Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Synthesis of Enantiopure, Trisubstituted Cryptophane-A Derivatives

View Author Information
Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
Cite this: Org. Lett. 2012, 14, 14, 3580–3583
Publication Date (Web):July 11, 2012
https://doi.org/10.1021/ol300943w
Copyright © 2012 American Chemical Society

    Article Views

    1057

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    The efficient synthesis of enantiopure, trisubstituted cryptophane-A derivatives, organic host molecules with unusually high xenon affinity, is reported. Synthesis and chromatographic separation of (±) tri-Mosher’s acid substituted cryptophane diastereomers gave ready access to the enantiopure cryptophanes, which are critical components in the design of enantiomerically pure 129Xe biosensors. Hyperpolarized 129Xe NMR spectroscopy identified single resonances for both trisubstituted cryptophane diastereomers that were separated by 9.5 ppm. This highlights opportunities for using enantiopure xenon biosensors in the simultaneous detection of 129Xe in different biochemical environments.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Experimental procedures and characterization data for all synthesized compounds, ECD and 129Xe NMR data. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 26 publications.

    1. Thierry Brotin, Nicolas Daugey, Josef Kapitan, Nicolas Vanthuyne, Marion Jean, Erwann Jeanneau, Thierry Buffeteau. Synthesis and Chiroptical Properties of a Chiral Isotopologue of syn-Cryptophane-B. The Journal of Organic Chemistry 2023, 88 (7) , 4829-4832. https://doi.org/10.1021/acs.joc.2c03101
    2. Martin Doll, Patrick Berthault, Estelle Léonce, Céline Boutin, Erwann Jeanneau, Thierry Brotin, Nicolas De Rycke. Study of syn and anti Xenon-Cryptophanes Complexes Decorated with Aromatic Amine Groups: Chemical Platforms for Accessing New Cryptophanes. The Journal of Organic Chemistry 2022, 87 (5) , 2912-2920. https://doi.org/10.1021/acs.joc.1c02774
    3. Łukasz Szyszka, Marcin Górecki, Piotr Cmoch, Sławomir Jarosz. Fluorescent Molecular Cages with Sucrose and Cyclotriveratrylene Units for the Selective Recognition of Choline and Acetylcholine. The Journal of Organic Chemistry 2021, 86 (7) , 5129-5141. https://doi.org/10.1021/acs.joc.1c00019
    4. Thierry Brotin, Erwann Jeanneau, Patrick Berthault, Estelle Léonce, Delphine Pitrat, Jean-Christophe Mulatier. Synthesis of Cryptophane-B: Crystal Structure and Study of Its Complex with Xenon. The Journal of Organic Chemistry 2018, 83 (23) , 14465-14471. https://doi.org/10.1021/acs.joc.8b02246
    5. Sara Lefevre, Alexandre Héloin, Delphine Pitrat, Jean-Christophe Mulatier, Nicolas Vanthuyne, Marion Jean, Jean-Pierre Dutasta, Laure Guy, and Alexandre Martinez . Cyclotriveratrylene-BINOL-Based Host Compounds: Synthesis, Absolute Configuration Assignment, and Recognition Properties. The Journal of Organic Chemistry 2016, 81 (8) , 3199-3205. https://doi.org/10.1021/acs.joc.6b00159
    6. Thierry Brotin, Nicolas Daugey, Nicolas Vanthuyne, Erwann Jeanneau, Laurent Ducasse, and Thierry Buffeteau . Chiroptical Properties of Cryptophane-223 and -233 Investigated by ECD, VCD, and ROA Spectroscopy. The Journal of Physical Chemistry B 2015, 119 (27) , 8631-8639. https://doi.org/10.1021/acs.jpcb.5b04539
    7. Brittany A. Riggle, Yanfei Wang, and Ivan J. Dmochowski . A “Smart” 129Xe NMR Biosensor for pH-Dependent Cell Labeling. Journal of the American Chemical Society 2015, 137 (16) , 5542-5548. https://doi.org/10.1021/jacs.5b01938
    8. Bastien Chatelet, Lionel Joucla, Daniele Padula, Lorenzo Di Bari, Guillaume Pilet, Vincent Robert, Véronique Dufaud, Jean-Pierre Dutasta, and Alexandre Martinez . Remote Control of Helical Chirality: Thermodynamic Resolution of a Racemic Mixture of CTV Units by Remote Stereogenic Centers. Organic Letters 2015, 17 (3) , 500-503. https://doi.org/10.1021/ol5035194
    9. Najat S. Khan, Brittany A. Riggle, Garry K. Seward, Yubin Bai, and Ivan J. Dmochowski . Cryptophane-Folate Biosensor for 129Xe NMR. Bioconjugate Chemistry 2015, 26 (1) , 101-109. https://doi.org/10.1021/bc5005526
    10. Sindhu Kancherla, Jørn H. Hansen. Synthesis of Cryptophanes: Recent Advances. European Journal of Organic Chemistry 2024, 114 https://doi.org/10.1002/ejoc.202301050
    11. Orsola Baydoun, Thierry Buffeteau, Thierry Brotin. Enantiopure cryptophane derivatives: Synthesis and chiroptical properties. Chirality 2021, 33 (10) , 562-596. https://doi.org/10.1002/chir.23347
    12. Łukasz Szyszka, Piotr Cmoch, Marcin Górecki, Magdalena Ceborska, Mykhaylo A. Potopnyk, Sławomir Jarosz. Chiral Molecular Cages Based on Cyclotriveratrylene and Sucrose Units Connected with p ‐Phenylene Linkers. European Journal of Organic Chemistry 2021, 2021 (6) , 897-906. https://doi.org/10.1002/ejoc.202001482
    13. Shi-Xin Nie, Hao Guo, Teng-Yu Huang, Yu-Fei Ao, De-Xian Wang, Qi-Qiang Wang. Xenon binding by a tight yet adaptive chiral soft capsule. Nature Communications 2020, 11 (1) https://doi.org/10.1038/s41467-020-20081-8
    14. Jabadurai Jayapaul, Leif Schröder. Molecular Sensing with Host Systems for Hyperpolarized 129Xe. Molecules 2020, 25 (20) , 4627. https://doi.org/10.3390/molecules25204627
    15. Jabadurai Jayapaul, Leif Schröder. Nanoparticle-Based Contrast Agents for 129 Xe HyperCEST NMR and MRI Applications. Contrast Media & Molecular Imaging 2019, 2019 , 1-25. https://doi.org/10.1155/2019/9498173
    16. . REFERENCES. 2018, 491-563. https://doi.org/10.1002/9781119324782.refs
    17. T. Brotin, J.-P. Dutasta. Cryptophanes ☆. 2017, 317-335. https://doi.org/10.1016/B978-0-12-409547-2.05605-5
    18. G. El-Ayle, K. Travis Holman. Cryptophanes. 2017, 199-249. https://doi.org/10.1016/B978-0-12-409547-2.13925-3
    19. Sara Lefevre, Raphaël Simonet, Delphine Pitrat, Jean‐Christophe Mulatier, Nicolas Vanthuyne, Marion Jean, Jean‐Pierre Dutasta, Laure Guy, Alexandre Martinez. Closed vs Open‐Shell CTV Based Host Compounds: A Direct Comparison. ChemistrySelect 2016, 1 (19) , 6316-6320. https://doi.org/10.1002/slct.201601307
    20. Sara Lefevre, Dawei Zhang, Estelle Godart, Marion Jean, Nicolas Vanthuyne, Jean‐Christophe Mulatier, Jean‐Pierre Dutasta, Laure Guy, Alexandre Martinez. Large‐Scale Synthesis of Enantiopure Molecular Cages: Chiroptical and Recognition Properties. Chemistry – A European Journal 2016, 22 (6) , 2068-2074. https://doi.org/10.1002/chem.201504108
    21. Thierry Brotin, Alexandre Martinez, Jean-Pierre Dutasta. Water-Soluble Cryptophanes: Design and Properties. 2016, 525-557. https://doi.org/10.1007/978-3-319-31867-7_21
    22. Olena Taratula, Yubin Bai, Edward L. D'Antonio, Ivan J. Dmochowski. Enantiopure cryptophane- 129 Xe nuclear magnetic resonance biosensors targeting carbonic anhydrase. Supramolecular Chemistry 2015, 27 (1-2) , 65-71. https://doi.org/10.1080/10610278.2014.906601
    23. Léa Delacour, Naoko Kotera, Ténin Traoré, Sébastien Garcia‐Argote, Céline Puente, François Leteurtre, Edmond Gravel, Nawal Tassali, Céline Boutin, Estelle Léonce, Yves Boulard, Patrick Berthault, Bernard Rousseau. “Clickable” Hydrosoluble PEGylated Cryptophane as a Universal Platform for 129 Xe Magnetic Resonance Imaging Biosensors. Chemistry – A European Journal 2013, 19 (19) , 6089-6093. https://doi.org/10.1002/chem.201204218
    24. Thierry Brotin, Laure Guy, Alexandre Martinez, Jean-Pierre Dutasta. Enantiopure Supramolecular Cages: Synthesis and Chiral Recognition Properties. 2013, 177-230. https://doi.org/10.1007/128_2013_487
    25. George R. Newkome. Eight-Membered and Larger Rings. 2013, 497-517. https://doi.org/10.1016/B978-0-08-099406-2.00018-2
    26. Marc A. Little, Malcolm A. Halcrow, Michaele J. Hardie. A bis(disulfide)-linked offset cryptophane. Chemical Communications 2013, 49 (15) , 1512. https://doi.org/10.1039/c3cc38768b