ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Palladium-Catalyzed N-Arylation of 2-Aminothiazoles

View Author Information
Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
Cite this: Org. Lett. 2012, 14, 6, 1432–1435
Publication Date (Web):March 6, 2012
https://doi.org/10.1021/ol300178j
Copyright © 2012 American Chemical Society

    Article Views

    5122

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (733 KB)
    Supporting Info (1)»

    Abstract

    Abstract Image

    A method for the Pd-catalyzed coupling of 2-aminothiazole derivatives with aryl bromides and triflates is described. Significantly, for this class of nucleophiles, the coupling exhibits a broad substrate scope and proceeds with a reasonable catalyst loading. Furthermore, an interesting effect of acetic acid as an additive is uncovered that facilitates catalyst activation.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Experimental procedures along with experimental and spectroscopic data for new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 51 publications.

    1. Andrea Monti, Joaquín López-Serrano, Auxiliadora Prieto, M. Carmen Nicasio. Broad-Scope Amination of Aryl Sulfamates Catalyzed by a Palladium Phosphine Complex. ACS Catalysis 2023, 13 (16) , 10945-10952. https://doi.org/10.1021/acscatal.3c03166
    2. Martin Gazvoda, Heemal H. Dhanjee, Jacob Rodriguez, Joseph S. Brown, Charlotte E. Farquhar, Nicholas L. Truex, Andrei Loas, Stephen L. Buchwald, Bradley L. Pentelute. Palladium-Mediated Incorporation of Carboranes into Small Molecules, Peptides, and Proteins. Journal of the American Chemical Society 2022, 144 (17) , 7852-7860. https://doi.org/10.1021/jacs.2c01932
    3. Jessica S. Graham, James H. Hunter, Michael J. Waring. Micellar Buchwald–Hartwig Coupling of Aryl and Heteroarylamines for the Synthesis of DNA-Encoded Libraries. The Journal of Organic Chemistry 2021, 86 (23) , 17257-17264. https://doi.org/10.1021/acs.joc.1c02325
    4. Hua Cheng, Yan-Qiu Zhu, Peng-Fei Liu, Kai-Qiang Yang, Jin Yan, Wei Sang, Xiao-Sheng Tang, Rui Zhang, Cheng Chen. Switchable and Scalable Heteroarylation of Primary Amines with 2-Chlorobenzothiazoles under Transition-Metal-Free and Solvent-Free Conditions. The Journal of Organic Chemistry 2021, 86 (15) , 10288-10302. https://doi.org/10.1021/acs.joc.1c01019
    5. Elisa Azzali, Miriam Girardini, Giannamaria Annunziato, Marialaura Pavone, Federica Vacondio, Giorgia Mori, Maria Rosalia Pasca, Gabriele Costantino, Marco Pieroni. 2-Aminooxazole as a Novel Privileged Scaffold in Antitubercular Medicinal Chemistry. ACS Medicinal Chemistry Letters 2020, 11 (7) , 1435-1441. https://doi.org/10.1021/acsmedchemlett.0c00173
    6. Lauren E. Sirois, David Lao, Jie Xu, Rémy Angelaud, Jerry Tso, Brandon Scott, Paroma Chakravarty, Sushant Malhotra, Francis Gosselin. Process Development Overcomes a Challenging Pd-Catalyzed C–N Coupling for the Synthesis of RORc Inhibitor GDC-0022. Organic Process Research & Development 2020, 24 (4) , 567-578. https://doi.org/10.1021/acs.oprd.0c00012
    7. Zhixiang Chen, Dawei Ma. Cu/N,N′-Dibenzyloxalamide-Catalyzed N-Arylation of Heteroanilines. Organic Letters 2019, 21 (17) , 6874-6878. https://doi.org/10.1021/acs.orglett.9b02509
    8. Paula Ruiz-Castillo and Stephen L. Buchwald . Applications of Palladium-Catalyzed C–N Cross-Coupling Reactions. Chemical Reviews 2016, 116 (19) , 12564-12649. https://doi.org/10.1021/acs.chemrev.6b00512
    9. Fei Ma, Min Lei, and Lihong Hu . Acetohydrazone: A Transient Directing Group for Arylation of Unactivated C(sp3)–H Bonds. Organic Letters 2016, 18 (11) , 2708-2711. https://doi.org/10.1021/acs.orglett.6b01170
    10. Sk. Rasheed, D. Nageswar Rao, and Parthasarathi Das . Copper-Catalyzed Inter- and Intramolecular C–N Bond Formation: Synthesis of Benzimidazole-Fused Heterocycles. The Journal of Organic Chemistry 2015, 80 (18) , 9321-9327. https://doi.org/10.1021/acs.joc.5b01396
    11. A. J. DeAngelis, Peter G. Gildner, Ruishan Chow, and Thomas J. Colacot . Generating Active “L-Pd(0)” via Neutral or Cationic π-Allylpalladium Complexes Featuring Biaryl/Bipyrazolylphosphines: Synthetic, Mechanistic, and Structure–Activity Studies in Challenging Cross-Coupling Reactions. The Journal of Organic Chemistry 2015, 80 (13) , 6794-6813. https://doi.org/10.1021/acs.joc.5b01005
    12. Julio C. Pastre, Duncan L. Browne, Matthew O’Brien, and Steven V. Ley . Scaling Up of Continuous Flow Processes with Gases Using a Tube-in-Tube Reactor: Inline Titrations and Fanetizole Synthesis with Ammonia. Organic Process Research & Development 2013, 17 (9) , 1183-1191. https://doi.org/10.1021/op400152r
    13. Jinwu Zhao, Huawen Huang, Wanqing Wu, Huoji Chen, and Huanfeng Jiang . Metal-Free Synthesis of 2-Aminobenzothiazoles via Aerobic Oxidative Cyclization/Dehydrogenation of Cyclohexanones and Thioureas. Organic Letters 2013, 15 (11) , 2604-2607. https://doi.org/10.1021/ol400773k
    14. Phillip J. Milner, Thomas J. Maimone, Mingjuan Su, Jiahao Chen, Peter Müller, and Stephen L. Buchwald . Investigating the Dearomative Rearrangement of Biaryl Phosphine-Ligated Pd(II) Complexes. Journal of the American Chemical Society 2012, 134 (48) , 19922-19934. https://doi.org/10.1021/ja310351e
    15. Jason J. Hanthorn, Luca Valgimigli, and Derek A. Pratt . Preparation of Highly Reactive Pyridine- and Pyrimidine-Containing Diarylamine Antioxidants. The Journal of Organic Chemistry 2012, 77 (16) , 6908-6916. https://doi.org/10.1021/jo301013c
    16. Meredeth A. McGowan, Camille Z. McAvoy, and Stephen L. Buchwald . Palladium-Catalyzed N-Monoarylation of Amidines and a One-Pot Synthesis of Quinazoline Derivatives. Organic Letters 2012, 14 (14) , 3800-3803. https://doi.org/10.1021/ol301700y
    17. Reza Emadi, Abbas Bahrami Nekoo, Fatemeh Molaverdi, Zahra Khorsandi, Reza Sheibani, Hojjat Sadeghi-Aliabadi. Applications of palladium-catalyzed C–N cross-coupling reactions in pharmaceutical compounds. RSC Advances 2023, 13 (27) , 18715-18733. https://doi.org/10.1039/D2RA07412E
    18. Babak Karimi, Akbar Mobaraki, Hamid M. Mirzaei, Hojatollah Vali. Control of selectivity in the preparation of 2-substituted benzoazoles by adjusting the surface hydrophobicity in two solid-based sulfonic acid catalysts. Organic & Biomolecular Chemistry 2023, 21 (8) , 1692-1703. https://doi.org/10.1039/D2OB02274E
    19. Pethaperumal Iniyavan, Anusha Avadhani, Yogendra Kumar, Arkalagud Satyanarayana Jeevan Chakravarthy, Mary Antony Palluruthiyil, Hiriyakkanavar Ila. Synthesis of novel 9‐amino /aryl/oxo‐2‐(het)arylthiazolo[4,5‐ b ]quinolines via palladium catalyzed N ‐arylation ‐cyclization protocol. Journal of Heterocyclic Chemistry 2022, 59 (12) , 2240-2257. https://doi.org/10.1002/jhet.4554
    20. Atul A. Jichkar, Imran A. Opai, Nandkishor N. Karade. N -Iodosuccinimide mediated intramolecular oxidative C( sp 2 )-S bond formation for the synthesis of 2-aminobenzothiazole derivatives. Journal of Sulfur Chemistry 2022, 43 (2) , 144-155. https://doi.org/10.1080/17415993.2021.1989436
    21. Nga Hang Thi Phan, Van-Hieu Mai, Xuan Minh Thi Nguyen. One-Pot Synthesis of N-Substituted 2-Aminothiazole Derivatives and In vitro Antibacterial Activity. HETEROCYCLES 2022, 104 (12) https://doi.org/10.3987/COM-22-14751
    22. Jing He, Zhen Yang, Weiwei Li, Yueting Wei, Bin Dai, Jixing Zhao, Ping Liu. Pd‐Catalyzed N ‐Arylations of 3‐Aryl‐1‐tosyl‐1 H ‐pyrazol‐5‐amines with Arylbromides and the Migration of Ts Group. ChemCatChem 2021, 13 (11) , 2641-2652. https://doi.org/10.1002/cctc.202100193
    23. Hiroaki Tanaka, Michinori Akaiwa, Kenji Negoro, Eiji Kawaminami, Hisashi Mihara, Hideyoshi Fuji, Risa Okimoto, Katsutoshi Ino, Kenichiro Ishizu, Taisuke Takahashi. Design, Synthesis, and Structure–Activity Relationships Study of N-Pyrimidyl/Pyridyl-2-thiazolamine Analogues as Novel Positive Allosteric Modulators of M3 Muscarinic Acetylcholine Receptor. Chemical and Pharmaceutical Bulletin 2021, 69 (4) , 360-373. https://doi.org/10.1248/cpb.c20-00877
    24. Wei Sang, Yan‐Yan Gong, Hua Cheng, Rui Zhang, Ye Yuan, Guang‐Gao Fan, Zhi‐Qin Wang, Cheng Chen, Francis Verpoort. Transition‐Metal‐Free Base‐Controlled C−N Coupling Reactions: Selective Mono Versus Diarylation of Primary Amines with 2‐Chlorobenzimidazoles. Advanced Synthesis & Catalysis 2021, 363 (5) , 1408-1416. https://doi.org/10.1002/adsc.202001365
    25. Wei Sang, Ayao Jean Gavi, Bao‐Yi Yu, Hua Cheng, Ye Yuan, Yuan Wu, Petra Lommens, Cheng Chen, Francis Verpoort. Palladium‐Catalyzed Ligand‐Free C‐N Coupling Reactions: Selective Diheteroarylation of Amines with 2‐Halobenzimidazoles. Chemistry – An Asian Journal 2020, 15 (1) , 129-135. https://doi.org/10.1002/asia.201901465
    26. Bryan T. Ingoglia, Corin C. Wagen, Stephen L. Buchwald. Biaryl monophosphine ligands in palladium-catalyzed C–N coupling: An updated User's guide. Tetrahedron 2019, 75 (32) , 4199-4211. https://doi.org/10.1016/j.tet.2019.05.003
    27. Andrea M. Nikolić, Vladimir Ajdačić, Igor M. Opsenica. Palladium-catalyzed N-Arylation of 1-substituted-1H-tetrazol-5-amines. Journal of Organometallic Chemistry 2019, 880 , 134-142. https://doi.org/10.1016/j.jorganchem.2018.11.007
    28. Wenjing Li, Yongjun Gao, Pei Tang, Yao Xu, Ding Ma. One-step synthesis of carbon-supported copper nanoparticles from biomass for N-arylation of pyrazole. Journal of Energy Chemistry 2018, 27 (3) , 859-865. https://doi.org/10.1016/j.jechem.2017.06.003
    29. . 2‐Aminothiazoles. 2018, 284-320. https://doi.org/10.1002/9781118686263.ch8
    30. Armaqan Khosravi, Javad Mokhtari, Mohammad Reza Naimi-Jamal, Sharareh Tahmasebi, Leila Panahi. Cu 2 (BDC) 2 (BPY)–MOF: an efficient and reusable heterogeneous catalyst for the aerobic Chan–Lam coupling prepared via ball-milling strategy. RSC Adv. 2017, 7 (73) , 46022-46027. https://doi.org/10.1039/C7RA09772G
    31. Saïd El Kazzouli, Gérald Guillaumet. Functionalization of indazoles by means of transition metal-catalyzed cross-coupling reactions. Tetrahedron 2016, 72 (43) , 6711-6727. https://doi.org/10.1016/j.tet.2016.08.031
    32. Desaboini Nageswar Rao, Sk. Rasheed, Karampoori Anil Kumar, Annem Siva Reddy, Parthasarathi Das. Copper-Catalyzed CNH 2 Arylation of 2-Aminobenzimidazoles and Related C-Amino-NH-azoles. Advanced Synthesis & Catalysis 2016, 358 (13) , 2126-2133. https://doi.org/10.1002/adsc.201600035
    33. Stane Pajk, Matej Živec, Roman Šink, Izidor Sosič, Margarete Neu, Chun-wa Chung, María Martínez-Hoyos, Esther Pérez-Herrán, Daniel Álvarez-Gómez, Emilio Álvarez-Ruíz, Alfonso Mendoza-Losana, Julia Castro-Pichel, David Barros, Lluís Ballell-Pages, Robert J. Young, Maire A. Convery, Lourdes Encinas, Stanislav Gobec. New direct inhibitors of InhA with antimycobacterial activity based on a tetrahydropyran scaffold. European Journal of Medicinal Chemistry 2016, 112 , 252-257. https://doi.org/10.1016/j.ejmech.2016.02.008
    34. A. Sagar, Shinde Vidaycharan, Anand H. Shinde, Duddu S. Sharada. Hypervalent iodine( iii )-promoted N-incorporation into N-aryl vinylogous carbamates to quinoxaline diesters: access to 1,4,5,8-tetraazaphenanthrene. Organic & Biomolecular Chemistry 2016, 14 (17) , 4018-4022. https://doi.org/10.1039/C6OB00447D
    35. K. Anil Kumar, Prakash Kannaboina, D. Nageswar Rao, Parthasarathi Das. Nickel-catalyzed Chan–Lam cross-coupling: chemoselective N-arylation of 2-aminobenzimidazoles. Organic & Biomolecular Chemistry 2016, 14 (38) , 8989-8997. https://doi.org/10.1039/C6OB01307D
    36. Hao Min, Genhua Xiao, Wenjuan Liu, Yun Liang. Copper-catalyzed synthesis of 2-aminobenzothiazoles from 2-iodophenyl isocyanides, potassium sulfide and amines. Organic & Biomolecular Chemistry 2016, 14 (47) , 11088-11091. https://doi.org/10.1039/C6OB02413K
    37. G. Dumonteil, M.-A. Hiebel, M.-C. Scherrmann, S. Berteina-Raboin. Iodine-catalyzed formation of substituted 2-aminobenzothiazole derivatives in PEG 400. RSC Advances 2016, 6 (77) , 73517-73521. https://doi.org/10.1039/C6RA15971K
    38. Paresh N. Patel, Yogesh S. Patel. Studies on metal complexes of 1-((8-hydroxyquinolin-5-yl)methyl)-3-(thiazol-2-ylimino)indolin-2-one. Research on Chemical Intermediates 2015, 41 (11) , 8451-8469. https://doi.org/10.1007/s11164-014-1903-3
    39. Madhura V., Hrishikesh M. Revankar, Manohar V. Kulkarni. A new route for the synthesis of 4-arylacetamido-2-aminothiazoles and their biological evaluation. Zeitschrift für Naturforschung B 2015, 70 (7) , 483-489. https://doi.org/10.1515/znb-2015-0013
    40. Nirmalya Mukherjee, Tanmay Chatterjee, Brindaban C. Ranu. First Application of Heterogeneous Cobalt Catalysis in C sp2 -N Cross-Coupling of Activated Chloroarenes under Ligand-Free Conditions. European Journal of Organic Chemistry 2015, 2015 (18) , 4018-4023. https://doi.org/10.1002/ejoc.201500418
    41. Pingyuan Wang, Jian Li, Xue Jiang, Zhiqing Liu, Na Ye, Youjun Xu, Guangfu Yang, Yechun Xu, Ao Zhang. Palladium-catalyzed N-arylation of 2-aminobenzothiazole-4-carboxylates/carboxamides: facile synthesis of PARP14 inhibitors. Tetrahedron 2014, 70 (35) , 5666-5673. https://doi.org/10.1016/j.tet.2014.06.064
    42. Laurin Wimmer, Lukas Rycek, Moumita Koley, Michael Schnürch. Metal Catalyzed Cross-Coupling Reactions in the Decoration of Pyrimidine, Pyridazine, and Pyrazine. 2014, 61-157. https://doi.org/10.1007/7081_2014_138
    43. Stéphanie Toulot, Timo Heinrich, Frédéric R. Leroux. Convenient and Reliable Routes Towards 2-Aminothiazoles: Palladium-Catalyzed versus Copper-Catalyzed Aminations of Halothiazoles. Advanced Synthesis & Catalysis 2013, 355 (16) , 3263-3272. https://doi.org/10.1002/adsc.201300591
    44. Perounsack X. Moon, Chad E. Stephens. Beneficial effect of carboxylic acid additives on the Pd-catalyzed intramolecular N-arylation of 2-amino-3-(2-chlorophenylsulfonyl)pyrroles. Tetrahedron Letters 2013, 54 (46) , 6226-6229. https://doi.org/10.1016/j.tetlet.2013.09.011
    45. Pengfei Li, Jason S. Moore , Klavs F. Jensen. A Microfluidic System for the Continuous Recycling of Unmodified Homogeneous Palladium Catalysts through Liquid/Liquid Phase Separation. ChemCatChem 2013, 5 (7) , 1729-1733. https://doi.org/10.1002/cctc.201300054
    46. Yong-Jin Wu, Bingwei V. Yang. Five-Membered Ring Systems. 2013, 257-275. https://doi.org/10.1016/B978-0-08-099406-2.00010-8
    47. Ana Bellomo, Jiadi Zhang, Nisalak Trongsiriwat, Patrick J. Walsh. Additive effects on palladium-catalyzed deprotonative-cross-coupling processes (DCCP) of sp 3 C–H bonds in diarylmethanes. Chem. Sci. 2013, 4 (2) , 849-857. https://doi.org/10.1039/C2SC21673F
    48. Satoshi Ueda, Stephen L. Buchwald. Catalyst-Controlled Chemoselective Arylation of 2-Aminobenzimidazoles. Angewandte Chemie 2012, 124 (41) , 10510-10513. https://doi.org/10.1002/ange.201204710
    49. Satoshi Ueda, Stephen L. Buchwald. Catalyst-Controlled Chemoselective Arylation of 2-Aminobenzimidazoles. Angewandte Chemie International Edition 2012, 51 (41) , 10364-10367. https://doi.org/10.1002/anie.201204710
    50. Meredeth A. McGowan, Jaclyn L. Henderson, Stephen L. Buchwald. ChemInform Abstract: Palladium-Catalyzed N-Arylation of 2-Aminothiazoles.. ChemInform 2012, 43 (29) , no-no. https://doi.org/10.1002/chin.201229138
    51. Georgia S. Lemen, John P. Wolfe. Palladium-Catalyzed sp2 C–N Bond Forming Reactions: Recent Developments and Applications. 2012, 1-53. https://doi.org/10.1007/3418_2012_56

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect