ACS Publications. Most Trusted. Most Cited. Most Read
Hofmann Rearrangement of Carboxamides Mediated by Hypervalent Iodine Species Generated in Situ from Iodobenzene and Oxone: Reaction Scope and Limitations
My Activity
    Letter

    Hofmann Rearrangement of Carboxamides Mediated by Hypervalent Iodine Species Generated in Situ from Iodobenzene and Oxone: Reaction Scope and Limitations
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Chemistry and Biochemistry, University of Minnesota, Duluth, Minnesota, 55812, and The Siberian State Medical University and The Tomsk Polytechnic University, 634050 Tomsk, Russia
    †University of Minnesota.
    ‡The Siberian State Medical University and The Tomsk Polytechnic University.
    Other Access OptionsSupporting Information (1)

    Organic Letters

    Cite this: Org. Lett. 2010, 12, 20, 4644–4647
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ol101993q
    Published September 15, 2010
    Copyright © 2010 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Alkylcarboxamides can be converted to the respective amines by Hofmann rearrangement using hypervalent iodine species generated in situ from PhI and Oxone in aqueous acetonitrile. On the basis of this reaction, a convenient experimental procedure for the preparation of alkylcarbamates using Oxone as the oxidant in the presence of iodobenzene in methanol has been developed. An efficient method for direct conversion of substituted benzamides to the respective quinone derivatives by treatment with Oxone and iodobenzene in aqueous acetonitrile has also been found.

    Copyright © 2010 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Experimental procedures and spectral data for key compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 88 publications.

    1. Lalit Mohan Kabadwal, Shuvojit Haldar, Atanu Bera, Debasis Banerjee. Polyfluoroalkanoic Acids as Fluoroalkylating Reagents: Strategy for Direct Access to Rf-Embedded Amides. Organic Letters 2025, 27 (2) , 645-650. https://doi.org/10.1021/acs.orglett.4c04418
    2. Xiaoqi Xing, Kangming Zhao, Zhidong Li, Ning Ye, Nan Zhao, Fengfeng Guo, Chunhua Qiao, Guoqiang Xu, Michael Parmentier, Fabrice Gallou, Bin Wu. Micelle-Enabled Hofmann Rearrangement in Water. Organic Process Research & Development 2024, 28 (7) , 2945-2950. https://doi.org/10.1021/acs.oprd.4c00197
    3. Saksham Mishra, Anjali Aghi, Amit Kumar. Rh(III)-Catalyzed Controlled Ortho-Amidation of Arylamides with Dioxazolones Using Weakly Coordinating Native Primary Amide as the Directing Group. The Journal of Organic Chemistry 2024, 89 (8) , 5606-5618. https://doi.org/10.1021/acs.joc.4c00116
    4. Yongtao Wang, Jiaxin Liu, Wenjing Sun, Yujia Zhou, Xinyu Wang, Qixuan Hu, Zeyu Wen, Jia Yao, Haoran Li. Oxygenation of Phenols with Water as the Oxygen Source and Oxoammonium Salt as the Oxidant. The Journal of Organic Chemistry 2024, 89 (4) , 2440-2447. https://doi.org/10.1021/acs.joc.3c02448
    5. Bhanwar K. Malviya, Cecilia Bottecchia, Kevin Stone, Dan Lehnherr, François Lévesque, C. Oliver Kappe, David Cantillo. Multigram Electrochemical Hofmann Rearrangement Using a Spinning Three-Dimensional Anode. Organic Process Research & Development 2023, 27 (11) , 2183-2191. https://doi.org/10.1021/acs.oprd.3c00332
    6. Ananya Dutta, Masilamani Jeganmohan. Palladium-Catalyzed C–H Functionalization of Aryl Acetamides and Benzoquinones: Synthesis of Substituted Aryl Quinones. The Journal of Organic Chemistry 2022, 87 (19) , 13154-13167. https://doi.org/10.1021/acs.joc.2c01625
    7. Rok Narobe, Kathiravan Murugesan, Simon Schmid, Burkhard König. Decarboxylative Ritter-Type Amination by Cooperative Iodine (I/III)─Boron Lewis Acid Catalysis. ACS Catalysis 2022, 12 (1) , 809-817. https://doi.org/10.1021/acscatal.1c05077
    8. Marcus Baumann, Thomas S. Moody, Megan Smyth, Scott Wharry. Interrupted Curtius Rearrangements of Quaternary Proline Derivatives: A Flow Route to Acyclic Ketones and Unsaturated Pyrrolidines. The Journal of Organic Chemistry 2021, 86 (20) , 14199-14206. https://doi.org/10.1021/acs.joc.1c01133
    9. Xia Wang, Peng Yang, Bo Hu, Qian Zhang, Dong Li. Hypervalent Iodine Reagent-Promoted Hofmann-Type Rearrangement/Carboxylation of Primary Amides. The Journal of Organic Chemistry 2021, 86 (3) , 2820-2826. https://doi.org/10.1021/acs.joc.0c02767
    10. Alejandro Parra. Chiral Hypervalent Iodines: Active Players in Asymmetric Synthesis. Chemical Reviews 2019, 119 (24) , 12033-12088. https://doi.org/10.1021/acs.chemrev.9b00338
    11. Sanghun Kim, Ryosuke Matsubara, Masahiko Hayashi. Activated Carbon-Promoted Dehydrogenation of Hydroquinones to Benzoquinones, Naphthoquinones, and Anthraquinones under Molecular Oxygen Atmosphere. The Journal of Organic Chemistry 2019, 84 (5) , 2997-3003. https://doi.org/10.1021/acs.joc.8b02961
    12. Rebecca E. Johnson, Hwisoo Ree, Marco Hartmann, Laura Lang, Shota Sawano, Richmond Sarpong. Total Synthesis of Pentacyclic (−)-Ambiguine P Using Sequential Indole Functionalizations. Journal of the American Chemical Society 2019, 141 (6) , 2233-2237. https://doi.org/10.1021/jacs.8b13388
    13. Christian Harcken Joshuaine Grant Hossein Razavi Maurice A. Marsini Frederic G. Buono Jon C. Lorenz Jonathan T. Reeves . Optimization of an Azaindazole Series of CCR1 Antagonists and Development of a Semicontinuous-Flow Synthesis. 2019, 185-238. https://doi.org/10.1021/bk-2019-1332.ch008
    14. Yogesh Jaiswal, Yogesh Kumar, and Amit Kumar . Palladium-Catalyzed Regioselective C–H Alkenylation of Arylacetamides via Distal Weakly Coordinating Primary Amides as Directing Groups. The Journal of Organic Chemistry 2018, 83 (3) , 1223-1231. https://doi.org/10.1021/acs.joc.7b02618
    15. Yogesh Jaiswal, Yogesh Kumar, Rima Thakur, Jagannath Pal, Ranga Subramanian, and Amit Kumar . Primary Amide Directed Regioselective ortho-C–H-Arylation of (Aryl)Acetamides. The Journal of Organic Chemistry 2016, 81 (24) , 12499-12505. https://doi.org/10.1021/acs.joc.6b02353
    16. Brandon T. Kelley, Jennifer C. Walters, and Sarah E. Wengryniuk . Access to Diverse Oxygen Heterocycles via Oxidative Rearrangement of Benzylic Tertiary Alcohols. Organic Letters 2016, 18 (8) , 1896-1899. https://doi.org/10.1021/acs.orglett.6b00672
    17. Akira Yoshimura and Viktor V. Zhdankin . Advances in Synthetic Applications of Hypervalent Iodine Compounds. Chemical Reviews 2016, 116 (5) , 3328-3435. https://doi.org/10.1021/acs.chemrev.5b00547
    18. Alexandru D. Asandei . Photomediated Controlled Radical Polymerization and Block Copolymerization of Vinylidene Fluoride. Chemical Reviews 2016, 116 (4) , 2244-2274. https://doi.org/10.1021/acs.chemrev.5b00539
    19. Lizhu Gao, Byung Chul Kang, and Do Hyun Ryu . Catalytic Asymmetric Insertion of Diazoesters into Aryl-CHO Bonds: Highly Enantioselective Construction of Chiral All-Carbon Quaternary Centers. Journal of the American Chemical Society 2013, 135 (39) , 14556-14559. https://doi.org/10.1021/ja408196g
    20. Akira Yoshimura, Kyle R. Middleton, Anthony D. Todora, Brent J. Kastern, Steven R. Koski, Andrey V. Maskaev, and Viktor V. Zhdankin . Hypervalent Iodine Catalyzed Generation of Nitrile Oxides from Oximes and their Cycloaddition with Alkenes or Alkynes. Organic Letters 2013, 15 (15) , 4010-4013. https://doi.org/10.1021/ol401815n
    21. Akira Yoshimura, Kyle R. Middleton, Matthew W. Luedtke, Chenjie Zhu, and Viktor V. Zhdankin . Hypervalent Iodine Catalyzed Hofmann Rearrangement of Carboxamides Using Oxone as Terminal Oxidant. The Journal of Organic Chemistry 2012, 77 (24) , 11399-11404. https://doi.org/10.1021/jo302375m
    22. Akira Yoshimura, Matthew W. Luedtke, and Viktor V. Zhdankin . (Tosylimino)phenyl-λ3-iodane as a Reagent for the Synthesis of Methyl Carbamates via Hofmann Rearrangement of Aromatic and Aliphatic Carboxamides. The Journal of Organic Chemistry 2012, 77 (4) , 2087-2091. https://doi.org/10.1021/jo300007c
    23. Katsuhiko Moriyama, Kazuma Ishida, and Hideo Togo . Hofmann-Type Rearrangement of Imides by in Situ Generation of Imide-Hypervalent Iodines(III) from Iodoarenes. Organic Letters 2012, 14 (3) , 946-949. https://doi.org/10.1021/ol300028j
    24. Sosale Chandrasekhar. The Hofmann rearrangement. 2025, 133-158. https://doi.org/10.1016/B978-0-12-823743-4.33003-9
    25. Vikas Yadav, Rohit Kumar, Amrit Gond, Ashvani Yadav, Mitushree Ghosh, Ram Singh Kuri, Virendra Prasad. New Trends in Asymmetric Catalysis. 2024, 397-445. https://doi.org/10.1002/9781394212767.ch17
    26. Ryohei Fujita, Kaito Ooka, Hiroaki Wasada, Yoshiyasu Ichikawa, Seijiro Hosokawa. First synthesis of (±)-halichonadins A–D. Organic & Biomolecular Chemistry 2024, 22 (9) , 1901-1906. https://doi.org/10.1039/D4OB00088A
    27. Darryl F. Nater, Pip Hendriks, Siegfried R. Waldvogel. Electrochemical Hofmann rearrangement at high current densities in a simple flow setup. Molecular Catalysis 2024, 554 , 113823. https://doi.org/10.1016/j.mcat.2024.113823
    28. Liyan Song, Yufei Meng, Tongchao Zhao, Lifang Liu, Xiaohong Pan, Binbin Huang, Hongliang Yao, Ran Lin, Rongbiao Tong. Unified and green oxidation of amides and aldehydes for the Hofmann and Curtius rearrangements. Green Chemistry 2024, 23 https://doi.org/10.1039/D3GC04355J
    29. Qian Zhang, Yunbing Liu, Shijun Deng, Hongju Zhan, Lin Zhao, Dong Li. AgF-mediated Hofmann-type reaction of N-tosyl cyclic imides with silicate esters. Tetrahedron Letters 2023, 127 , 154683. https://doi.org/10.1016/j.tetlet.2023.154683
    30. Saksham Mishra, Amit Kumar. Synthesis of 3‐Arylacetamides Substituted Maleimide Via Weakly Coordinating Acetamide Assisted Cross‐dehydrogenative Coupling and Their Photophysical Studies. European Journal of Organic Chemistry 2022, 2022 (44) https://doi.org/10.1002/ejoc.202201129
    31. Mumtaz Kasim, Malissa Schulz, Anja Griebel, Akshay Malhotra, Barbara Müller, Hans Henning von Horsten. Release of protein N-glycans by effectors of a Hofmann carboxamide rearrangement. Frontiers in Molecular Biosciences 2022, 9 https://doi.org/10.3389/fmolb.2022.983679
    32. Rinku Soni, Monika Sihag, Neha Rani, Mayank Kinger, Deepak Kumar Aneja. Aqueous Mediated Reactions Involving Hypervalent Iodine Reagents. Asian Journal of Organic Chemistry 2022, 11 (9) https://doi.org/10.1002/ajoc.202200125
    33. David E. Lewis. August Wilhelm von Hofmann and Hofmann's rule for elimination. 2022, 111-138. https://doi.org/10.1016/B978-0-12-821027-7.00006-2
    34. Gustavo A. Bastos, Marcio C.S. de Mattos. A convenient Hofmann reaction of carboxamides and cyclic imides mediated by trihaloisocyanuric acids. Tetrahedron Letters 2021, 83 , 153422. https://doi.org/10.1016/j.tetlet.2021.153422
    35. Hideyasu China, Nami Kageyama, Hotaka Yatabe, Naoko Takenaga, Toshifumi Dohi. Practical Synthesis of 2-Iodosobenzoic Acid (IBA) without Contamination by Hazardous 2-Iodoxybenzoic Acid (IBX) under Mild Conditions. Molecules 2021, 26 (7) , 1897. https://doi.org/10.3390/molecules26071897
    36. . Rearrangement Reactions. 2021, 1-68. https://doi.org/10.1002/9783527828166.ch1
    37. Beibei Zhang, Xiaoxian Li, Boying Guo, Yunfei Du. Hypervalent iodine reagent-mediated reactions involving rearrangement processes. Chemical Communications 2020, 56 (91) , 14119-14136. https://doi.org/10.1039/D0CC05354F
    38. Wei W. Chen, Anton Cunillera, Dandan Chen, Sébastien Lethu, Albert López de Moragas, Jun Zhu, Miquel Solà, Ana B. Cuenca, Alexandr Shafir. Iodane‐Guided ortho C−H Allylation. Angewandte Chemie 2020, 132 (45) , 20376-20382. https://doi.org/10.1002/ange.202009369
    39. Wei W. Chen, Anton Cunillera, Dandan Chen, Sébastien Lethu, Albert López de Moragas, Jun Zhu, Miquel Solà, Ana B. Cuenca, Alexandr Shafir. Iodane‐Guided ortho C−H Allylation. Angewandte Chemie International Edition 2020, 59 (45) , 20201-20207. https://doi.org/10.1002/anie.202009369
    40. R. I. Khusnutdinov, N. A. Shchadneva, Yu. Yu. Mayakova, A. N. Khazipova. Methoxycarbonylation of Alkyl-, Cycloalkyl-, and Arylamines with Dimethyl Carbonate in the Presence of Binder-Free Zeolite. Russian Journal of Organic Chemistry 2020, 56 (7) , 1228-1235. https://doi.org/10.1134/S1070428020070179
    41. Kurella Sreenivasulu, Pramod S. Chaudhari, Srinivas Achanta, Abhishek Sud, Vilas Dahanukar, Christopher J. Cobley, Fiona Llewellyn‐Beard, Rakeshwar Bandichhor. Synthesis of ( R )‐3‐( tert ‐Butoxycarbonylamino)‐4‐(2,4,5‐trifluorophenyl)butanoic Acid, a Key Intermediate, and the Formal Synthesis of Sitagliptin Phosphate. Chemistry – An Asian Journal 2020, 15 (10) , 1605-1608. https://doi.org/10.1002/asia.202000092
    42. Majid M. Heravi, Masoumeh Malmir, Razieh Moradi. Recent Advances in the Applications of the Intramolecular Suzuki Cross-coupling Reaction in Cyclization and Heterocyclization: An Update. Current Organic Chemistry 2020, 23 (22) , 2469-2488. https://doi.org/10.2174/1385272823666191023115842
    43. Jannis Ludwig, Tobias Moje, Fynn Röhricht, Rainer Herges. Synthesis of 4-substituted azopyridine-functionalized Ni(II)-porphyrins as molecular spin switches. Beilstein Journal of Organic Chemistry 2020, 16 , 2589-2597. https://doi.org/10.3762/bjoc.16.210
    44. C. I. Ochoa, U. K. Tambar. 40.1.1.4.3 Synthesis of Amines by Rearrangement (Update 2020). 2020https://doi.org/10.1055/sos-SD-140-00304
    45. Colin M. Pearson, James W. B. Fyfe, Thomas N. Snaddon. A Regio‐ and Stereodivergent Synthesis of Homoallylic Amines by a One‐Pot Cooperative‐Catalysis‐Based Allylic Alkylation/Hofmann Rearrangement Strategy. Angewandte Chemie 2019, 131 (31) , 10631-10637. https://doi.org/10.1002/ange.201905426
    46. Colin M. Pearson, James W. B. Fyfe, Thomas N. Snaddon. A Regio‐ and Stereodivergent Synthesis of Homoallylic Amines by a One‐Pot Cooperative‐Catalysis‐Based Allylic Alkylation/Hofmann Rearrangement Strategy. Angewandte Chemie International Edition 2019, 58 (31) , 10521-10527. https://doi.org/10.1002/anie.201905426
    47. Sarah E. Wengryniuk, Sylvain Canesi. Rearrangements and Fragmentations Mediated by Hypervalent Iodine Reagents. 2018, 1-41. https://doi.org/10.1002/9780470682531.pat0953
    48. Kathryn L. Olsen, Matthew R. Jensen, James A. MacKay. A mild halogenation of pyrazoles using sodium halide salts and Oxone. Tetrahedron Letters 2017, 58 (43) , 4111-4114. https://doi.org/10.1016/j.tetlet.2017.09.042
    49. Florence Malmedy, Thomas Wirth. Cyclization of Malonate Derivatives with Iodine(III) Reagents. European Journal of Organic Chemistry 2017, 2017 (4) , 786-789. https://doi.org/10.1002/ejoc.201601587
    50. Maurice A. Marsini, Frederic G. Buono, Jon C. Lorenz, Bing-Shiou Yang, Jonathan T. Reeves, Kanwar Sidhu, Max Sarvestani, Zhulin Tan, Yongda Zhang, Ning Li, Heewon Lee, Jason Brazzillo, Laurence J. Nummy, J. C. Chung, Irungu K. Luvaga, Bikshandarkoil A. Narayanan, Xudong Wei, Jinhua J. Song, Frank Roschangar, Nathan K. Yee, Chris H. Senanayake. Development of a concise, scalable synthesis of a CCR1 antagonist utilizing a continuous flow Curtius rearrangement. Green Chemistry 2017, 19 (6) , 1454-1461. https://doi.org/10.1039/C6GC03123D
    51. K. Miyamoto, J. Yamashita, S. Narita, Y. Sakai, K. Hirano, T. Saito, C. Wang, M. Ochiai, M. Uchiyama. Iodoarene-catalyzed oxidative transformations using molecular oxygen. Chemical Communications 2017, 53 (70) , 9781-9784. https://doi.org/10.1039/C7CC05160C
    52. Florence Malmedy, Thomas Wirth. Stereoselective Ketone Rearrangements with Hypervalent Iodine Reagents. Chemistry – A European Journal 2016, 22 (45) , 16072-16077. https://doi.org/10.1002/chem.201603022
    53. Mattijs Baeten, Bert U. W. Maes. Guanidine Synthesis: Use of Amidines as Guanylating Agents. Advanced Synthesis & Catalysis 2016, 358 (5) , 826-833. https://doi.org/10.1002/adsc.201501146
    54. Vitomir Šunjić, Vesna Petrović Peroković. Rearrangements—Synthetic Reactions “Not Liable” to Retrosynthetic Analysis. 2016, 173-188. https://doi.org/10.1007/978-3-319-29926-6_8
    55. Prashant B. Jagadhane, Nikhil C. Jadhav, Omkar P. Herlekar, Vikas N. Telvekar. Efficient, Three-Component Synthesis of Pyrrole Derivatives Catalyzed by Iodobenzene and Oxone. Synthetic Communications 2015, 45 (18) , 2130-2134. https://doi.org/10.1080/00397911.2015.1066392
    56. Mekhman S. Yusubov, Viktor V. Zhdankin. Iodine catalysis: A green alternative to transition metals in organic chemistry and technology. Resource-Efficient Technologies 2015, 1 (1) , 49-67. https://doi.org/10.1016/j.reffit.2015.06.001
    57. Shiue-Shien Weng, Kun-Yi Hsieh, Zih-Jian Zeng. PhI(OCOCF3)2-catalyzed nucleophilic substitution of aromatic propargyl alcohols. Tetrahedron 2015, 71 (17) , 2549-2554. https://doi.org/10.1016/j.tet.2015.03.013
    58. Gaëtan Maertens, Sylvain Canesi. Rearrangements Induced by Hypervalent Iodine. 2015, 223-241. https://doi.org/10.1007/128_2015_657
    59. Hiroaki Kotani, Suzue Kaida, Tomoya Ishizuka, Miyuki Sakaguchi, Takashi Ogura, Yoshihito Shiota, Kazunari Yoshizawa, Takahiko Kojima. Formation and characterization of a reactive chromium( v )–oxo complex: mechanistic insight into hydrogen-atom transfer reactions. Chemical Science 2015, 6 (2) , 945-955. https://doi.org/10.1039/C4SC02285H
    60. , , . Hypervalent Iodoarenes and Aryliodonium Salts (Update 2015). 2015https://doi.org/10.1055/sos-SD-131-00118
    61. Toshifumi Dohi, Yasuyuki Kita. Hypervalent Iodine. 2014, 103-157. https://doi.org/10.1002/9781118909911.ch7
    62. Cyril Bosset, Romain Coffinier, Philippe A. Peixoto, Mourad El Assal, Karinne Miqueu, Jean‐Marc Sotiropoulos, Laurent Pouységu, Stéphane Quideau. Asymmetric Hydroxylative Phenol Dearomatization Promoted by Chiral Binaphthylic and Biphenylic Iodanes. Angewandte Chemie 2014, 126 (37) , 10018-10022. https://doi.org/10.1002/ange.201403571
    63. Cyril Bosset, Romain Coffinier, Philippe A. Peixoto, Mourad El Assal, Karinne Miqueu, Jean‐Marc Sotiropoulos, Laurent Pouységu, Stéphane Quideau. Asymmetric Hydroxylative Phenol Dearomatization Promoted by Chiral Binaphthylic and Biphenylic Iodanes. Angewandte Chemie International Edition 2014, 53 (37) , 9860-9864. https://doi.org/10.1002/anie.201403571
    64. . Electrophilic Halogenation of Arenes. 2014, 121-160. https://doi.org/10.1002/9783527687800.ch5
    65. Vunnam Venkateswarlu, K. A. Aravinda Kumar, Shilpi Balgotra, G. Lakshma Reddy, M. Srinivas, Ram A. Vishwakarma, Sanghapal D. Sawant. CH Oxygenation and N ‐Trifluoroacylation of Arylamines Under Metal‐Free Conditions: A Convenient Approach to 2‐Aminophenols and N ‐Trifluoroacyl‐ ortho ‐aminophenols. Chemistry – A European Journal 2014, 20 (22) , 6641-6645. https://doi.org/10.1002/chem.201402411
    66. Noriko Okamoto, Kei Takeda, Reiko Yanada*. N ‐Carboxylated‐2‐substituted Indoles and 2,3‐Disubstituted‐2,3‐dihydro‐4‐quinolones from 2‐Alkynylbenzamides. 2014, 27-38. https://doi.org/10.1002/0471264229.os091.03
    67. Kulbhushan A. Sasane, Vikas N. Telvekar. Highly Efficient Method for Synthesis of Benzoquinones Using Hypervalent Iodine(III) Reagent and Sodium Bisulfate. Synthetic Communications 2014, 44 (4) , 468-473. https://doi.org/10.1080/00397911.2013.804930
    68. J. Aubé, C. Fehl, R. Liu, M.C. McLeod, H.F. Motiwala. 6.15 Hofmann, Curtius, Schmidt, Lossen, and Related Reactions. 2014, 598-635. https://doi.org/10.1016/B978-0-08-097742-3.00623-6
    69. M.G. Weaver, T.R.R. Pettus. 7.15 Synthesis of para- and ortho-Quinones. 2014, 373-410. https://doi.org/10.1016/B978-0-08-097742-3.00717-5
    70. F.V. Singh, T Wirth. 7.29 Oxidative Functionalization with Hypervalent Halides. 2014, 880-933. https://doi.org/10.1016/B978-0-08-097742-3.00735-7
    71. . Hypervalent Iodine Reagents in Organic Synthesis. 2013, 145-336. https://doi.org/10.1002/9781118341155.ch3
    72. . Hypervalent Iodine Catalysis. 2013, 337-380. https://doi.org/10.1002/9781118341155.ch4
    73. Umar Farid, Florence Malmedy, Romain Claveau, Lena Albers, Thomas Wirth. Stereoselektive Umlagerungen mit chiralen hypervalenten Iodreagentien. Angewandte Chemie 2013, 125 (27) , 7156-7160. https://doi.org/10.1002/ange.201302358
    74. Umar Farid, Florence Malmedy, Romain Claveau, Lena Albers, Thomas Wirth. Stereoselective Rearrangements with Chiral Hypervalent Iodine Reagents. Angewandte Chemie International Edition 2013, 52 (27) , 7018-7022. https://doi.org/10.1002/anie.201302358
    75. Tse‐Lok Ho, Mary Fieser, Louis Fieser. Potassium Monoperoxysulfate, Oxone®. 2013, 398-398. https://doi.org/10.1002/9780471264194.fos11525.pub2
    76. Oliver Kreye, Hatice Mutlu, Michael A. R. Meier. Sustainable routes to polyurethane precursors. Green Chemistry 2013, 15 (6) , 1431. https://doi.org/10.1039/c3gc40440d
    77. Jingyun Ren, Rongbiao Tong. Convenient in situ generation of various dichlorinating agents from oxone and chloride: diastereoselective dichlorination of allylic and homoallylic alcohol derivatives. Organic & Biomolecular Chemistry 2013, 11 (26) , 4312. https://doi.org/10.1039/c3ob40670a
    78. Fateh V. Singh, Julia Rehbein, Thomas Wirth. Facile Oxidative Rearrangements Using Hypervalent Iodine Reagents. ChemistryOpen 2012, 1 (6) , 245-250. https://doi.org/10.1002/open.201200037
    79. A. Brandi, M. Gensini. Molecular Rearrangements: Part 2. Other Reactions. 2012, 419-456. https://doi.org/10.1002/9781119941910.ch14
    80. Matthew D. Truppo, Hallena Strotman, Gregory Hughes. Development of an Immobilized Transaminase Capable of Operating in Organic Solvent. ChemCatChem 2012, 4 (8) , 1071-1074. https://doi.org/10.1002/cctc.201200228
    81. Arun Jyoti Borah, Prodeep Phukan. Efficient synthesis of methyl carbamate via Hofmann rearrangement in the presence of TsNBr2. Tetrahedron Letters 2012, 53 (24) , 3035-3037. https://doi.org/10.1016/j.tetlet.2012.04.011
    82. Peng Liu, Zhiming Wang, Xianming Hu. Highly Efficient Synthesis of Ureas and Carbamates from Amides by Iodosylbenzene‐Induced Hofmann Rearrangement. European Journal of Organic Chemistry 2012, 2012 (10) , 1994-2000. https://doi.org/10.1002/ejoc.201101784
    83. M. Soledade C. Pedras, Zoran Minic, Sajjad Hossain. Discovery of inhibitors and substrates of brassinin hydrolase: Probing selectivity with dithiocarbamate bioisosteres. Bioorganic & Medicinal Chemistry 2012, 20 (1) , 225-233. https://doi.org/10.1016/j.bmc.2011.11.009
    84. Kazunori Miyamoto, Yuuta Sakai, Shunsuke Goda, Masahito Ochiai. A catalytic version of hypervalent aryl-λ 3 -iodane-induced Hofmann rearrangement of primary carboxamides: iodobenzene as an organocatalyst and m-chloroperbenzoic acid as a terminal oxidant. Chem. Commun. 2012, 48 (7) , 982-984. https://doi.org/10.1039/C2CC16360H
    85. Katsuhiko Moriyama, Kazuma Ishida, Hideo Togo. Effect of catalytic alkali metal bromide on Hofmann-type rearrangement of imides. Chemical Communications 2012, 48 (68) , 8574. https://doi.org/10.1039/c2cc33914e
    86. Akihiro Goto, Hiroshi Naka, Ryoji Noyori, Susumu Saito. One‐Pot Nitrile Aldolization/Hydration Operation Giving β‐Hydroxy Carboxamides. Chemistry – An Asian Journal 2011, 6 (7) , 1740-1743. https://doi.org/10.1002/asia.201000921
    87. Aleksandra A. Zagulyaeva, Christopher T. Banek, Mekhman S. Yusubov, Viktor V. Zhdankin. ChemInform Abstract: Hofmann Rearrangement of Carboxamides Mediated by Hypervalent Iodine Species Generated in situ from Iodobenzene and Oxone: Reaction Scope and Limitations.. ChemInform 2011, 42 (7) https://doi.org/10.1002/chin.201107044
    88. Marsewi Ngatimin, Raphael Frey, Cecily Andrews, David W. Lupton, Oliver E. Hutt. Iodobenzene catalysed synthesis of spirofurans and benzopyrans by oxidative cyclisation of vinylogous esters. Chemical Communications 2011, 47 (42) , 11778. https://doi.org/10.1039/c1cc15015d

    Organic Letters

    Cite this: Org. Lett. 2010, 12, 20, 4644–4647
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ol101993q
    Published September 15, 2010
    Copyright © 2010 American Chemical Society

    Article Views

    7950

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.