ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Asymmetric Syntheses of (−)-Mitorubrin and Related Azaphilone Natural Products

View Author Information
Department of Chemistry and Center for Chemical Methodology and Library Development, Boston University, Boston, Massachusetts 02215
Cite this: Org. Lett. 2006, 8, 22, 5169–5171
Publication Date (Web):September 30, 2006
https://doi.org/10.1021/ol062233m
Copyright © 2006 American Chemical Society

    Article Views

    2272

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    Asymmetric syntheses of (−)-mitorubrin and related azaphilone natural products are reported. Key steps involve copper-mediated, enantioselective oxidative dearomatization to prepare the azaphilone core and olefin cross-metathesis for side-chain installation.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    *

    In papers with more than one author, the asterisk indicates the name of the author to whom inquiries about the paper should be addressed.

    Supporting Information Available

    ARTICLE SECTIONS
    Jump To

    Experimental procedures and characterization data for all new compounds (PDF). This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 64 publications.

    1. Houng Kang, Carilyn Torruellas, Marisa C. Kozlowski. Asymmetric Total Synthesis of Chaetoglobin A. The Journal of Organic Chemistry 2023, 88 (11) , 6691-6703. https://doi.org/10.1021/acs.joc.3c00002
    2. Erandi Liyanage Perera, Daesung Lee. Synthesis of 4-Pyrones by Formal Hydration of 1,3-Diynones Promoted by 1,4-Addition of Piperidine. Organic Letters 2022, 24 (38) , 7042-7046. https://doi.org/10.1021/acs.orglett.2c02914
    3. Suman Chakrabarty, Evan O. Romero, Joshua B. Pyser, Jessica A. Yazarians, Alison R. H. Narayan. Chemoenzymatic Total Synthesis of Natural Products. Accounts of Chemical Research 2021, 54 (6) , 1374-1384. https://doi.org/10.1021/acs.accounts.0c00810
    4. Joshua B. Pyser, Summer A. Baker Dockrey, Attabey Rodríguez Benítez, Leo A. Joyce, Ren A. Wiscons, Janet L. Smith, Alison R. H. Narayan. Stereodivergent, Chemoenzymatic Synthesis of Azaphilone Natural Products. Journal of the American Chemical Society 2019, 141 (46) , 18551-18559. https://doi.org/10.1021/jacs.9b09385
    5. Zhenjian Lin, Thomas B. Kakule, Christopher A. Reilly, Sinem Beyhan, Eric W. Schmidt. Secondary Metabolites of Onygenales Fungi Exemplified by Aioliomyces pyridodomos. Journal of Natural Products 2019, 82 (6) , 1616-1626. https://doi.org/10.1021/acs.jnatprod.9b00121
    6. Houng Kang, Carilyn Torruellas, Jinchu Liu, Marisa C. Kozlowski. Total Synthesis of Chaetoglobin A via Catalytic, Atroposelective Oxidative Phenol Coupling. Organic Letters 2018, 20 (18) , 5554-5558. https://doi.org/10.1021/acs.orglett.8b02183
    7. Jie Ren, Shuang-Shuang Ding, Ao Zhu, Fei Cao, and Hua-Jie Zhu . Bioactive Azaphilone Derivatives from the Fungus Talaromyces aculeatus. Journal of Natural Products 2017, 80 (8) , 2199-2203. https://doi.org/10.1021/acs.jnatprod.7b00032
    8. Mehdi Makrerougras, Romain Coffinier, Samuel Oger, Arnaud Chevalier, Cyrille Sabot, and Xavier Franck . Total Synthesis and Structural Revision of Chaetoviridins A. Organic Letters 2017, 19 (15) , 4146-4149. https://doi.org/10.1021/acs.orglett.7b02053
    9. Dong-Lin Zhao, Chang-Lun Shao, Qiang Zhang, Kai-Ling Wang, Fei-Fei Guan, Ting Shi, and Chang-Yun Wang . Azaphilone and Diphenyl Ether Derivatives from a Gorgonian-Derived Strain of the Fungus Penicillium pinophilum. Journal of Natural Products 2015, 78 (9) , 2310-2314. https://doi.org/10.1021/acs.jnatprod.5b00575
    10. Scott E. Allen, Ryan R. Walvoord, Rosaura Padilla-Salinas, and Marisa C. Kozlowski . Aerobic Copper-Catalyzed Organic Reactions. Chemical Reviews 2013, 113 (8) , 6234-6458. https://doi.org/10.1021/cr300527g
    11. Jin-Ming Gao, Sheng-Xiang Yang, and Jian-Chun Qin . Azaphilones: Chemistry and Biology. Chemical Reviews 2013, 113 (7) , 4755-4811. https://doi.org/10.1021/cr300402y
    12. Toshifumi Takeuchi, Yoshiyuki Mizushina, Satoshi Takaichi, Natsuki Inoue, Kouji Kuramochi, Satomi Shimura, Yusuke Myobatake, Yuri Katayama, Kenji Takemoto, Shogo Endo, Shinji Kamisuki, and Fumio Sugawara . Total Synthesis of (+)-Sch 725680: Inhibitor of Mammalian A–, B–, and Y–Family DNA Polymerases. Organic Letters 2012, 14 (17) , 4303-4305. https://doi.org/10.1021/ol301865u
    13. Mathieu Achard, Aaron B. Beeler, and John A. Porco, Jr. . Synthesis of Azaphilone-Based Chemical Libraries. ACS Combinatorial Science 2012, 14 (3) , 236-244. https://doi.org/10.1021/co300002x
    14. Amber D. Somoza, Kuan-Han Lee, Yi-Ming Chiang, Berl R. Oakley, and Clay C. C. Wang . Reengineering an Azaphilone Biosynthesis Pathway in Aspergillus nidulans To Create Lipoxygenase Inhibitors. Organic Letters 2012, 14 (4) , 972-975. https://doi.org/10.1021/ol203094k
    15. Hui Wang, Yi Wang, Wei Wang, Peng Fu, Peipei Liu, and Weiming Zhu . Anti-influenza Virus Polyketides from the Acid-Tolerant Fungus Penicillium purpurogenum JS03-21. Journal of Natural Products 2011, 74 (9) , 2014-2018. https://doi.org/10.1021/np2004769
    16. Andrew R. Germain, Daniel M. Bruggemeyer, Jianglong Zhu, Cedric Genet, Peter O’Brien, and John A. Porco, Jr. . Synthesis of the Azaphilones (+)-Sclerotiorin and (+)-8-O-Methylsclerotiorinamine Utilizing (+)-Sparteine Surrogates in Copper-Mediated Oxidative Dearomatization. The Journal of Organic Chemistry 2011, 76 (8) , 2577-2584. https://doi.org/10.1021/jo102448n
    17. Stefan Bräse, Arantxa Encinas, Julia Keck and Carl F. Nising. Chemistry and Biology of Mycotoxins and Related Fungal Metabolites. Chemical Reviews 2009, 109 (9) , 3903-3990. https://doi.org/10.1021/cr050001f
    18. John Boukouvalas and Jian-Xin Wang. Structure Revision and Synthesis of a Novel Labdane Diterpenoid from Zingiber ottensii. Organic Letters 2008, 10 (16) , 3397-3399. https://doi.org/10.1021/ol8011919
    19. Qin Liu and, Tomislav Rovis. Enantioselective Synthesis of Hydrobenzofuranones Using an Asymmetric Desymmetrizing Intramolecular Stetter Reaction of Cyclohexadienones. Organic Process Research & Development 2007, 11 (3) , 598-604. https://doi.org/10.1021/op600278f
    20. Hironobu Murakami, Yuuta Fujikawa, Masaya Mori, Nozomi Mosu, Akihiro Taguchi, Yoshio Hayashi, Hideshi Inoue, Shinji Kamisuki. Development of a novel fluorogenic assay method for screening inhibitors of bovine leukemia virus protease and identification of mitorubrinic acid as an anti-BLV compound. Bioscience, Biotechnology, and Biochemistry 2023, 87 (9) , 946-953. https://doi.org/10.1093/bbb/zbad073
    21. Sui-Qun Yang, Qi Song, Xiao-Ming Li, Xin Li, Hong-Lei Li, Ling-Hong Meng, Bin-Gui Wang. Antimicrobial polyketides and sesquiterpene lactones from the deep-sea cold-seep-derived fungus Talaromyces minioluteus CS-113 triggered by the histone deacetylase inhibitor SAHA. Organic & Biomolecular Chemistry 2023, 21 (12) , 2575-2585. https://doi.org/10.1039/D3OB00058C
    22. Christopher J. Huck, Yaroslav D. Boyko, David Sarlah. Dearomative logic in natural product total synthesis. Natural Product Reports 2022, 39 (12) , 2231-2291. https://doi.org/10.1039/D2NP00042C
    23. Cheng Chen, Yu-Xia Wang, Song-Bo Li, Qiong-You Wu. 3,5-Diaryl substituted sclerotiorin: a novel scaffold of succinate-ubiquinone oxidoreductase inhibitors. New Journal of Chemistry 2022, 46 (26) , 12711-12719. https://doi.org/10.1039/D2NJ01869A
    24. Gaoran Liu, Ruiyun Huo, Shubin Niu, Fuhang Song, Ling Liu. Two New Cytotoxic Decalin Derivatives from Marine‐Derived Fungus Talaromyces sp.. Chemistry & Biodiversity 2022, 19 (3) https://doi.org/10.1002/cbdv.202100990
    25. Muhammet Uyanik, Kazuaki Ishihara. Oxidation: Asymmetric Oxidative Dearomatization. 2022https://doi.org/10.1016/B978-0-32-390644-9.00028-7
    26. Karol Grela, Anna Kajetanowicz, Anna Szadkowska, Justyna Czaban‐Jóźwiak, . Alkene Cross‐Metathesis Reactions. 2021, 1-1189. https://doi.org/10.1002/0471264180.or106.01
    27. Dzmitry Kananovich, Gábor Zoltán Elek, Margus Lopp, Victor Borovkov. Aerobic Oxidations in Asymmetric Synthesis: Catalytic Strategies and Recent Developments. Frontiers in Chemistry 2021, 9 https://doi.org/10.3389/fchem.2021.614944
    28. Qian Wei, Jian Bai, Daojiang Yan, Xiuqi Bao, Wenting Li, Bingyu Liu, Dan Zhang, Xiangbing Qi, Dequan Yu, Youcai Hu. Genome mining combined metabolic shunting and OSMAC strategy of an endophytic fungus leads to the production of diverse natural products. Acta Pharmaceutica Sinica B 2021, 11 (2) , 572-587. https://doi.org/10.1016/j.apsb.2020.07.020
    29. Hanliang Zheng, Xiao-Song Xue. Recent Computational Studies on Mechanisms of Hypervalent Iodine(III)-Promoted Dearomatization of Phenols. Current Organic Chemistry 2020, 24 (18) , 2106-2117. https://doi.org/10.2174/1385272824999200620223218
    30. Amila Pramisandi, Kazuyuki Dobashi, Mihoko Mori, Kenichi Nonaka, Atsuko Matsumoto, Toshiyuki Tokiwa, Mayuka Higo, Kristiningrum, Eri Amalia, Arif Nurkanto, Daniel Ken Inaoka, Danang Waluyo, Kiyoshi Kita, Tomoyoshi Nozaki, Satoshi Ōmura, Kazuro Shiomi. Microbial inhibitors active against Plasmodium falciparum dihydroorotate dehydrogenase derived from an Indonesian soil fungus, Talaromyces pinophilus BioMCC-f.T.3979. The Journal of General and Applied Microbiology 2020, 66 (5) , 273-278. https://doi.org/10.2323/jgam.2019.11.007
    31. Louis Péault, Pierrick Nun, Erwan Le Grognec, Vincent Coeffard. Multicatalytic dearomatization of phenols into epoxyquinols via a photooxygenation process. Chemical Communications 2019, 55 (51) , 7398-7401. https://doi.org/10.1039/C9CC03068A
    32. Muhammet Uyanik, Kazuaki Ishihara. Asymmetric Oxidative Dearomatization Reaction. 2016, 129-152. https://doi.org/10.1002/9783527698479.ch6
    33. Shou-Peng Zhang, Rong Huang, Fang-Fang Li, Hong-Xia Wei, Xiao-Wei Fang, Xiao-Song Xie, Dong-Guo Lin, Shao-Hua Wu, Jian He. Antiviral anthraquinones and azaphilones produced by an endophytic fungus Nigrospora sp. from Aconitum carmichaeli. Fitoterapia 2016, 112 , 85-89. https://doi.org/10.1016/j.fitote.2016.05.013
    34. Wangsheng Sun, Guofeng Li, Liang Hong, Rui Wang. Asymmetric dearomatization of phenols. Organic & Biomolecular Chemistry 2016, 14 (7) , 2164-2176. https://doi.org/10.1039/C5OB02526E
    35. Emily Tam, Chi-Ching Tsang, Susanna Lau, Patrick Woo. Polyketides, Toxins and Pigments in Penicillium marneffei. Toxins 2015, 7 (11) , 4421-4436. https://doi.org/10.3390/toxins7114421
    36. Daniel J. O'Leary, Gregory W. O'Neil. Cross‐Metathesis. 2015, 171-294. https://doi.org/10.1002/9783527674107.ch16
    37. Kelly A. Volp, Andrew M. Harned. Total Synthesis of Sorbicillactone A. 2015, 253-308. https://doi.org/10.1016/B978-0-08-100023-6.00009-9
    38. Hai-Bo Qiu, Wen-Jian Qian, Shun-Ming Yu, Zhu-Jun Yao. Stereodivergent total synthesis of chlorofusin and its all seven chromophore diastereomers. Tetrahedron 2015, 71 (2) , 370-380. https://doi.org/10.1016/j.tet.2014.10.062
    39. Amira Abood, Ahmed Al-Fahad, Alan Scott, Alaa El-Dein M. S. Hosny, Amal M. Hashem, Azza M. A. Fattah, Paul R. Race, Thomas J. Simpson, Russell J. Cox. Kinetic characterisation of the FAD dependent monooxygenase TropB and investigation of its biotransformation potential. RSC Advances 2015, 5 (62) , 49987-49995. https://doi.org/10.1039/C5RA06693J
    40. Ze'en Xiao, Shao'e Lin, Chunbing Tan, Yongjun Lu, Lei He, Xishan Huang, Zhigang She. Asperlones A and B, Dinaphthalenone Derivatives from a Mangrove Endophytic Fungus Aspergillus sp. 16-5C. Marine Drugs 2015, 13 (1) , 366-378. https://doi.org/10.3390/md13010366
    41. Hai-Bo Qiu, Xin-Ya Chen, Qing Li, Wen-Jian Qian, Shun-Ming Yu, Gong-Li Tang, Zhu-Jun Yao. Unified flexible total synthesis of chlorofusin and artificial Click mimics as antagonists against p53–HDM2 interactions. Tetrahedron Letters 2014, 55 (44) , 6055-6059. https://doi.org/10.1016/j.tetlet.2014.09.028
    42. Daxin LI, Kengo SHIGETOMI, Shinya MITSUHASHI, Makoto UBUKATA. Maillard Reaction Inhibitors Produced by Paecilomyces sp.. Bioscience, Biotechnology, and Biochemistry 2013, 77 (12) , 2499-2501. https://doi.org/10.1271/bbb.130567
    43. Karuppusamy Sakthivel, Kannupal Srinivasan. Iodine/Water‐Mediated Oxidation of o ‐Alkynylaroyl Compounds and Application of the Products of Oxidation in the Synthesis of Nitrogen Heterocycles. European Journal of Organic Chemistry 2013, 2013 (16) , 3386-3396. https://doi.org/10.1002/ejoc.201300046
    44. Sebastián O. Simonetti, Enrique L. Larghi, Andrea B. J. Bracca, Teodoro S. Kaufman. Angular tricyclic benzofurans and related natural products of fungal origin. Isolation, biological activity and synthesis. Natural Product Reports 2013, 30 (7) , 941. https://doi.org/10.1039/c3np70014c
    45. Chun‐Xiang Zhuo, Wei Zhang, Shu‐Li You. Katalytische asymmetrische Desaromatisierungen. Angewandte Chemie 2012, 124 (51) , 12834-12858. https://doi.org/10.1002/ange.201204822
    46. Chun‐Xiang Zhuo, Wei Zhang, Shu‐Li You. Catalytic Asymmetric Dearomatization Reactions. Angewandte Chemie International Edition 2012, 51 (51) , 12662-12686. https://doi.org/10.1002/anie.201204822
    47. Long Lin, Nick Mulholland, Shao‐Wei Huang, David Beattie, Dianne Irwin, Yu‐Cheng Gu, John Clough, Qiong‐You Wu, Guang‐Fu Yang. Design, Synthesis and Fungicidal Activity of Novel Sclerotiorin Derivatives. Chemical Biology & Drug Design 2012, 80 (5) , 682-692. https://doi.org/10.1111/cbdd.12005
    48. Marisa C. Kozlowski. Organic Synthetic Methods Using Copper Oxygen Chemistry. 2011, 361-444. https://doi.org/10.1002/9781118094365.ch11
    49. Agathe Boulangé, Philippe A. Peixoto, Xavier Franck. Diastereoselective IBX Oxidative Dearomatization of Phenols by Remote Induction: Towards the Epicocconone Core Framework. Chemistry – A European Journal 2011, 17 (37) , 10241-10245. https://doi.org/10.1002/chem.201101681
    50. Hideto Miyabe, Okiko Miyata, Takeaki Naito. Pyran and Its Derivatives. 2011, 153-186. https://doi.org/10.1002/9783527634880.ch5
    51. Alena Rudolph, Pieter H. Bos, Auke Meetsma, Adriaan J. Minnaard, Ben L. Feringa. Catalytic Asymmetric Conjugate Addition/Oxidative Dearomatization Towards Multifunctional Spirocyclic Compounds. Angewandte Chemie 2011, 123 (26) , 5956-5960. https://doi.org/10.1002/ange.201102069
    52. Alena Rudolph, Pieter H. Bos, Auke Meetsma, Adriaan J. Minnaard, Ben L. Feringa. Catalytic Asymmetric Conjugate Addition/Oxidative Dearomatization Towards Multifunctional Spirocyclic Compounds. Angewandte Chemie International Edition 2011, 50 (26) , 5834-5838. https://doi.org/10.1002/anie.201102069
    53. Stéphane P. Roche, John A. Porco. Desaromatisierungsstrategien in der Synthese strukturell komplexer Naturstoffe. Angewandte Chemie 2011, 123 (18) , 4154-4179. https://doi.org/10.1002/ange.201006017
    54. Stéphane P. Roche, John A. Porco. Dearomatization Strategies in the Synthesis of Complex Natural Products. Angewandte Chemie International Edition 2011, 50 (18) , 4068-4093. https://doi.org/10.1002/anie.201006017
    55. Jack Li-Yang Chen, Jonathan Sperry, Nancy Y. Ip, Margaret A. Brimble. Natural products targeting telomere maintenance. MedChemComm 2011, 2 (4) , 229. https://doi.org/10.1039/c0md00241k
    56. Rodolfo Tello-Aburto, Kyle A. Kalstabakken, Kelly A. Volp, Andrew M. Harned. Regioselective and stereoselective cyclizations of cyclohexadienones tethered to active methylene groups. Organic & Biomolecular Chemistry 2011, 9 (22) , 7849. https://doi.org/10.1039/c1ob06125a
    57. Hiroyuki Yamazaki, Satoshi Ōmura, Hiroshi Tomoda. 6'-Hydroxy-3'-methoxy-mitorubrin, a New Potentiator of Antifungal Miconazole Activity, Produced by Penicillium radicum FKI-3765-2. Chemical and Pharmaceutical Bulletin 2010, 58 (6) , 829-832. https://doi.org/10.1248/cpb.58.829
    58. Martin Bindl, Ludovic Jean, Jennifer Herrmann, Rolf Müller, Alois Fürstner. Preparation, Modification, and Evaluation of Cruentaren A and Analogues. Chemistry – A European Journal 2009, 15 (45) , 12310-12319. https://doi.org/10.1002/chem.200901817
    59. Lianzhu Liu, Yingxiang Gao, Chao Che, Na Wu, David Zhigang Wang, Chuang-Chuang Li, Zhen Yang. A model study for the concise construction of the oxapentacyclic core of cortistatins through intramolecular Diels–Alder and oxidative dearomatization–cyclization reactions. Chem. Commun. 2009, 128 (6) , 662-664. https://doi.org/10.1039/B817376A
    60. Renhua Fan, Weixun Li, Yang Ye, Linfei Wang. One‐Pot Oxidative Heteroannulations of N ‐Sulfonylanilines with Styrenes for the Construction of 5‐Aminocoumaran Derivatives. Advanced Synthesis & Catalysis 2008, 350 (10) , 1531-1536. https://doi.org/10.1002/adsc.200800280
    61. Igor Larrosa, Pedro Romea, Fèlix Urpí. Synthesis of six-membered oxygenated heterocycles through carbon–oxygen bond-forming reactions. Tetrahedron 2008, 64 (12) , 2683-2723. https://doi.org/10.1016/j.tet.2007.11.092
    62. Alois Fürstner, Martin Bindl, Ludovic Jean. Concise Total Synthesis of Cruentaren A. Angewandte Chemie 2007, 119 (48) , 9435-9438. https://doi.org/10.1002/ange.200703839
    63. Alois Fürstner, Martin Bindl, Ludovic Jean. Concise Total Synthesis of Cruentaren A. Angewandte Chemie International Edition 2007, 46 (48) , 9275-9278. https://doi.org/10.1002/anie.200703839
    64. Jianglong Zhu, John A. Jr. Porco. Asymmetric Synthesis of (‐)‐Mitorubrin and Related Azaphilone Natural Products. ChemInform 2007, 38 (10) https://doi.org/10.1002/chin.200710230

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect