ACS Publications. Most Trusted. Most Cited. Most Read
Synthesis and Properties of Trefoil-Shaped Tris(hexadehydrotribenzo[12]annulene) and Tris(tetradehydrotribenzo[12]annulene)
My Activity
    Letter

    Synthesis and Properties of Trefoil-Shaped Tris(hexadehydrotribenzo[12]annulene) and Tris(tetradehydrotribenzo[12]annulene)
    Click to copy article linkArticle link copied!

    View Author Information
    Division of Frontier Materials Science, Graduate School of Engineering Science, Osaka University, and CREST, Japan Science and Technology Agency (JST), Toyonaka, Osaka 560-8531, Japan, and Department of Chemistry, University of Idaho, P.O. Box 442343, Moscow, Idaho 83844-2343
    Other Access OptionsSupporting Information (1)

    Organic Letters

    Cite this: Org. Lett. 2006, 8, 14, 2933–2936
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ol060781u
    Published June 6, 2006
    Copyright © 2006 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Trefoil-shaped tris(hexadehydrotribenzo[12]annulene) possessing a substructure of the ultimate two-dimensional C(sp)−C(sp2) network, graphyne, and the related tris(tetradehydrotribenzo[12]annulene) were synthesized, and their ground- and excited-state properties were investigated.

    Copyright © 2006 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

     Osaka University.

    *

    In papers with more than one author, the asterisk indicates the name of the author to whom inquiries about the paper should be addressed.

     University of Idaho.

    Supporting Information Available

    Click to copy section linkSection link copied!

    Experimental procedures and spectral data of new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 107 publications.

    1. Huafeng Chen, Lei Zhai, Yulan Zuo, Xi Qin, Jinling Zhang, Kui Tian, Peng Xu. Simultaneous Dehalogenation and Hydrogenation in Sonogashira Coupling. Precision Chemistry 2023, 1 (10) , 602-607. https://doi.org/10.1021/prechem.3c00093
    2. Jinling Zhang, Huafeng Chen, Xi Qin, Huiyuan Duan, Xinyu Zhang, Xin Kong, Xin Lian, Hao Ding, Huan Yi, Yuanzhi Tan, Dongrong Xiao, Pingwu Du, Peng Xu. Curved π-Conjugated Helical Carbon Frameworks: Syntheses, Structural Analyses, and Properties. Organic Letters 2022, 24 (51) , 9463-9467. https://doi.org/10.1021/acs.orglett.2c03905
    3. Eduardo Gomez, Maria Rosaria di Nunzio, Miquel Moreno, Ichiro Hisaki, Abderrazzak Douhal. Shape-Persistent Phenylene-Ethynylene Macrocycles Spectroscopy and Dynamics: From Molecules to the Hydrogen-Bonded Organic Framework Material. The Journal of Physical Chemistry C 2020, 124 (12) , 6938-6951. https://doi.org/10.1021/acs.jpcc.0c01369
    4. Soobin Kim, Henry D. Castillo, Milim Lee, Riley D. Mortensen, Steven L. Tait, Dongwhan Lee. From Foldable Open Chains to Shape-Persistent Macrocycles: Synthesis, Impact on 2D Ordering, and Stimulated Self-Assembly. Journal of the American Chemical Society 2018, 140 (13) , 4726-4735. https://doi.org/10.1021/jacs.8b01805
    5. Deepak Kumar Rai, Himanshu Chakraborty, and Alok Shukla . Tunable Optoelectronic Properties of Triply Bonded Carbon Molecules with Linear and Graphyne Substructures. The Journal of Physical Chemistry C 2018, 122 (2) , 1309-1317. https://doi.org/10.1021/acs.jpcc.7b08695
    6. Chongwei Zhu, Arnaud Rives, Carine Duhayon, Valérie Maraval, and Remi Chauvin . Lipidic Carbo-benzenes: Molecular Probes of Magnetic Anisotropy and Stacking Properties of α-Graphyne. The Journal of Organic Chemistry 2017, 82 (2) , 925-935. https://doi.org/10.1021/acs.joc.6b02397
    7. Barnali Bhattacharya, Utpal Sarkar, and Nicola Seriani . Electronic Properties of Homo- and Heterobilayer Graphyne: The Idea of a Nanocapacitor. The Journal of Physical Chemistry C 2016, 120 (47) , 26579-26587. https://doi.org/10.1021/acs.jpcc.6b07092
    8. Vasilios Georgakilas, Jason A. Perman, Jiri Tucek, and Radek Zboril . Broad Family of Carbon Nanoallotropes: Classification, Chemistry, and Applications of Fullerenes, Carbon Dots, Nanotubes, Graphene, Nanodiamonds, and Combined Superstructures. Chemical Reviews 2015, 115 (11) , 4744-4822. https://doi.org/10.1021/cr500304f
    9. Baotao Kang and Jin Yong Lee . Graphynes as Promising Cathode Material of Fuel Cell: Improvement of Oxygen Reduction Efficiency. The Journal of Physical Chemistry C 2014, 118 (22) , 12035-12040. https://doi.org/10.1021/jp502780y
    10. Jahyun Koo, Bing Huang, Hosik Lee, Gunn Kim, Jaewook Nam, Yongkyung Kwon, and Hoonkyung Lee . Tailoring the Electronic Band Gap of Graphyne. The Journal of Physical Chemistry C 2014, 118 (5) , 2463-2468. https://doi.org/10.1021/jp4087464
    11. Qu Yue, Shengli Chang, Jun Kang, Shiqiao Qin, and Jingbo Li . Mechanical and Electronic Properties of Graphyne and Its Family under Elastic Strain: Theoretical Predictions. The Journal of Physical Chemistry C 2013, 117 (28) , 14804-14811. https://doi.org/10.1021/jp4021189
    12. Jahyun Koo, Ho Jun Hwang, Bing Huang, Hunpyo Lee, Hosik Lee, Minwoo Park, Yongkyung Kwon, Su-Huai Wei, and Hoonkyung Lee . Exotic Geometrical and Electronic Properties in Hydrogenated Graphyne. The Journal of Physical Chemistry C 2013, 117 (23) , 11960-11967. https://doi.org/10.1021/jp402286f
    13. Junjie He, Shuang Ying Ma, Pan Zhou, C. X. Zhang, Chaoyu He, and L. Z. Sun . Magnetic Properties of Single Transition-Metal Atom Absorbed Graphdiyne and Graphyne Sheet from DFT+U Calculations. The Journal of Physical Chemistry C 2012, 116 (50) , 26313-26321. https://doi.org/10.1021/jp307408u
    14. Paul N. W. Baxter, Abdelaziz Al Ouahabi, Jean-Paul Gisselbrecht, Lydia Brelot, and Alexandre Varnek . Electronic, Spectroscopic, and Ion-Sensing Properties of a Dehydro[m]pyrido[14]- and [15]annulene Isomer Library. The Journal of Organic Chemistry 2012, 77 (1) , 126-142. https://doi.org/10.1021/jo201595s
    15. Jun Kang, Jingbo Li, Fengmin Wu, Shu-Shen Li, and Jian-Bai Xia . Elastic, Electronic, and Optical Properties of Two-Dimensional Graphyne Sheet. The Journal of Physical Chemistry C 2011, 115 (42) , 20466-20470. https://doi.org/10.1021/jp206751m
    16. Hongyu Zhang, Mingwen Zhao, Xiujie He, Zhenhai Wang, Xuejuan Zhang, and Xiangdong Liu . High Mobility and High Storage Capacity of Lithium in sp–sp2 Hybridized Carbon Network: The Case of Graphyne. The Journal of Physical Chemistry C 2011, 115 (17) , 8845-8850. https://doi.org/10.1021/jp201062m
    17. Shinji Toyota. Rotational Isomerism Involving Acetylene Carbon. Chemical Reviews 2010, 110 (9) , 5398-5424. https://doi.org/10.1021/cr1000628
    18. Takashi Takeda, Aaron G. Fix and Michael M. Haley. Synthesis and Photophysical Properties of Expanded Dehydrobenzoannulenoannulene Trefoils. Organic Letters 2010, 12 (17) , 3824-3827. https://doi.org/10.1021/ol101542e
    19. Eric L. Spitler,, Charles A. Johnson II, and, Michael M. Haley. Renaissance of Annulene Chemistry. Chemical Reviews 2006, 106 (12) , 5344-5386. https://doi.org/10.1021/cr050541c
    20. Stephanie Frankenberger, Dominik Wendinger, Alexander Scherer, Kenkichi Sonogashira, Rik R. Tykwinski, , . A Half Century of the Sonogashira Reaction. 2025, 1-1149. https://doi.org/10.1002/0471264180.or116.01
    21. Mojdeh Golzani, Azadeh Tadjarodi, Mozhgan Golzani, Mohammad Poliki, Rouholah Zare-Dorabei, Kheibar Dashtian. γ-Graphyne-based coordination, composite, and hybrid materials: Synthesis, characterizations, and advanced applications. Coordination Chemistry Reviews 2024, 510 , 215838. https://doi.org/10.1016/j.ccr.2024.215838
    22. Garima Narang, Divyam Bansal, Shaina Joarder, Prashant Singh, Loveneesh Kumar, Vivek Mishra, Sangeeta Singh, Kaniki Tumba, Kamlesh Kumari. A review on the synthesis, properties, and applications of graphynes. FlatChem 2023, 40 , 100517. https://doi.org/10.1016/j.flatc.2023.100517
    23. Jiaqiang Li, Yu Han. Artificial carbon allotrope γ-graphyne: Synthesis, properties, and applications. Giant 2023, 13 , 100140. https://doi.org/10.1016/j.giant.2023.100140
    24. Boyi Zhang, Shaofei Wu, Xudong Hou, Guangwu Li, Yong Ni, Qiuyu Zhang, Jun Zhu, Yi Han, Peng Wang, Zhe Sun, Jishan Wu. A graphyne spoked wheel. Chem 2022, 8 (10) , 2831-2842. https://doi.org/10.1016/j.chempr.2022.08.002
    25. Huafeng Chen, Jinling Zhang, Xi Qin, Lei Zhai, Yanjie Qin, Huiyuan Duan, Shuchen Pei, Xin Lian, Peng Xu. A Dendrimer: Concise Synthesis and Its Optical Properties. Russian Journal of General Chemistry 2022, 92 (3) , 477-484. https://doi.org/10.1134/S1070363222030161
    26. Maria Rosaria di Nunzio, Yuto Suzuki, Ichiro Hisaki, Abderrazzak Douhal. HOFs Built from Hexatopic Carboxylic Acids: Structure, Porosity, Stability, and Photophysics. International Journal of Molecular Sciences 2022, 23 (4) , 1929. https://doi.org/10.3390/ijms23041929
    27. Seunghan Lee, Amit Singh, Hoonkyung Lee. Band gap engineering of 2D biphenylene carbon sheets with hydrogenation. Journal of the Korean Physical Society 2021, 79 (9) , 846-850. https://doi.org/10.1007/s40042-021-00312-x
    28. Shengnan Gao, Hong Yu, Guiling Zhang, Yangyang Hu, Yan Shang. Theoretical Studies on Transport and Photoresponse Properties of a Wheel-and-Axle Architecture Formed by Nitrogen-Doped Graphynes and a Vm(Bz)n Nanowire. Journal of Electronic Materials 2021, 50 (6) , 3634-3644. https://doi.org/10.1007/s11664-021-08857-0
    29. Reza Ghiasi, Mina Ahraminejad, Bita Mohtat. The application of graphyne and its boron nitride analogue in Li-ion batteries. Computational and Theoretical Chemistry 2021, 1200 , 113243. https://doi.org/10.1016/j.comptc.2021.113243
    30. Maria Rosaria di Nunzio, Ichiro Hisaki, Abderrazzak Douhal. HOFs under light: Relevance to photon-based science and applications. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 2021, 47 , 100418. https://doi.org/10.1016/j.jphotochemrev.2021.100418
    31. Eduardo Gomez, Ichiro Hisaki, Abderrazzak Douhal. Synthesis and Photobehavior of a New Dehydrobenzoannulene-Based HOF with Fluorine Atoms: From Solution to Single Crystals Observation. International Journal of Molecular Sciences 2021, 22 (9) , 4803. https://doi.org/10.3390/ijms22094803
    32. Haifeng Nan, Xinghua Zhu, Ke Chu, Zhibin Lu. Study on the mechanism of water transport near the surface of pristine and nitrogen-doped β-graphyne. International Journal of Modern Physics B 2021, 35 (11) , 2150152. https://doi.org/10.1142/S0217979221501526
    33. Xu Li, Bao-hua Li, Yan-bing He, Fei-yu Kang. A review of graphynes: Properties, applications and synthesis. New Carbon Materials 2020, 35 (6) , 619-629. https://doi.org/10.1016/S1872-5805(20)60518-2
    34. Xuming Qin, Yi Liu, Gui Yang, Dongqiu Zhao. Mirror symmetry origin of Dirac cone formation in rectangular two-dimensional materials. Physical Chemistry Chemical Physics 2020, 22 (12) , 6619-6625. https://doi.org/10.1039/D0CP00244E
    35. Paul N. W. Baxter, Abdelaziz Al Ouahabi, Lydia Karmazin, Alexandre Varnek, Jean‐Marc Strub, Sarah Cianferani. An Investigation into the Stephens–Castro Synthesis of Dehydrotriaryl[12]annulenes: Factors Influencing the Cyclotrimerization. European Journal of Organic Chemistry 2019, 2019 (40) , 6783-6795. https://doi.org/10.1002/ejoc.201901053
    36. Elham Ebrahimi Mokarram, Reza Fazaeli, Hossein Aghaei, Mohammad Yousefi, Karim Zare. Theoretical Study of the Interaction between Graphyne and cis-PtCl2(NH3)2 Complex. Russian Journal of Inorganic Chemistry 2019, 64 (3) , 369-376. https://doi.org/10.1134/S0036023619030124
    37. Masahiko Iyoda, Mio Ishita, Masanori Ohkoshi, Yoshiyuki Kuwatani, Hiroyuki Otani, Tohru Nishinaga. Synthesis and Properties of a Tricyclic Hexaketone Monohydrate with Hexabutyl Side Chain. HETEROCYCLES 2019, 99 (2) , 1145. https://doi.org/10.3987/COM-18-S(F)85
    38. Minwoo Park, Youngkuk Kim, Hoonkyung Lee. Design of 2D massless Dirac fermion systems and quantum spin Hall insulators based on sp–sp2 carbon sheets. npj Computational Materials 2018, 4 (1) https://doi.org/10.1038/s41524-018-0113-8
    39. Eduardo Gomez, Mario Gutiérrez, Miquel Moreno, Ichiro Hisaki, Schoichi Nakagawa, Abderrazzak Douhal. Spectroscopy and dynamics of dehydrobenzo[12]annulene derivatives possessing peripheral carboxyphenyl groups: theory and experiment. Physical Chemistry Chemical Physics 2018, 20 (11) , 7415-7427. https://doi.org/10.1039/C7CP06819K
    40. Eduardo Gomez, Mario Gutiérrez, Boiko Cohen, Ichiro Hisaki, Abderrazzak Douhal. Single crystal fluorescence behavior of a new HOF material: a potential candidate for a new LED. Journal of Materials Chemistry C 2018, 6 (26) , 6929-6939. https://doi.org/10.1039/C8TC01808A
    41. S. Golafrooz Shahri, M.R. Roknabadi, R. Radfar. Spin-dependent structural, electronic and transport properties of armchair graphyne nanoribbons doped with single transition-metal atom, using DFT calculations. Journal of Magnetism and Magnetic Materials 2017, 443 , 96-103. https://doi.org/10.1016/j.jmmm.2017.07.039
    42. Suman Chowdhury, Arnab Majumdar, Debnarayan Jana. Search for magnetism in transition metal atoms doped tetragonal graphene: A DFT approach. Journal of Magnetism and Magnetic Materials 2017, 441 , 523-530. https://doi.org/10.1016/j.jmmm.2017.06.016
    43. Baotao Kang, Hu Shi, Si Wu, Wei Zhao, Hongqi Ai, Jin Yong Lee. Revealing the importance of nitrogen doping site in enhancing the oxygen reduction reaction on β-graphyne. Carbon 2017, 123 , 415-420. https://doi.org/10.1016/j.carbon.2017.07.087
    44. Paul N. W. Baxter, Lydia Karmazin, André DeCian, Alexandre Varnek, Jean‐Paul Gisselbrecht, Jean‐Marc Strub, Sarah Cianferani. A Direct One‐Pot Synthesis of Asymmetric Dehydrobenzopyrido[12]annulenes and Their Physicochemical Properties. European Journal of Organic Chemistry 2017, 2017 (31) , 4625-4632. https://doi.org/10.1002/ejoc.201700700
    45. Afshan Mohajeri, Azin Shahsavar. Tailoring the optoelectronic properties of graphyne and graphdiyne: nitrogen/sulfur dual doping versus oxygen containing functional groups. Journal of Materials Science 2017, 52 (9) , 5366-5379. https://doi.org/10.1007/s10853-017-0779-1
    46. Baotao Kang, Hongqi Ai, Jin Yong Lee. Single-atom vacancy induced changes in electronic and magnetic properties of graphyne. Carbon 2017, 116 , 113-119. https://doi.org/10.1016/j.carbon.2017.01.068
    47. Chongwei Zhu, Carine Duhayon, Alix Saquet, Valérie Maraval, Remi Chauvin. Selective access to p -dialkyl- carbo -benzenes from a [6]pericyclynedione: the n -butyl nucleophile model for a metal switch study. Canadian Journal of Chemistry 2017, 95 (4) , 454-459. https://doi.org/10.1139/cjc-2016-0629
    48. Takashi Takeda, Michael M. Haley. Synthesis and photophysical properties of expanded dehydrobenzoannulene macrotricycles. Canadian Journal of Chemistry 2017, 95 (3) , 298-302. https://doi.org/10.1139/cjc-2016-0430
    49. Kévin Cocq, Nathalie Saffon‐Merceron, Yannick Coppel, Corentin Poidevin, Valérie Maraval, Remi Chauvin. carbo ‐Naphthalene: A Polycyclic carbo ‐Benzenoid Fragment of α‐Graphyne. Angewandte Chemie 2016, 128 (48) , 15357-15360. https://doi.org/10.1002/ange.201608300
    50. Kévin Cocq, Nathalie Saffon‐Merceron, Yannick Coppel, Corentin Poidevin, Valérie Maraval, Remi Chauvin. carbo ‐Naphthalene: A Polycyclic carbo ‐Benzenoid Fragment of α‐Graphyne. Angewandte Chemie International Edition 2016, 55 (48) , 15133-15136. https://doi.org/10.1002/anie.201608300
    51. Somayeh Behzad. Ab-initio calculation of electronic structure and optical properties of AB-stacked bilayer α-graphyne. Physica E: Low-dimensional Systems and Nanostructures 2016, 83 , 211-214. https://doi.org/10.1016/j.physe.2016.05.014
    52. Somayeh Behzad. Ab initio study of electronic properties and dielectric response of graphyne-like boron nitride sheet. Optical and Quantum Electronics 2016, 48 (8) https://doi.org/10.1007/s11082-016-0645-4
    53. Baotao Kang, Hu Shi, Fang-Fang Wang, Jin Yong Lee. Importance of doping site of B, N, and O in tuning electronic structure of graphynes. Carbon 2016, 105 , 156-162. https://doi.org/10.1016/j.carbon.2016.04.032
    54. Somayeh Behzad. First principles study of electronic properties, interband transitions and electron energy loss of α-graphyne. The European Physical Journal B 2016, 89 (5) https://doi.org/10.1140/epjb/e2016-60920-2
    55. Hongcai Zhou, Shuangwen Lu, Feng Li, Yuanyuan Qu. Carbon nanoribbons and nanotubes based on δ-graphyne: A first-principles study. Physica E: Low-dimensional Systems and Nanostructures 2016, 78 , 19-24. https://doi.org/10.1016/j.physe.2015.11.039
    56. Peiran Zhang, ShuangYing Ma, L.Z. Sun. Hydroxylated graphyne and graphdiyne: First-principles study. Applied Surface Science 2016, 361 , 206-212. https://doi.org/10.1016/j.apsusc.2015.11.098
    57. Hongyu Zhang, Hongzhe Pan, Meng Zhang, Youhua Luo. First-principles prediction of a new planar hydrocarbon material: half-hydrogenated 14,14,14-graphyne. Physical Chemistry Chemical Physics 2016, 18 (34) , 23954-23960. https://doi.org/10.1039/C6CP03955C
    58. Xuming Qin, Yi Liu, Baoqian Chi, Xinluo Zhao, Xiaowu Li. Origins of Dirac cones and parity dependent electronic structures of α-graphyne derivatives and silagraphynes. Nanoscale 2016, 8 (33) , 15223-15232. https://doi.org/10.1039/C6NR03603A
    59. Yuewen Mu, Si-Dian Li. Multiple Dirac cones in BN co-doped β-graphyne. Journal of Materials Chemistry C 2016, 4 (30) , 7339-7344. https://doi.org/10.1039/C6TC02184K
    60. Arka Bandyopadhyay, Parthasarathi Pal, Suman Chowdhury, Debnarayan Jana. First principles Raman study of boron and nitrogen doped planar T-graphene clusters. Materials Research Express 2015, 2 (9) , 095603. https://doi.org/10.1088/2053-1591/2/9/095603
    61. Yang Pei, Haibin Wu, Jingmin Liu. Optimized geometry and electronic structure of three-dimensional β -graphyne. Journal of Semiconductors 2015, 36 (7) , 072002. https://doi.org/10.1088/1674-4926/36/7/072002
    62. Baoqian Chi, Yi Liu, Xiaowu Li, Jingcheng Xu, Xuming Qin, Chen Sun, Chenghao Bai, Xinluo Zhao. Energetic stability, atomic and electronic structures of extended γ-graphyne: A density functional study. Journal of Molecular Modeling 2015, 21 (6) https://doi.org/10.1007/s00894-015-2700-7
    63. Chen Sun, Yi Liu, Jingcheng Xu, Baoqian Chi, Chenghao Bai, Yifan Liu, Shengjuan Li, Xinluo Zhao, Xiaowu Li. Density functional study of α-graphyne derivatives: Energetic stability, atomic and electronic structure. Physica E: Low-dimensional Systems and Nanostructures 2015, 70 , 190-197. https://doi.org/10.1016/j.physe.2015.03.006
    64. E. A. Belenkov, V. V. Mavrinskii, T. E. Belenkova, V. M. Chernov. Structural modifications of graphyne layers consisting of carbon atoms in the sp- and sp 2-hybridized states. Journal of Experimental and Theoretical Physics 2015, 120 (5) , 820-830. https://doi.org/10.1134/S1063776115040214
    65. Elmira Azizi, Zahra Aliakbar Tehrani, Zahra Jamshidi. Interactions of small gold clusters, Aun (n=1–3), with graphyne: Theoretical investigation. Journal of Molecular Graphics and Modelling 2014, 54 , 80-89. https://doi.org/10.1016/j.jmgm.2014.09.004
    66. Yi-Guo Xu, Chen Ming, Zheng-Zhe Lin, Fan-Xin Meng, Jun Zhuang, Xi-Jing Ning. Can graphynes turn into graphene at room temperature?. Carbon 2014, 73 , 283-290. https://doi.org/10.1016/j.carbon.2014.02.065
    67. X. N. Niu, D. Z. Yang, M. S. Si, D. S. Xue. Energy gaps in α-graphdiyne nanoribbons. Journal of Applied Physics 2014, 115 (14) https://doi.org/10.1063/1.4871278
    68. Baotao Kang, Hongguang Liu, Jin Yong Lee. Oxygen adsorption on single layer graphyne: a DFT study. Phys. Chem. Chem. Phys. 2014, 16 (3) , 974-980. https://doi.org/10.1039/C3CP53237B
    69. Hongxia Bu, Mingwen Zhao, Wenzheng Dong, Shuangwen Lu, Xiaopeng Wang. A metallic carbon allotrope with superhardness: a first-principles prediction. J. Mater. Chem. C 2014, 2 (15) , 2751-2757. https://doi.org/10.1039/C3TC32083A
    70. Ryo Katoono, Keiichi Kusaka, Shunsuke Kawai, Yuki Tanaka, Keisuke Hanada, Tatsuo Nehira, Kenshu Fujiwara, Takanori Suzuki. Chiroptical molecular propellers based on hexakis(phenylethynyl)benzene through the complexation-induced intramolecular transmission of local point chirality. Org. Biomol. Chem. 2014, 12 (47) , 9532-9538. https://doi.org/10.1039/C4OB01601G
    71. Chongqin Zhu, Hui Li, Xiao Cheng Zeng, E. G. Wang, Sheng Meng. Quantized Water Transport: Ideal Desalination through Graphyne-4 Membrane. Scientific Reports 2013, 3 (1) https://doi.org/10.1038/srep03163
    72. Mingwen Zhao, Wenzheng Dong, Aizhu Wang. Two-dimensional carbon topological insulators superior to graphene. Scientific Reports 2013, 3 (1) https://doi.org/10.1038/srep03532
    73. Ryo Katoono, Hidetoshi Kawai, Masakazu Ohkita, Kenshu Fujiwara, Takanori Suzuki. A C 3 -symmetric chiroptical molecular propeller based on hexakis(phenylethynyl)benzene with a threefold terephthalamide: stereospecific propeller generation through the cooperative transmission of point chiralities on the host and guest upon complexation. Chemical Communications 2013, 49 (88) , 10352-10354. https://doi.org/10.1039/C3CC43571G
    74. Shin‐ichiro Kato, Nobutaka Takahashi, Hidekazu Tanaka, Atsushi Kobayashi, Toshitada Yoshihara, Seiji Tobita, Takeshi Yamanobe, Hiroki Uehara, Yosuke Nakamura. Tetraalkoxyphenanthrene‐Fused Dehydroannulenes: Synthesis, Self‐Assembly, and Electronic, Optical, and Electrochemical Properties. Chemistry – A European Journal 2013, 19 (36) , 12138-12151. https://doi.org/10.1002/chem.201301262
    75. Kazukuni Tahara, Yuki Yamamoto, Dustin E. Gross, Hiroyoshi Kozuma, Yoko Arikuma, Koji Ohta, Yoshiko Koizumi, Yuan Gao, Yo Shimizu, Shu Seki, Kenji Kamada, Jeffrey S. Moore, Yoshito Tobe. Syntheses and Properties of Graphyne Fragments: Trigonally Expanded Dehydrobenzo[12]annulenes. Chemistry – A European Journal 2013, 19 (34) , 11251-11260. https://doi.org/10.1002/chem.201300838
    76. Xin Lin, Hai-Long Wang, Hui Pan, Huai-Zhe Xu. The Unconventional Transport Properties of Dirac Fermions in Graphyne. Chinese Physics Letters 2013, 30 (7) , 077305. https://doi.org/10.1088/0256-307X/30/7/077305
    77. Jia-Jia Zheng, Xiang Zhao, Shengbai B. Zhang, Xingfa Gao. Tight-binding description of graphyne and its two-dimensional derivatives. The Journal of Chemical Physics 2013, 138 (24) https://doi.org/10.1063/1.4811841
    78. A. Vikas Aggarwal, Stefan‐S. Jester, Sara Mehdizadeh Taheri, Stephan Förster, Sigurd Höger. Molecular Spoked Wheels: Synthesis and Self‐Assembly Studies on Rigid Nanoscale 2D Objects. Chemistry – A European Journal 2013, 19 (14) , 4480-4495. https://doi.org/10.1002/chem.201203444
    79. Bumned Soodchomshom, I.-Ming Tang, Rassmidara Hoonsawat. Directional quantum transport in graphyne p-n junction. Journal of Applied Physics 2013, 113 (7) https://doi.org/10.1063/1.4792500
    80. Yun Ni, Kai-Lun Yao, Hua-Hua Fu, Guo-Ying Gao, Si-Cong Zhu, Bo Luo, Shu-Ling Wang, Rui-Xue Li. The transport properties and new device design: the case of 6,6,12-graphyne nanoribbons. Nanoscale 2013, 5 (10) , 4468. https://doi.org/10.1039/c3nr00731f
    81. Qing Tang, Zhen Zhou, Zhongfang Chen. Graphene-related nanomaterials: tuning properties by functionalization. Nanoscale 2013, 5 (11) , 4541. https://doi.org/10.1039/c3nr33218g
    82. Jie Cao, Chi Pui Tang, Shi-Jie Xiong. Analytical dispersion relations of three graphynes. Physica B: Condensed Matter 2012, 407 (21) , 4387-4390. https://doi.org/10.1016/j.physb.2012.07.041
    83. Zhe Liu, Guodong Yu, Haibo Yao, Lei Liu, Liwei Jiang, Yisong Zheng. A simple tight-binding model for typical graphyne structures. New Journal of Physics 2012, 14 (11) , 113007. https://doi.org/10.1088/1367-2630/14/11/113007
    84. Shunpei Nobusue, Yuichi Mukai, Yo Fukumoto, Rui Umeda, Kazukuni Tahara, Motohiro Sonoda, Yoshito Tobe. Molecular Propellers that Consist of Dehydrobenzo[14]annulene Blades. Chemistry – A European Journal 2012, 18 (40) , 12814-12824. https://doi.org/10.1002/chem.201201061
    85. Daniel Malko, Christian Neiss, Andreas Görling. Two-dimensional materials with Dirac cones: Graphynes containing heteroatoms. Physical Review B 2012, 86 (4) https://doi.org/10.1103/PhysRevB.86.045443
    86. Qu Yue, Shengli Chang, Jun Kang, Jichun Tan, Shiqiao Qin, Jingbo Li. Magnetic and electronic properties of α-graphyne nanoribbons. The Journal of Chemical Physics 2012, 136 (24) https://doi.org/10.1063/1.4730325
    87. Daniel Malko, Christian Neiss, Francesc Viñes, Andreas Görling. Competition for Graphene: Graphynes with Direction-Dependent Dirac Cones. Physical Review Letters 2012, 108 (8) https://doi.org/10.1103/PhysRevLett.108.086804
    88. Xin-Quan Wang, Han-Dong Li, Jian-Tao Wang. Structural stabilities and electronic properties of planar C4 carbon sheet and nanoribbons. Physical Chemistry Chemical Physics 2012, 14 (31) , 11107. https://doi.org/10.1039/c2cp41464c
    89. Qing Peng, Wei Ji, Suvranu De. Mechanical properties of graphyne monolayers: a first-principles study. Physical Chemistry Chemical Physics 2012, 14 (38) , 13385. https://doi.org/10.1039/c2cp42387a
    90. Steven W. Cranford, Dieter B. Brommer, Markus J. Buehler. Extended graphynes: simple scaling laws for stiffness, strength and fracture. Nanoscale 2012, 4 (24) , 7797. https://doi.org/10.1039/c2nr31644g
    91. Masahiko Iyoda. Giant Conjugated Macrocycles: Synthesis and Applications. Journal of Synthetic Organic Chemistry, Japan 2012, 70 (11) , 1157-1163. https://doi.org/10.5059/yukigoseikyokaishi.70.1157
    92. Yoshito Tobe. Formation and Control of Porous Two-Dimensional Molecular Self-Assembly at Solid-Liquid Interfaces. Journal of Synthetic Organic Chemistry, Japan 2012, 70 (12) , 1255-1266. https://doi.org/10.5059/yukigoseikyokaishi.70.1255
    93. Masahiko Iyoda, Jun Yamakawa, M. Jalilur Rahman. Konjugierte Makrocyclen: Konzepte und Anwendungen. Angewandte Chemie 2011, 123 (45) , 10708-10740. https://doi.org/10.1002/ange.201006198
    94. Masahiko Iyoda, Jun Yamakawa, M. Jalilur Rahman. Conjugated Macrocycles: Concepts and Applications. Angewandte Chemie International Edition 2011, 50 (45) , 10522-10553. https://doi.org/10.1002/anie.201006198
    95. Ming-Xue Li, Kui Han, Hai-Peng Li, Yang Ge, Qiong-Hua Wu, Gang Tang, Yu-xi Wu. Theoretical study on the nonlinear optical properties of donor/acceptor-functionalized trigonal dehydrobenzoannulenes. Journal of Molecular Structure: THEOCHEM 2010, 957 (1-3) , 31-35. https://doi.org/10.1016/j.theochem.2010.07.001
    96. Sergey A. Prikhod’ko, Nicolay Yu. Adonin, Valentin N. Parmon. The ionic liquid [bmim]Br as an alternative medium for the catalytic cleavage of aromatic C–F and C–Cl bonds. Tetrahedron Letters 2010, 51 (17) , 2265-2268. https://doi.org/10.1016/j.tetlet.2010.02.104
    97. François Diederich, Milan Kivala. All‐Carbon Scaffolds by Rational Design. Advanced Materials 2010, 22 (7) , 803-812. https://doi.org/10.1002/adma.200902623
    98. Kazukuni Tahara, Shengbin Lei, Jinne Adisoejoso, Steven De Feyter, Yoshito Tobe. Supramolecular surface-confined architectures created by self-assembly of triangular phenylene–ethynylene macrocycles via van der Waals interaction. Chemical Communications 2010, 46 (45) , 8507. https://doi.org/10.1039/c0cc02780d
    99. Han Kui, Li Ming-Xue, Li Hai-Peng, Wu Yu-Xi, Tang Gang, Wu Qiong-Hua, Tong Xing, Zhong Qi, . The relationships study of structure-nonlinear optical property of two-dimensional charge transfer molecules substituted annulenes. Acta Physica Sinica 2010, 59 (9) , 6250. https://doi.org/10.7498/aps.59.6250
    100. Shinji Toyota, Rie Azami, Tetsuo Iwanaga, Daisuke Matsuo, Akihiro Orita, Junzo Otera. Chemistry of Anthracene–Acetylene Oligomers. XIV. Convenient Synthesis of Anthrylethynes by Double Elimination Reaction from Aldehydes and Sulfones. Bulletin of the Chemical Society of Japan 2009, 82 (10) , 1287-1291. https://doi.org/10.1246/bcsj.82.1287
    Load all citations

    Organic Letters

    Cite this: Org. Lett. 2006, 8, 14, 2933–2936
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ol060781u
    Published June 6, 2006
    Copyright © 2006 American Chemical Society

    Article Views

    1664

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.