Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
Aerobic C–H Olefination of Indoles via a Cross-Dehydrogenative Coupling in Continuous Flow
My Activity
    Letter

    Aerobic C–H Olefination of Indoles via a Cross-Dehydrogenative Coupling in Continuous Flow
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Chemical Engineering and Chemistry, Micro Flow Chemistry & Process Technology, Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
    Other Access OptionsSupporting Information (1)

    Organic Letters

    Cite this: Org. Lett. 2014, 16, 21, 5800–5803
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ol502910e
    Published October 24, 2014
    Copyright © 2014 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Herein, we report the first site-selective, Pd(II)-catalyzed, cross-dehydrogenative Heck reaction of indoles in micro flow. By use of a capillary microreactor, we were able to boost the intrinsic kinetics to accelerate former hour-scale reaction conditions in batch to the minute range in flow. The synergistic use of microreactor technology and oxygen, as both terminal oxidant and mixing motif, highlights the sustainable aspect of this process.

    Copyright © 2014 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Details on the continuous-flow microreactor setup, experimental procedures, characterization of the compounds, and spectral data. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 76 publications.

    1. Iqra S. Patel, Gokul Ganesan, Shilpa Jain. Catalytic Advancements: Optimizing Pd-Based Cross-Coupling Reactions Through Flow Chemistry. Organic Process Research & Development 2024, 28 (9) , 3464-3508. https://doi.org/10.1021/acs.oprd.4c00027
    2. Yangjin Kuang, Katsumi Maeda, Ryosuke Matsubara, Masahiko Hayashi. One-Pot Synthesis of 3-Substiuted Indoles from 2-(2-Nitro-1-phenylethyl)cyclohexanone Derivatives. The Journal of Organic Chemistry 2023, 88 (9) , 5791-5800. https://doi.org/10.1021/acs.joc.3c00233
    3. Ryan G. Epton, William P. Unsworth, Jason M. Lynam. Selectivity, Speciation, and Substrate Control in the Gold-Catalyzed Coupling of Indoles and Alkynes. Organometallics 2022, 41 (4) , 497-507. https://doi.org/10.1021/acs.organomet.2c00035
    4. Sudipto Debnath, Tuluma Das, Tanmay K. Pati, Swapan Majumdar, Dilip K. Maiti. Metal-Free Indole–Phenacyl Bromide Cyclization: A Regioselective Synthesis of 3,5-Diarylcarbazoles. The Journal of Organic Chemistry 2020, 85 (20) , 13272-13279. https://doi.org/10.1021/acs.joc.0c01670
    5. Anyi Liu, Qingshuai Han, Xiaofeng Zhang, Buhong Li, Qiufeng Huang. Transition-Metal-Controlled Synthesis of 11H-Benzo[a]carbazoles and 6-Alkylidene-6H-isoindo[2,1-a]indoles via Sequential Intermolecular/Intramolecular Cross-Dehydrogenative Coupling from 2-Phenylindoles. Organic Letters 2019, 21 (17) , 6839-6843. https://doi.org/10.1021/acs.orglett.9b02476
    6. Rahul A. Jagtap, C. P. Vinod, Benudhar Punji. Nickel-Catalyzed Straightforward and Regioselective C–H Alkenylation of Indoles with Alkenyl Bromides: Scope and Mechanistic Aspect. ACS Catalysis 2019, 9 (1) , 431-441. https://doi.org/10.1021/acscatal.8b04267
    7. Cuiju Zhu, João C. A. Oliveira, Zhigao Shen, Huawen Huang, Lutz Ackermann. Manganese(II/III/I)-Catalyzed C–H Arylations in Continuous Flow. ACS Catalysis 2018, 8 (5) , 4402-4407. https://doi.org/10.1021/acscatal.8b00166
    8. Kapileswar Seth, Milan Bera, Massimo Brochetta, Soumitra Agasti, Ashis Das, Andrea Gandini, Alessio Porta, Giuseppe Zanoni, and Debabrata Maiti . Incorporating Unbiased, Unactivated Aliphatic Alkenes in Pd(II)-Catalyzed Olefination of Benzyl Phosphonamide. ACS Catalysis 2017, 7 (11) , 7732-7736. https://doi.org/10.1021/acscatal.7b02394
    9. Matthew B. Plutschack, Bartholomäus Pieber, Kerry Gilmore, and Peter H. Seeberger . The Hitchhiker’s Guide to Flow Chemistry. Chemical Reviews 2017, 117 (18) , 11796-11893. https://doi.org/10.1021/acs.chemrev.7b00183
    10. Samrat Sahu, Ankush Banerjee, and Modhu Sudan Maji . Transition-Metal-Free Redox-Neutral One-Pot C3-Alkenylation of Indoles Using Aldehydes. Organic Letters 2017, 19 (3) , 464-467. https://doi.org/10.1021/acs.orglett.6b03612
    11. Nicolas Sotto, Clément Cazorla, Carole Villette, Muriel Billamboz, and Christophe Len . Selective Pinacol-Coupling Reaction using a Continuous Flow System. The Journal of Organic Chemistry 2016, 81 (22) , 11065-11071. https://doi.org/10.1021/acs.joc.6b02069
    12. Bernhard Gutmann, Petteri Elsner, D. Phillip Cox, Ulrich Weigl, Dominique M. Roberge, and C. Oliver Kappe . Toward the Synthesis of Noroxymorphone via Aerobic Palladium-Catalyzed Continuous Flow N-Demethylation Strategies. ACS Sustainable Chemistry & Engineering 2016, 4 (11) , 6048-6061. https://doi.org/10.1021/acssuschemeng.6b01371
    13. Kan-Yan Jia, Jing-Bo Yu, Zhi-Jiang Jiang, and Wei-Ke Su . Mechanochemically Activated Oxidative Coupling of Indoles with Acrylates through C–H Activation: Synthesis of 3-Vinylindoles and β,β-Diindolyl Propionates and Study of the Mechanism. The Journal of Organic Chemistry 2016, 81 (14) , 6049-6055. https://doi.org/10.1021/acs.joc.6b01138
    14. Nico Erdmann, Yuanhai Su, Benjamin Bosmans, Volker Hessel, and Timothy Noël . Palladium-Catalyzed Aerobic Oxidative Coupling of o-Xylene in Flow: A Safe and Scalable Protocol for Cross-Dehydrogenative Coupling. Organic Process Research & Development 2016, 20 (4) , 831-835. https://doi.org/10.1021/acs.oprd.6b00044
    15. Prakash Kannaboina, K. Anil Kumar, and Parthasarathi Das . Site-Selective Intermolecular Oxidative C-3 Alkenylation of 7-Azaindoles at Room Temperature. Organic Letters 2016, 18 (5) , 900-903. https://doi.org/10.1021/acs.orglett.5b03429
    16. Carl J. Mallia and Ian R. Baxendale . The Use of Gases in Flow Synthesis. Organic Process Research & Development 2016, 20 (2) , 327-360. https://doi.org/10.1021/acs.oprd.5b00222
    17. Svetlana Borukhova, Timothy Noël, and Volker Hessel . Hydrogen Chloride Gas in Solvent-Free Continuous Conversion of Alcohols to Chlorides in Microflow. Organic Process Research & Development 2016, 20 (2) , 568-573. https://doi.org/10.1021/acs.oprd.6b00014
    18. Hélène Lebel, Henri Piras, and Marie Borduy . Iron-Catalyzed Amination of Sulfides and Sulfoxides with Azides in Photochemical Continuous Flow Synthesis. ACS Catalysis 2016, 6 (2) , 1109-1112. https://doi.org/10.1021/acscatal.5b02495
    19. Janelle E. Steves, Yuliya Preger, Joseph R. Martinelli, Christopher J. Welch, Thatcher W. Root, Joel M. Hawkins, and Shannon S. Stahl . Process Development of CuI/ABNO/NMI-Catalyzed Aerobic Alcohol Oxidation. Organic Process Research & Development 2015, 19 (11) , 1548-1553. https://doi.org/10.1021/acs.oprd.5b00179
    20. Jeong Hyeon Park, Chan Yi Park, Mi Jin Kim, Min Uk Kim, Young Joon Kim, Geon-Hee Kim, and Chan Pil Park . Continuous-Flow Synthesis of meta-Substituted Phenol Derivatives. Organic Process Research & Development 2015, 19 (7) , 812-818. https://doi.org/10.1021/acs.oprd.5b00077
    21. Jodie F. Greene, Yuliya Preger, Shannon S. Stahl, and Thatcher W. Root . PTFE-Membrane Flow Reactor for Aerobic Oxidation Reactions and Its Application to Alcohol Oxidation. Organic Process Research & Development 2015, 19 (7) , 858-864. https://doi.org/10.1021/acs.oprd.5b00125
    22. Laura Y. Vázquez-Amaya, Guglielmo A. Coppola, Erik V. Van der Eycken, Upendra K. Sharma. Lab-scale flow chemistry? Just do it yourself!. Journal of Flow Chemistry 2024, 14 (1) , 257-279. https://doi.org/10.1007/s41981-024-00312-5
    23. Mixiang Tian, Qinghong Cui, Qiuling Xu, Wenwen Wu, Yuxian Wang, Kun Wei, Ruifen Sun, Junliang Wang. Ligand-free Pd-catalyzed highly selective arylation of activated and unactivated alkenes via oxidative and reductive heck coupling. RSC Advances 2024, 14 (10) , 6470-6475. https://doi.org/10.1039/D3RA08186A
    24. Joachim Demaerel, Vidmantas Bieliūnas, Wim M. De Borggraeve. Funktionalisierung von Heteroarenen unter kontinuierlichem Durchfluss. 2024, 261-348. https://doi.org/10.1007/978-3-031-51912-3_6
    25. Md Taifur Rahman, Thomas Wirth. Sicherer Umgang mit gefährlichen Chemikalien im Durchfluss. 2024, 375-408. https://doi.org/10.1007/978-3-031-51912-3_8
    26. Wenzhuo Huang, Eman Fayad, Ola A. Abu Ali, Hua-Li Qin. A portal to highly valuable indole-functionalized vinyl sulfonyl fluorides and allylic sulfonyl fluorides. Organic & Biomolecular Chemistry 2024, 106 https://doi.org/10.1039/D4OB01213E
    27. Paola Riente, Wen‐Liang Jia, M. Ángeles FernÁndez‐IbÁñez. Pd‐Catalyzed CH Olefination Reactions. 2022, 1-39. https://doi.org/10.1002/9783527834242.chf0011
    28. Francesco Ferlin, Luigi Carpisassi, Giulia Brufani, Luigi Vaccaro. CH Functionalization Methods in Flow Conditions. 2022, 1-21. https://doi.org/10.1002/9783527834242.chf0149
    29. Li Wan, Meifen Jiang, Dang Cheng, Minjie Liu, Fener Chen. Continuous flow technology-a tool for safer oxidation chemistry. Reaction Chemistry & Engineering 2022, 7 (3) , 490-550. https://doi.org/10.1039/D1RE00520K
    30. Chen Tan, Hongwu Jiang, Miao Zeng, Kaiwen Li, Zhuqi Chen, Guochuan Yin. Pd( ii )/Lewis acid catalyzed regioselective olefination of indole with dioxygen. Organic & Biomolecular Chemistry 2022, 20 (7) , 1425-1435. https://doi.org/10.1039/D2OB00006G
    31. Devulapally Yogananda Chary, Kamtam Aashritha, Balasubramanian Sridhar, Basi V. Subba Reddy. Rh(III)-catalyzed ortho-C–H bond functionalization of 2-arylquinoxalines with vinyl arenes. Tetrahedron Letters 2021, 86 , 153501. https://doi.org/10.1016/j.tetlet.2021.153501
    32. Tian Tian, Zhiping Li, Chao-Jun Li. Cross-dehydrogenative coupling: a sustainable reaction for C–C bond formations. Green Chemistry 2021, 23 (18) , 6789-6862. https://doi.org/10.1039/D1GC01871J
    33. Qiang Li, Maoshuai Zhu, Xufei Yan, Ying Xia, Xiangge Zhou. Selective synthesis of 2-aryl-3-alkenylindoles and 2-aryl-3-alkynylindoles by palladium-catalyzed ligand-promoted annulative coupling of anilines and propargyl alcohols. Journal of Organometallic Chemistry 2021, 948 , 121930. https://doi.org/10.1016/j.jorganchem.2021.121930
    34. Jian Chen, Mengjing Zhu, Fuwei Xiang, Junfeng Li, Hongjun Yang, Zhipeng Mao. Research Progress on Microreactor Technology in Oxidation Reactions. Current Organic Chemistry 2021, 25 (10) , 1235-1245. https://doi.org/10.2174/1385272825666210319092545
    35. Amrita Das, Naoto Chatani. Rh( i )- and Rh( ii )-catalyzed C–H alkylation of benzylamines with alkenes and its application in flow chemistry. Chemical Science 2021, 12 (9) , 3202-3209. https://doi.org/10.1039/D0SC05813K
    36. Yu-Jie Wang, Chen-Hui Yuan, De-Zhao Chu, Lei Jiao. Regiocontrol in the oxidative Heck reaction of indole by ligand-enabled switch of the regioselectivity-determining step. Chemical Science 2020, 11 (40) , 11042-11054. https://doi.org/10.1039/D0SC02246B
    37. Sebastian Govaerts, Alexander Nyuchev, Timothy Noel. Pushing the boundaries of C–H bond functionalization chemistry using flow technology. Journal of Flow Chemistry 2020, 10 (1) , 13-71. https://doi.org/10.1007/s41981-020-00077-7
    38. Abhijit Paul, Debnath Chatterjee, Srirupa Banerjee, Somnath Yadav. Synthesis of 3-alkenylindoles through regioselective C–H alkenylation of indoles by a ruthenium nanocatalyst. Beilstein Journal of Organic Chemistry 2020, 16 , 140-148. https://doi.org/10.3762/bjoc.16.16
    39. Jingbo Yu, Haowen Shou, Wangyang Yu, Haodong Chen, Weike Su. Mechanochemical Oxidative Heck Coupling of Activated and Unactivated Alkenes: A Chemo‐, Regio‐ and Stereo‐Controlled Synthesis of Alkenylbenzenes. Advanced Synthesis & Catalysis 2019, 361 (22) , 5133-5139. https://doi.org/10.1002/adsc.201900965
    40. S. Santoro, F. Ferlin, L. Vaccaro. Sustainable Approaches to C–H Functionalizations Through Flow Techniques. 2019, 199-216. https://doi.org/10.1039/9781788016094-00199
    41. Xiao‐Jing Wei, Irini Abdiaj, Carlo Sambiagio, Chenfei Li, Eli Zysman‐Colman, Jesús Alcázar, Timothy Noël. Visible‐Light‐Promoted Iron‐Catalyzed C(sp 2 )–C(sp 3 ) Kumada Cross‐Coupling in Flow. Angewandte Chemie 2019, 131 (37) , 13164-13168. https://doi.org/10.1002/ange.201906462
    42. Xiao‐Jing Wei, Irini Abdiaj, Carlo Sambiagio, Chenfei Li, Eli Zysman‐Colman, Jesús Alcázar, Timothy Noël. Visible‐Light‐Promoted Iron‐Catalyzed C(sp 2 )–C(sp 3 ) Kumada Cross‐Coupling in Flow. Angewandte Chemie International Edition 2019, 58 (37) , 13030-13034. https://doi.org/10.1002/anie.201906462
    43. Stefano Santoro, Francesco Ferlin, Lutz Ackermann, Luigi Vaccaro. C–H functionalization reactions under flow conditions. Chemical Society Reviews 2019, 48 (10) , 2767-2782. https://doi.org/10.1039/C8CS00211H
    44. Jamal Koubachi, Nabil El Brahmi, Gérald Guillaumet, Saïd El Kazzouli. Oxidative Alkenylation of Fused Bicyclic Heterocycles. European Journal of Organic Chemistry 2019, 2019 (15) , 2568-2586. https://doi.org/10.1002/ejoc.201900199
    45. Christopher A. Hone, C. Oliver Kappe. The Use of Molecular Oxygen for Liquid Phase Aerobic Oxidations in Continuous Flow. Topics in Current Chemistry 2019, 377 (1) https://doi.org/10.1007/s41061-018-0226-z
    46. Gabriele Laudadio, Wouter de Smet, Lisa Struik, Yiran Cao, Timothy Noël. Design and application of a modular and scalable electrochemical flow microreactor. Journal of Flow Chemistry 2018, 8 (3-4) , 157-165. https://doi.org/10.1007/s41981-018-0024-3
    47. Francisco G. Cirujano, Pedro Leo, Jannick Vercammen, Simon Smolders, Gisela Orcajo, Dirk E. De Vos. MOFs Extend the Lifetime of Pd(II) Catalyst for Room Temperature Alkenylation of Enamine‐Like Arenes. Advanced Synthesis & Catalysis 2018, 360 (20) , 3872-3876. https://doi.org/10.1002/adsc.201800817
    48. Alessandra Casnati, Hannes P. L. Gemoets, Elena Motti, Nicola Della Ca', Timothy Noël. Homogeneous and Gas–Liquid Catellani‐Type Reaction Enabled by Continuous‐Flow Chemistry. Chemistry – A European Journal 2018, 24 (53) , 14079-14083. https://doi.org/10.1002/chem.201803909
    49. Christophe Len. Palladium‐Catalyzed Cross‐Coupling in Continuous Flow at Room and Mild Temperature. 2018, 183-206. https://doi.org/10.1002/9783527693030.ch7
    50. Qingshuai Han, Xiemin Guo, Ziyuan Tang, Lv Su, Zizhu Yao, Xiaofeng Zhang, Shen Lin, Shengchang Xiang, Qiufeng Huang. Rhodium‐Catalyzed Regioselective Ortho C−H Olefination of 2‐Arylindoles via NH‐Indole‐Directed C−H Bond Cleavage. Advanced Synthesis & Catalysis 2018, 360 (5) , 972-984. https://doi.org/10.1002/adsc.201701381
    51. Md Taifur Rahman, Thomas Wirth. Safe Use of Hazardous Chemicals in Flow. 2018, 343-373. https://doi.org/10.1007/7081_2018_17
    52. Joachim Demaerel, Vidmantas Bieliūnas, Wim M. De Borggraeve. Functionalization of Heteroarenes Under Continuous Flow. 2018, 237-317. https://doi.org/10.1007/7081_2018_22
    53. Marino Petrini. Regioselective Direct C‐Alkenylation of Indoles. Chemistry – A European Journal 2017, 23 (64) , 16115-16151. https://doi.org/10.1002/chem.201702124
    54. Hannes P. L. Gemoets, Gabriele Laudadio, Kirsten Verstraete, Volker Hessel, Timothy Noël. A Modular Flow Design for the meta ‐Selective C−H Arylation of Anilines. Angewandte Chemie 2017, 129 (25) , 7267-7271. https://doi.org/10.1002/ange.201703369
    55. Hannes P. L. Gemoets, Gabriele Laudadio, Kirsten Verstraete, Volker Hessel, Timothy Noël. A Modular Flow Design for the meta ‐Selective C−H Arylation of Anilines. Angewandte Chemie International Edition 2017, 56 (25) , 7161-7165. https://doi.org/10.1002/anie.201703369
    56. Christophe Len, Sophie Bruniaux, Frederic Delbecq, Virinder Parmar. Palladium-Catalyzed Suzuki–Miyaura Cross-Coupling in Continuous Flow. Catalysts 2017, 7 (5) , 146. https://doi.org/10.3390/catal7050146
    57. Clément Cazorla, Muriel Billamboz, Hervé Bricout, Eric Monflier, Christophe Len. Green and Scalable Palladium‐on‐Carbon‐Catalyzed Tsuji–Trost Coupling Reaction Using an Efficient and Continuous Flow System. European Journal of Organic Chemistry 2017, 2017 (6) , 1078-1085. https://doi.org/10.1002/ejoc.201601311
    58. Gabriele Laudadio, Timothy Noël. Flow Chemistry Perspective for C H Bond Functionalization. 2017, 275-288. https://doi.org/10.1016/B978-0-12-805254-9.00007-4
    59. Hannes P. L. Gemoets, Indrek Kalvet, Alexander V. Nyuchev, Nico Erdmann, Volker Hessel, Franziska Schoenebeck, Timothy Noël. Mild and selective base-free C–H arylation of heteroarenes: experiment and computation. Chemical Science 2017, 8 (2) , 1046-1055. https://doi.org/10.1039/C6SC02595A
    60. Ying Guo, Ling-Yan Shao, Kun-Kun Yu, Ya-Hua Hu, Hong-Wei Liu, Dao-Hua Liao, Ya-Fei Ji. Palladium-catalyzed site-selective direct olefination of 6-electron-withdrawing group substituted 3-arylbenzo[d]isoxazoles. Organic Chemistry Frontiers 2017, 4 (10) , 1962-1966. https://doi.org/10.1039/C7QO00435D
    61. Hannes P. L. Gemoets, Volker Hessel, Timothy Noël. Reactor Concepts for Aerobic Liquid phase Oxidation: Microreactors and Tube Reactors. 2016, 397-419. https://doi.org/10.1002/9783527690121.ch23
    62. Jacek Zakrzewski, Adam P. Smalley, Mikhail A. Kabeshov, Matthew J. Gaunt, Alexei A. Lapkin. Continuous‐Flow Synthesis and Derivatization of Aziridines through Palladium‐Catalyzed C(sp 3 )−H Activation. Angewandte Chemie 2016, 128 (31) , 9024-9029. https://doi.org/10.1002/ange.201602483
    63. Jacek Zakrzewski, Adam P. Smalley, Mikhail A. Kabeshov, Matthew J. Gaunt, Alexei A. Lapkin. Continuous‐Flow Synthesis and Derivatization of Aziridines through Palladium‐Catalyzed C(sp 3 )−H Activation. Angewandte Chemie International Edition 2016, 55 (31) , 8878-8883. https://doi.org/10.1002/anie.201602483
    64. Li Wan, Wentong Zhu, Kai Qiao, Xiaoning Sun, Zheng Fang, Kai Guo. C3 Alkylation of Indoles Catalyzed by Carbocations under Continuous‐Flow Conditions. Asian Journal of Organic Chemistry 2016, 5 (7) , 920-926. https://doi.org/10.1002/ajoc.201600193
    65. Upendra K. Sharma, Nandini Sharma, Yogesh Kumar, Brajendra K. Singh, Erik V. Van der Eycken. Domino Carbopalladation/CH Functionalization Sequence: An Expedient Synthesis of Bis-Heteroaryls through Transient Alkyl/Vinyl-Palladium Species Capture. Chemistry - A European Journal 2016, 22 (2) , 481-485. https://doi.org/10.1002/chem.201503708
    66. Hannes P. L. Gemoets, Yuanhai Su, Minjing Shang, Volker Hessel, Rafael Luque, Timothy Noël. Liquid phase oxidation chemistry in continuous-flow microreactors. Chemical Society Reviews 2016, 45 (1) , 83-117. https://doi.org/10.1039/C5CS00447K
    67. Laurent Vanoye, Jiady Wang, Mertxe Pablos, Claude de Bellefon, Alain Favre-Réguillon. Epoxidation using molecular oxygen in flow: facts and questions on the mechanism of the Mukaiyama epoxidation. Catalysis Science & Technology 2016, 6 (13) , 4724-4732. https://doi.org/10.1039/C6CY00309E
    68. Sicheng Zhang, Zhuqi Chen, Shuhao Qin, Chenlin Lou, Ahmed M. Senan, Rong-Zhen Liao, Guochuan Yin. Non-redox metal ion promoted oxidative coupling of indoles with olefins by the palladium( ii ) acetate catalyst through dioxygen activation: experimental results with DFT calculations. Organic & Biomolecular Chemistry 2016, 14 (17) , 4146-4157. https://doi.org/10.1039/C6OB00401F
    69. Josef Schachtner, Patrick Bayer, Axel Jacobi von Wangelin. A flow reactor setup for photochemistry of biphasic gas/liquid reactions. Beilstein Journal of Organic Chemistry 2016, 12 , 1798-1811. https://doi.org/10.3762/bjoc.12.170
    70. Sheng Wang, Guoqing Deng, Jiangjiang Gu, Wenwen Hua, Xudong Jia, Kai Xi. In site preparation of Pd(II)–MoS2 complex: A new high-efficiency catalyst for alkenylation of heteroaromatics by direct CH bond activation. Applied Catalysis A: General 2015, 508 , 80-85. https://doi.org/10.1016/j.apcata.2015.10.014
    71. Ali Talla, Brian Driessen, Natan J. W. Straathof, Lech-Gustav Milroy, Luc Brunsveld, Volker Hessel, Timothy Noël. Metal-Free Photocatalytic Aerobic Oxidation of Thiols to Disulfides in Batch and Continuous-Flow. Advanced Synthesis & Catalysis 2015, 357 (10) , 2180-2186. https://doi.org/10.1002/adsc.201401010
    72. Eric G. Moschetta, Solymar Negretti, Kathryn M. Chepiga, Nicholas A. Brunelli, Ying Labreche, Yan Feng, Fateme Rezaei, Ryan P. Lively, William J. Koros, Huw M. L. Davies, Christopher W. Jones. Composite Polymer/Oxide Hollow Fiber Contactors: Versatile and Scalable Flow Reactors for Heterogeneous Catalytic Reactions in Organic Synthesis. Angewandte Chemie International Edition 2015, 54 (22) , 6470-6474. https://doi.org/10.1002/anie.201500841
    73. Eric G. Moschetta, Solymar Negretti, Kathryn M. Chepiga, Nicholas A. Brunelli, Ying Labreche, Yan Feng, Fateme Rezaei, Ryan P. Lively, William J. Koros, Huw M. L. Davies, Christopher W. Jones. Composite Polymer/Oxide Hollow Fiber Contactors: Versatile and Scalable Flow Reactors for Heterogeneous Catalytic Reactions in Organic Synthesis. Angewandte Chemie 2015, 127 (22) , 6570-6574. https://doi.org/10.1002/ange.201500841
    74. Tomohiro Hattori, Aya Tsubone, Yoshinari Sawama, Yasunari Monguchi, Hironao Sajiki. Palladium on Carbon-Catalyzed Suzuki-Miyaura Coupling Reaction Using an Efficient and Continuous Flow System. Catalysts 2015, 5 (1) , 18-25. https://doi.org/10.3390/catal5010018
    75. Bartholomäus Pieber, C. Oliver Kappe. Aerobic Oxidations in Continuous Flow. 2015, 97-136. https://doi.org/10.1007/3418_2015_133
    76. Evi R. M. Habraken, Pieter Haspeslagh, Maarten Vliegen, Timothy Noël. Iridium(I)-Catalyzed Ortho-Directed Hydrogen Isotope Exchange in Continuous-Flow Reactors. Journal of Flow Chemistry 2015, 5 (1) , 2-5. https://doi.org/10.1556/JFC-D-14-00033

    Organic Letters

    Cite this: Org. Lett. 2014, 16, 21, 5800–5803
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ol502910e
    Published October 24, 2014
    Copyright © 2014 American Chemical Society

    Article Views

    2645

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.