Synthesis, Cytotoxic and Antimicrobial Screening of a Proline-Rich Cyclopolypeptide. Chemical and Pharmaceutical Bulletin 2009, 57
(2)
, 214-217. https://doi.org/10.1248/cpb.57.214
- Roberto G.S. Berlinck, Miriam H. Kossuga. Guanidine Alkaloids from Marine Invertebrates. 2007, 305-337. https://doi.org/10.1002/9783527621071.ch11
- Y. L. Janin. Peptides with anticancer use or potential. Amino Acids 2003, 25
(1)
, 1-40. https://doi.org/10.1007/s00726-002-0349-x
- Michèle R. Prinsep. Sulfur-Containing Natural Products from Marine Invertebrates. 2003, 617-751. https://doi.org/10.1016/S1572-5995(03)80151-5
- M.J. Abad, P. Bermejo. Bioactive natural products from marine sources. 2001, 683-755. https://doi.org/10.1016/S1572-5995(01)80021-1
- Carlos Jiménez. Marine sulfur-containing natural products. 2001, 811-917. https://doi.org/10.1016/S1572-5995(01)80023-5
- Masashi Tsuda, Haruaki Ishiyama, Kanami Masuko, Toshifumi Takao, Yasutsugu Shimonishi, Jun'ichi Kobayashi. Keramamides M and N, two new cyclic peptides with a sulfate ester from Theonella sponge. Tetrahedron 1999, 55
(43)
, 12543-12548. https://doi.org/10.1016/S0040-4020(99)00744-9
- J. Buckingham. H. 1998, 162-190. https://doi.org/10.1007/978-1-4899-3314-0_8
- D. John Faulkner. Marine natural products. Natural Product Reports 1998, 15
(2)
, 113. https://doi.org/10.1039/a815113y
- Jean-Luc Morel, Hervé Drobecq, Pierre Sautiere, André Tartar, Jean Mironneau, Janti Qar, Jean-Louis Lavie, Michel Hugues. Purification of a New Dimeric Protein from Cliona vastifica Sponge, which Specifically Blocks a Non-L-Type Calcium Channel in Mouse Duodenal Myocytes. Molecular Pharmacology 1997, 51
(6)
, 1042-1052. https://doi.org/10.1124/mol.51.6.1042
Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.
Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.
The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.