ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

γ-Substituted Butanolides from Cyclopropane Hemimalonates: An Expedient Synthesis of Natural (R)-Dodecan-4-olide

View Author Information
Department of Chemistry, The University of Western Ontario, London, Ontario, Canada N6A 5B7
Cite this: Org. Lett. 2013, 15, 18, 4838–4841
Publication Date (Web):September 5, 2013
https://doi.org/10.1021/ol402252u
Copyright © 2013 American Chemical Society

    Article Views

    2851

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    Exploration into the reactivity of donor–acceptor cyclopropane hemimalonates has led to the facile synthesis of γ-substituted butanolides. Under microwave irradiation, cyclopropane hemimalonates undergo rapid conversion to butanolides in the presence of inorganic salts with an unprecedented retention of stereochemistry. This unique process has been applied to the total synthesis of the naturally occurring (R)-dodecan-4-olide.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Full experimental procedures and spectroscopic data for all new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 69 publications.

    1. Anna E. Vartanova, Andrey Yu. Plodukhin, Nina K. Ratmanova, Ivan A. Andreev, Mikhail N. Anisimov, Nikita B. Gudimchuk, Victor B. Rybakov, Irina I. Levina, Olga A. Ivanova, Igor V. Trushkov, Igor V. Alabugin. Expanding Stereoelectronic Limits of endo-tet Cyclizations: Synthesis of Benz[b]azepines from Donor–Acceptor Cyclopropanes. Journal of the American Chemical Society 2021, 143 (34) , 13952-13961. https://doi.org/10.1021/jacs.1c07088
    2. Minli Zhang, Tong Li, Chaoxing Cui, Xixi Song, Junbiao Chang. Stereoselective Sequential Spirocyclopropanation/Cloke–Wilson Rearrangement Reactions for Synthesis of trans-β,γ-Disubstituted γ-Butyrolactones Using Alkylidene Meldrum’s Acid and Benzyl Halides. The Journal of Organic Chemistry 2020, 85 (4) , 2266-2276. https://doi.org/10.1021/acs.joc.9b02978
    3. Manmath Mishra, Pinaki Bhusan De, Sourav Pradhan, Tharmalingam Punniyamurthy. Stereospecific Copper(II)-Catalyzed Tandem Ring Opening/Oxidative Alkylation of Donor–Acceptor Cyclopropanes with Hydrazones: Synthesis of Tetrahydropyridazines. The Journal of Organic Chemistry 2019, 84 (17) , 10901-10910. https://doi.org/10.1021/acs.joc.9b01506
    4. Sinan Gai, Nigel T. Lucas, Bill C. Hawkins. Benzannulated 6,5-Spiroketals from Donor–Acceptor Cyclopropanes. Organic Letters 2019, 21 (8) , 2872-2875. https://doi.org/10.1021/acs.orglett.9b00878
    5. Saki Maejima, Eiji Yamaguchi, Akichika Itoh. trans-Diastereoselective Syntheses of γ-Lactones by Visible Light-Iodine-Mediated Carboesterification of Alkenes. ACS Omega 2019, 4 (3) , 4856-4870. https://doi.org/10.1021/acsomega.9b00333
    6. Sergey V. Zaytsev, Konstantin L. Ivanov, Dmitry A. Skvortsov, Stanislav I. Bezzubov, Mikhail Ya. Melnikov, Ekaterina M. Budynina. Nucleophilic Ring Opening of Donor–Acceptor Cyclopropanes with the Cyanate Ion: Access to Spiro[pyrrolidone-3,3′-oxindoles]. The Journal of Organic Chemistry 2018, 83 (15) , 8695-8709. https://doi.org/10.1021/acs.joc.8b00922
    7. André U. Augustin, Marius Busse, Peter G. Jones, and Daniel B. Werz . Formal Insertion of Thioketenes into Donor–Acceptor Cyclopropanes by Lewis Acid Catalysis. Organic Letters 2018, 20 (3) , 820-823. https://doi.org/10.1021/acs.orglett.7b03961
    8. Olga A. Ivanova, Alexey O. Chagarovskiy, Alexey N. Shumsky, Vasiliy D. Krasnobrov, Irina I. Levina, and Igor V. Trushkov . Lewis Acid Triggered Vinylcyclopropane–Cyclopentene Rearrangement. The Journal of Organic Chemistry 2018, 83 (2) , 543-560. https://doi.org/10.1021/acs.joc.7b02351
    9. Meifang Zheng, Pengquan Chen, Liangbin Huang, Wanqing Wu, and Huanfeng Jiang . Nucleo-Palladation-Triggering Alkene Functionalization: A Route to γ-Lactones. Organic Letters 2017, 19 (21) , 5756-5759. https://doi.org/10.1021/acs.orglett.7b02688
    10. Lennart K. B. Garve, Martin Petzold, Peter G. Jones, and Daniel B. Werz . [3 + 3]-Cycloaddition of Donor–Acceptor Cyclopropanes with Nitrile Imines Generated in Situ: Access to Tetrahydropyridazines. Organic Letters 2016, 18 (3) , 564-567. https://doi.org/10.1021/acs.orglett.5b03598
    11. Qi-Kai Kang, Lijia Wang, Qiong-Jie Liu, Jun-Fang Li, and Yong Tang . Asymmetric H2O-Nucleophilic Ring Opening of D–A Cyclopropanes: Catalyst Serves as a Source of Water. Journal of the American Chemical Society 2015, 137 (46) , 14594-14597. https://doi.org/10.1021/jacs.5b10310
    12. Hao Xu, Jiang-Lin Hu, Lijia Wang, Saihu Liao, and Yong Tang . Asymmetric Annulation of Donor–Acceptor Cyclopropanes with Dienes. Journal of the American Chemical Society 2015, 137 (25) , 8006-8009. https://doi.org/10.1021/jacs.5b04429
    13. Jiang-Lin Hu, Lijia Wang, Hao Xu, Zuowei Xie, and Yong Tang . Highly Diastereoselective and Enantioselective Formal [4 + 3] Cycloaddition of Donor–Acceptor Cyclobutanes with Nitrones. Organic Letters 2015, 17 (11) , 2680-2683. https://doi.org/10.1021/acs.orglett.5b01077
    14. Zechao Lin, Jiahong Li, Qingfei Huang, Qiuya Huang, Qiwei Wang, Lei Tang, Deying Gong, Jun Yang, Jin Zhu, and Jingen Deng . Chiral Surfactant-Type Catalyst: Enantioselective Reduction of Long-Chain Aliphatic Ketoesters in Water. The Journal of Organic Chemistry 2015, 80 (9) , 4419-4429. https://doi.org/10.1021/acs.joc.5b00241
    15. Huiyu Chen, Jing Zhang, and David Zhigang Wang . Gold-Catalyzed Rearrangement of Alkynyl Donor–Acceptor Cyclopropanes To Construct Highly Functionalized Alkylidenecyclopentenes. Organic Letters 2015, 17 (9) , 2098-2101. https://doi.org/10.1021/acs.orglett.5b00671
    16. Eduard R. Rakhmankulov, Konstantin L. Ivanov, Ekaterina M. Budynina, Olga A. Ivanova, Alexey O. Chagarovskiy, Dmitriy A. Skvortsov, Gennadij V. Latyshev, Igor V. Trushkov, and Mikhail Ya. Melnikov . Lewis and Brønsted Acid Induced (3 + 2)-Annulation of Donor–Acceptor Cyclopropanes to Alkynes: Indene Assembly. Organic Letters 2015, 17 (4) , 770-773. https://doi.org/10.1021/ol5037562
    17. Yan Su, Yong-Qiang Tu, and Peiming Gu . Preparation of Enantioenriched γ-Substituted Lactones via Asymmetric Transfer Hydrogenation of β-Azidocyclopropane Carboxylates Using the Ru-TsDPEN Complex. Organic Letters 2014, 16 (16) , 4204-4207. https://doi.org/10.1021/ol501895k
    18. Bo Cui, Jun Ren, and Zhongwen Wang . TfOH-Catalyzed Formal [3 + 2] Cycloaddition of Cyclopropane 1,1-Diesters with Nitriles. The Journal of Organic Chemistry 2014, 79 (2) , 790-796. https://doi.org/10.1021/jo402383a
    19. Lijia Wang, Yong Tang. Metal‐Free Activation of the Donor – Acceptor Cyclopropanes: Protic Acids, Bases, and Thermal Reactions. 2024, 301-332. https://doi.org/10.1002/9783527835652.ch10
    20. Amrita Saha, Karuna Mahato, Satysen Yadav,, Manas K. Ghorai. Application of Donor–Acceptor Cyclopropanes in Total Synthesis of Natural Products. 2024, 359-432. https://doi.org/10.1002/9783527835652.ch12
    21. Efraím Reyes, Liher Prieto, Rubén Manzano, Luisa Carrillo, Uxue Uria, Jose L. Vicario. The Cloke–Wilson Rearrangement. 2024, 1-222. https://doi.org/10.1002/0471264180.or114.01
    22. Yong Deng, Zhenkun Yang, Yanze Li, Xinyao Li, Bin Xu. Copper nitrate-enabled ring expansion reaction of cyclopropanes: a direct approach to 3-cyano-isoxazoline N -oxides. Organic Chemistry Frontiers 2024, 11 (5) , 1404-1411. https://doi.org/10.1039/D3QO01991H
    23. Usman Nazeer, Aqsa Mushtaq, Ameer Fawad Zahoor, Freeha Hafeez, Irum Shahzadi, Rabia Akhtar. Cloke–Wilson rearrangement: a unique gateway to access five-membered heterocycles. RSC Advances 2023, 13 (50) , 35695-35732. https://doi.org/10.1039/D3RA07410B
    24. Akichika Itoh, Norihiro Tada, Eiji Yamaguchi. Development of Novel Molecular Transformation Reactions Using Iodine Driven by Photochemical Activation. Journal of Synthetic Organic Chemistry, Japan 2023, 81 (5) , 451-462. https://doi.org/10.5059/yukigoseikyokaishi.81.451
    25. Jaan Parve, Marina Kudryashova, Tatsiana Shalima, Ly Villo, Moonika Ferschel, Allan Niidu, Ilme Liblikas, Indrek Reile, Riina Aav, Nicholas Gathergood, Lauri Vares, Tõnis Pehk, Omar Parve. Stereoselective Synthesis of γ‐(Acyloxy)carboxylic Acids and γ‐Lactones Featuring the Switch of Stereopreference of Candida antarctica Lipase B in Sodium γ‐Hydroxycarboxylate Homologues. European Journal of Organic Chemistry 2023, 26 (3) https://doi.org/10.1002/ejoc.202201329
    26. Fatma Feyza Özgen, Alexandra Jorea, Luca Capaldo, Robert Kourist, Davide Ravelli, Sandy Schmidt. The Synthesis of Chiral γ‐Lactones by Merging Decatungstate Photocatalysis with Biocatalysis. ChemCatChem 2022, 14 (19) https://doi.org/10.1002/cctc.202200855
    27. Janardana Reddi Desireddi, Mora Mallikarjuna Rao, Kiran Kumar Murahari, Rajashekar Reddy Nimmareddy, Thirupathi Mothe, Arun Kumar Lingala, Bhimcharan Maiti, Ravinder Manchal. Study of the β-oxygen effect in the Barton–McCombie reaction for the total synthesis of (4R,5R)-4-hydroxy-γ-decalactone (Japanese orange fly lactone): a carbohydrate based approach. RSC Advances 2022, 12 (39) , 25520-25527. https://doi.org/10.1039/D2RA04531A
    28. Pallab Karjee, Manmath Mishra, Bijoy Debnath, Tharmalingam Punniyamurthy. Expedient Ni(OTf) 2 /visible light photoredox-catalyzed annulation of donor–acceptor cyclopropanes with cyclic secondary amines. Chemical Communications 2022, 58 (62) , 8670-8673. https://doi.org/10.1039/D2CC02941C
    29. Subaramaniam Thangamalar, Murugesan Thangamani, Kannupal Srinivasan. The Cloke–Wilson rearrangement of aroyl-substituted donor–acceptor cylopropanes containing arylethyl donors. Organic & Biomolecular Chemistry 2022, 20 (15) , 3145-3153. https://doi.org/10.1039/D2OB00292B
    30. Tao Wang, Xiao-Yan Zhang, Yu-Cong Zheng, Yun-Peng Bai. Stereoselective synthesis of chiral δ-lactones via an engineered carbonyl reductase. Chemical Communications 2021, 57 (81) , 10584-10587. https://doi.org/10.1039/D1CC04542C
    31. Ivan A. Andreev, Nina K. Ratmanova, André U. Augustin, Olga A. Ivanova, Irina I. Levina, Victor N. Khrustalev, Daniel B. Werz, Igor V. Trushkov. Protic Ionic Liquid as Reagent, Catalyst, and Solvent: 1‐Methylimidazolium Thiocyanate. Angewandte Chemie 2021, 133 (14) , 8006-8013. https://doi.org/10.1002/ange.202016593
    32. Ivan A. Andreev, Nina K. Ratmanova, André U. Augustin, Olga A. Ivanova, Irina I. Levina, Victor N. Khrustalev, Daniel B. Werz, Igor V. Trushkov. Protic Ionic Liquid as Reagent, Catalyst, and Solvent: 1‐Methylimidazolium Thiocyanate. Angewandte Chemie International Edition 2021, 60 (14) , 7927-7934. https://doi.org/10.1002/anie.202016593
    33. Chunlei Ren, Tao Wang, Xiaoyan Zhang, Jiang Pan, Jianhe Xu, Yunpeng Bai. Asymmetric bioreduction of γ- and δ-keto acids by native carbonyl reductases from Saccharomyces cerevisiae. Chinese Journal of Chemical Engineering 2021, 29 , 305-310. https://doi.org/10.1016/j.cjche.2020.07.014
    34. Tong Li, Dandan Yan, Chaoxing Cui, Xixi Song, Junbiao Chang. A thermal decarboxylative Cloke–Wilson rearrangement of dispirocyclopropanes derived from para -quinone methides and bromo-Meldrum's acids: an approach to synthesize spirobutyrolactone para -dienones. Organic Chemistry Frontiers 2020, 7 (18) , 2682-2688. https://doi.org/10.1039/D0QO00770F
    35. Karin Oe, Mayuki Goto, Saki Maejima, Eiji Yamaguchi, Akichika Itoh. Visible Light and Molecular Iodine‐Mediated Diastereoselective Intermolecular Lactonization of Styrenes with Carbonyls. Asian Journal of Organic Chemistry 2020, 9 (4) , 571-574. https://doi.org/10.1002/ajoc.202000041
    36. Dripta De Joarder, Dilip K. Maiti. Synthesis of medicinally important heterocycles inside the nanoreactors built-in nonconventional reaction media. 2020, 181-229. https://doi.org/10.1016/B978-0-12-817592-7.00007-1
    37. Hui‐Yun Luo, Jia‐Wei Dong, Yu‐Yang Xie, Xu‐Feng Song, Deng Zhu, Tongmei Ding, Yuanyuan Liu, Zhi‐Min Chen. Lewis Base/Brønsted Acid Co‐Catalyzed Asymmetric Thiolation of Alkenes with Acid‐Controlled Divergent Regioselectivity. Chemistry – A European Journal 2019, 25 (67) , 15411-15418. https://doi.org/10.1002/chem.201904028
    38. Yuanyuan Zhu, Minli Zhang, Tong Li, Xixi Song. AlCl 3 ‐Promoted Stereospecific Cloke‐Wilson Rearrangement of Spirocyclopropyl Barbiturates for the Synthesis of Substituted Dihydrofuro[2,3‐ d ]pyrimidines. ChemistrySelect 2019, 4 (36) , 10838-10842. https://doi.org/10.1002/slct.201903330
    39. Bijay Ketan Das, Sourav Pradhan, Tharmalingam Punniyamurthy. Stereospecific assembly of tetrahydroquinolines via tandem ring-opening/oxidative cyclization of donor–acceptor cyclopropanes with N -alkyl anilines. Chemical Communications 2019, 55 (56) , 8083-8086. https://doi.org/10.1039/C9CC04042K
    40. Meng Chen, Xiao‐Yan Zhang, Chen‐Guang Xing, Chao Zhang, Yu‐Cong Zheng, Jiang Pan, Jian‐He Xu, Yun‐Peng Bai. Efficient Stereoselective Synthesis of Structurally Diverse γ‐ and δ‐Lactones Using an Engineered Carbonyl Reductase. ChemCatChem 2019, 11 (11) , 2600-2606. https://doi.org/10.1002/cctc.201900382
    41. Purushothaman Gopinath, Srinivasan Chandrasekaran. Recent Advances in the Chemistry of Doubly Activated Cyclopropanes: Synthesis and Reactivity. Current Organic Chemistry 2019, 23 (3) , 276-312. https://doi.org/10.2174/1385272823666190213114604
    42. Jing Zhou, Chunling Fu, Shengming Ma. Gold-catalyzed stereoselective cycloisomerization of allenoic acids for two types of common natural γ-butyrolactones. Nature Communications 2018, 9 (1) https://doi.org/10.1038/s41467-018-03894-6
    43. Fangyuan Yuan, Sen Zhou, Yanyan Yang, Minjie Guo, Xiangyang Tang, Guangwei Wang. Copper catalyzed one-pot difluoroalkylation and lactonization of unsaturated carboxylic acids. Organic Chemistry Frontiers 2018, 5 (22) , 3306-3309. https://doi.org/10.1039/C8QO00940F
    44. Man Zhu, Dong‐Chao Wang, Ming‐Sheng Xie, Gui‐Rong Qu, Hai‐Ming Guo. Enantioselective Friedel–Crafts Alkylation Reactions of β‐Naphthols with Donor–Acceptor Aminocyclopropanes. Chemistry – A European Journal 2018, 24 (58) , 15512-15516. https://doi.org/10.1002/chem.201804032
    45. Alesandere Ortega, Rubén Manzano, Uxue Uria, Luisa Carrillo, Efraim Reyes, Tomas Tejero, Pedro Merino, Jose L. Vicario. Catalytic Enantioselective Cloke–Wilson Rearrangement. Angewandte Chemie 2018, 130 (27) , 8357-8361. https://doi.org/10.1002/ange.201804614
    46. Alesandere Ortega, Rubén Manzano, Uxue Uria, Luisa Carrillo, Efraim Reyes, Tomas Tejero, Pedro Merino, Jose L. Vicario. Catalytic Enantioselective Cloke–Wilson Rearrangement. Angewandte Chemie International Edition 2018, 57 (27) , 8225-8229. https://doi.org/10.1002/anie.201804614
    47. Yohei Ogiwara, Ken Takano, Shuhei Horikawa, Norio Sakai. Indium-Catalyzed Direct Conversion of Lactones into Thiolactones Using a Disilathiane as a Sulfur Source. Molecules 2018, 23 (6) , 1339. https://doi.org/10.3390/molecules23061339
    48. Yong Xia, Fenzhen Chang, Lili Lin, Yali Xu, Xiaohua Liu, Xiaoming Feng. Asymmetric ring-opening of cyclopropyl ketones with β-naphthols catalyzed by a chiral N , N ′-dioxide–scandium( iii ) complex. Organic Chemistry Frontiers 2018, 5 (8) , 1293-1296. https://doi.org/10.1039/C8QO00016F
    49. Saki Maejima, Eiji Yamaguchi, Akichika Itoh. Intermolecular Tandem Addition/Esterification Reaction of Alkenes with Malonates Leading to γ‐Lactones Mediated by Molecular Iodine under Visible Light Irradiation. Advanced Synthesis & Catalysis 2017, 359 (22) , 3883-3887. https://doi.org/10.1002/adsc.201700809
    50. André U. Augustin, Maximilian Sensse, Peter G. Jones, Daniel B. Werz. Stereospezifische Reaktion von Donor‐Akzeptor‐Cyclopropanen mit Thioketonen: ein Zugang zu hoch substituierten Tetrahydrothiophenen. Angewandte Chemie 2017, 129 (45) , 14481-14485. https://doi.org/10.1002/ange.201708346
    51. André U. Augustin, Maximilian Sensse, Peter G. Jones, Daniel B. Werz. Stereospecific Reactions of Donor–Acceptor Cyclopropanes with Thioketones: Access to Highly Substituted Tetrahydrothiophenes. Angewandte Chemie International Edition 2017, 56 (45) , 14293-14296. https://doi.org/10.1002/anie.201708346
    52. Maxime Dousset, Jean‐Luc Parrain, Gaëlle Chouraqui. Intriguing Electrophilic Reactivity of Donor–Acceptor Cyclopropanes: Experimental and Theoretical Studies. European Journal of Organic Chemistry 2017, 2017 (35) , 5238-5245. https://doi.org/10.1002/ejoc.201701058
    53. Liang‐Wen Feng, Hai Ren, Hu Xiong, Pan Wang, Lijia Wang, Yong Tang. Reaction of Donor‐Acceptor Cyclobutanes with Indoles: A General Protocol for the Formal Total Synthesis of (±)‐Strychnine and the Total Synthesis of (±)‐Akuammicine. Angewandte Chemie 2017, 129 (11) , 3101-3104. https://doi.org/10.1002/ange.201611734
    54. Liang‐Wen Feng, Hai Ren, Hu Xiong, Pan Wang, Lijia Wang, Yong Tang. Reaction of Donor‐Acceptor Cyclobutanes with Indoles: A General Protocol for the Formal Total Synthesis of (±)‐Strychnine and the Total Synthesis of (±)‐Akuammicine. Angewandte Chemie International Edition 2017, 56 (11) , 3055-3058. https://doi.org/10.1002/anie.201611734
    55. Naoki Kise, Yusuke Hamada, Toshihiko Sakurai. Electroreductive coupling of aromatic ketones, aldehydes, and aldimines with α,β-unsaturated esters: Synthesis of 5-aryl substituted γ-butyrolactones and lactams. Tetrahedron 2017, 73 (8) , 1143-1156. https://doi.org/10.1016/j.tet.2017.01.013
    56. Yong Xia, Lili Lin, Fenzhen Chang, Yuting Liao, Xiaohua Liu, Xiaoming Feng. Asymmetric Ring Opening/Cyclization/Retro‐Mannich Reaction of Cyclopropyl Ketones with Aryl 1,2‐Diamines for the Synthesis of Benzimidazole Derivatives. Angewandte Chemie 2016, 128 (40) , 12416-12420. https://doi.org/10.1002/ange.201604735
    57. Yong Xia, Lili Lin, Fenzhen Chang, Yuting Liao, Xiaohua Liu, Xiaoming Feng. Asymmetric Ring Opening/Cyclization/Retro‐Mannich Reaction of Cyclopropyl Ketones with Aryl 1,2‐Diamines for the Synthesis of Benzimidazole Derivatives. Angewandte Chemie International Edition 2016, 55 (40) , 12228-12232. https://doi.org/10.1002/anie.201604735
    58. Igor V. Trushkov. Indole‐derived Donor‐acceptor Cyclopropanes. Israel Journal of Chemistry 2016, 56 (6-7) , 369-384. https://doi.org/10.1002/ijch.201500069
    59. Ekaterina M. Budynina, Konstantin L. Ivanov, Alexey O. Chagarovskiy, Victor B. Rybakov, Igor V. Trushkov, Mikhail Ya. Melnikov. From Umpolung to Alternation: Modified Reactivity of Donor–Acceptor Cyclopropanes Towards Nucleophiles in Reaction with Nitroalkanes. Chemistry – A European Journal 2016, 22 (11) , 3692-3696. https://doi.org/10.1002/chem.201504593
    60. Lennart K. B. Garve, Martin Pawliczek, Jan Wallbaum, Peter G. Jones, Daniel B. Werz. [4+3] Cycloaddition of Donor–Acceptor Cyclopropanes with Amphiphilic Benzodithioloimine as Surrogate for ortho ‐Bisthioquinone. Chemistry – A European Journal 2016, 22 (2) , 521-525. https://doi.org/10.1002/chem.201504013
    61. Lihuan Wu, Zhenming Zhang, Jianhua Liao, Jianxiao Li, Wanqing Wu, Huanfeng Jiang. MnO 2 -promoted carboesterification of alkenes with anhydrides: a facile approach to γ-lactones. Chemical Communications 2016, 52 (12) , 2628-2631. https://doi.org/10.1039/C5CC08867D
    62. Xuan Fu, Lili Lin, Yong Xia, Pengfei Zhou, Xiaohua Liu, Xiaoming Feng. Catalytic asymmetric [3 + 3] annulation of cyclopropanes with mercaptoacetaldehyde. Organic & Biomolecular Chemistry 2016, 14 (25) , 5914-5917. https://doi.org/10.1039/C6OB00948D
    63. Yong Xia, Lili Lin, Fenzhen Chang, Xuan Fu, Xiaohua Liu, Xiaoming Feng. Asymmetric Ring‐Opening of Cyclopropyl Ketones with Thiol, Alcohol, and Carboxylic Acid Nucleophiles Catalyzed by a Chiral N , N ′‐Dioxide–Scandium(III) Complex. Angewandte Chemie 2015, 127 (46) , 13952-13956. https://doi.org/10.1002/ange.201506909
    64. Yong Xia, Lili Lin, Fenzhen Chang, Xuan Fu, Xiaohua Liu, Xiaoming Feng. Asymmetric Ring‐Opening of Cyclopropyl Ketones with Thiol, Alcohol, and Carboxylic Acid Nucleophiles Catalyzed by a Chiral N , N ′‐Dioxide–Scandium(III) Complex. Angewandte Chemie International Edition 2015, 54 (46) , 13748-13752. https://doi.org/10.1002/anie.201506909
    65. . Heterocyclic Compounds. 2015, 341-414. https://doi.org/10.1002/9781118978429.ch11
    66. Hong-Ying Niu, Cong Du, Ming-Sheng Xie, Yong Wang, Qian Zhang, Gui-Rong Qu, Hai-Ming Guo. Diversity-oriented synthesis of acyclic nucleosides via ring-opening of vinyl cyclopropanes with purines. Chemical Communications 2015, 51 (16) , 3328-3331. https://doi.org/10.1039/C4CC09844G
    67. Tobias F. Schneider, Johannes Kaschel, Daniel B. Werz. Ein neues goldenes Zeitalter in der Chemie Donor‐Akzeptor‐substituierter Cyclopropane. Angewandte Chemie 2014, 126 (22) , 5608-5628. https://doi.org/10.1002/ange.201309886
    68. Tobias F. Schneider, Johannes Kaschel, Daniel B. Werz. A New Golden Age for Donor–Acceptor Cyclopropanes. Angewandte Chemie International Edition 2014, 53 (22) , 5504-5523. https://doi.org/10.1002/anie.201309886
    69. Huck K. Grover, Michael R. Emmett, Michael A. Kerr. ChemInform Abstract: γ‐Substituted Butanolides from Cyclopropane Hemimalonates: An Expedient Synthesis of Natural (R)‐Dodecan‐4‐olide (IX).. ChemInform 2014, 45 (6) https://doi.org/10.1002/chin.201406084

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect