ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Catalytic, Nucleophilic Allylation of Aldehydes with Allyl Acetate

View Author Information
Roger Adams Laboratory, Department of Chemistry, University of Illinois, 600 South Mathews Avenue, Urbana, Illinois 61801
Cite this: Org. Lett. 2009, 11, 3, 781–784
Publication Date (Web):December 31, 2008
https://doi.org/10.1021/ol8028725
Copyright © 2008 American Chemical Society

    Article Views

    3934

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (120 KB)
    Supporting Info (1)»

    Abstract

    Abstract Image

    A new catalytic allylation of aldehydes has been developed that employs allyl acetate as the allylating reagent. Under catalysis by ruthenium trichloride (3 mol %) in the presence of carbon monoxide (30 psi), water (1.5 equiv), and triethylamine (0.1 equiv), a wide range of aromatic, olefinic, and aliphatic aldehydes are efficiently allylated under mild conditions (70 °C, 24−48 h). The stoichiometric byproducts of this reaction are carbon dioxide and acetic acid.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Experiment procedures and compound characterization data. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 55 publications.

    1. JieXiang Yin, Roderick T. Stark, Ian A. Fallis, Duncan L. Browne. A Mechanochemical Zinc-Mediated Barbier-Type Allylation Reaction under Ball-Milling Conditions. The Journal of Organic Chemistry 2020, 85 (4) , 2347-2354. https://doi.org/10.1021/acs.joc.9b02876
    2. Josefa L. López-Martínez, Irene Torres-García, Ignacio Rodríguez-García, Manuel Muñoz-Dorado, Miriam Álvarez-Corral. Stereoselective Barbier-Type Allylations and Propargylations Mediated by CpTiCl3. The Journal of Organic Chemistry 2019, 84 (2) , 806-816. https://doi.org/10.1021/acs.joc.8b02643
    3. Sofiya A. Runikhina, Dmitry L. Usanov, Alexander O. Chizhov, Denis Chusov. Atom- and Step-Economical Ruthenium-Catalyzed Synthesis of Esters from Aldehydes or Ketones and Carboxylic Acids. Organic Letters 2018, 20 (24) , 7856-7859. https://doi.org/10.1021/acs.orglett.8b03375
    4. Shrabani Dinda. Computational Study of Enantioselectivity in the Asymmetric Allylation of Aldehydes with Chiral Pt(II) Phosphinite Complexes. The Journal of Organic Chemistry 2018, 83 (22) , 13911-13921. https://doi.org/10.1021/acs.joc.8b02230
    5. Scott E. Denmark, Zachery D. Matesich, Son T. Nguyen, and Selena Milicevic Sephton . Catalytic Nucleophilic Allylation Driven by the Water–Gas Shift Reaction. The Journal of Organic Chemistry 2018, 83 (1) , 23-48. https://doi.org/10.1021/acs.joc.7b02658
    6. Pavel N. Kolesnikov, Dmitry L. Usanov, Karim M. Muratov, and Denis Chusov . Dichotomy of Atom-Economical Hydrogen-Free Reductive Amidation vs Exhaustive Reductive Amination. Organic Letters 2017, 19 (20) , 5657-5660. https://doi.org/10.1021/acs.orglett.7b02821
    7. Jacquelyne A. Read and K. A. Woerpel . Allylmagnesium Halides Do Not React Chemoselectively Because Reaction Rates Approach the Diffusion Limit. The Journal of Organic Chemistry 2017, 82 (4) , 2300-2305. https://doi.org/10.1021/acs.joc.7b00053
    8. Scott E. Denmark, Malek Y. S. Ibrahim, and Andrea Ambrosi . Room Temperature, Reductive Alkylation of Activated Methylene Compounds: Carbon–Carbon Bond Formation Driven by the Rhodium-Catalyzed Water–Gas Shift Reaction. ACS Catalysis 2017, 7 (1) , 613-630. https://doi.org/10.1021/acscatal.6b03183
    9. Oleg I. Afanasyev, Alexey A. Tsygankov, Dmitry L. Usanov, and Denis Chusov . Dichotomy of Reductive Addition of Amines to Cyclopropyl Ketones vs Pyrrolidine Synthesis. Organic Letters 2016, 18 (22) , 5968-5970. https://doi.org/10.1021/acs.orglett.6b02945
    10. Stephen G. Davies, James A. Lee, Paul M. Roberts, Jeffrey P. Stonehouse, and James E. Thomson . Absolute Configuration Assignment by Asymmetric Syntheses of the Homalium Alkaloids (−)-(R,R,R)-Hoprominol and (−)-(4′S,4″R,2‴R)-Hopromalinol. The Journal of Organic Chemistry 2012, 77 (21) , 9724-9737. https://doi.org/10.1021/jo301830j
    11. Jong-Tai Hong and Hye-Young Jang . Platinum-Catalyzed Diastereoselective Intramolecular Coupling of Allyl Halides and Hydrazones. The Journal of Organic Chemistry 2011, 76 (16) , 6877-6882. https://doi.org/10.1021/jo200993v
    12. Marc-Olivier Simon, Jean-Pierre Genet and Sylvain Darses. Ruthenium Chloride as an Efficient Catalytic Precursor for Hydroarylation Reactions via C−H bond Activation. Organic Letters 2010, 12 (13) , 3038-3041. https://doi.org/10.1021/ol101038c
    13. Maksym Vasylyev and Howard Alper. Rhodium-Catalyzed Reductive Allylation of Conjugated Aldehydes with Allyl Acetate. The Journal of Organic Chemistry 2010, 75 (8) , 2710-2713. https://doi.org/10.1021/jo902706p
    14. Aaron M. Dumas and Eric Fillion. Sc(OTf)3-Catalyzed Conjugate Allylation of Alkylidene Meldrum’s Acids. Organic Letters 2009, 11 (9) , 1919-1922. https://doi.org/10.1021/ol9003959
    15. Mikhail M. Vinogradov, Oleg I. Afanasyev, Yulia V. Nelyubina, Gleb L. Denisov, Dmitry A. Loginov, Denis Chusov. Osmium catalysis in the reductive amination using carbon monoxide as a reducing agent. Molecular Catalysis 2020, 498 , 111260. https://doi.org/10.1016/j.mcat.2020.111260
    16. Vladimir S. Ostrovskii, Sofiya A. Runikhina, Oleg I. Afanasyev, Denis Chusov. Rhodium‐Catalyzed Reductive Esterification Using Carbon Monoxide as a Reducing Agent. European Journal of Organic Chemistry 2020, 2020 (27) , 4116-4121. https://doi.org/10.1002/ejoc.202000438
    17. Micky Lanster Sawkmie, Dipankar Paul, Snehadrinarayan Khatua, Paresh Nath Chatterjee. Active bismuth mediated allylation of carbonyls/N-tosyl aldimines and propargylation of aldehydes in water. Journal of Chemical Sciences 2019, 131 (6) https://doi.org/10.1007/s12039-019-1625-6
    18. Sofiya A. Runikhina, Mikhail A. Arsenov, Vladimir B. Kharitonov, Elizaveta R. Sovdagarova, Olga Chusova, Yulia V. Nelyubina, Gleb L. Denisov, Dmitry L. Usanov, Denis Chusov, Dmitry A. Loginov. Indenyl rhodium complexes. Synthesis and catalytic activity in reductive amination using carbon monoxide as a reducing agent. Journal of Organometallic Chemistry 2018, 867 , 106-112. https://doi.org/10.1016/j.jorganchem.2017.11.003
    19. Richard C. Larock, Cristiano Raminelli. Formation of Alcohols and Phenols by Alkylation of Carbonyl Compounds. 2018, 1-97. https://doi.org/10.1002/9781118662083.cot07-009
    20. Hongyu Tian, Yaxi Li, Rui Ding, Yongguo Liu, Bianbian Ma, Baoguo Sun. Syntheses of 4-Acetoxy- or Acetylthio-2-substituted Tetrahydrothiophene. HETEROCYCLES 2018, 96 (2) , 254. https://doi.org/10.3987/COM-17-13853
    21. Alexis Theodorou, Ierasia Triandafillidi, Christoforos G. Kokotos. Green Organocatalytic Dihydroxylation of Alkenes. European Journal of Organic Chemistry 2017, 2017 (11) , 1502-1509. https://doi.org/10.1002/ejoc.201601144
    22. Tse‐Lok Ho, Mary Fieser, Louis Fieser, Janice Smith. Ruthenium( III ) chloride. 2017https://doi.org/10.1002/9780471264194.fos08807.pub6
    23. Alexey P. Moskovets, Dmitry L. Usanov, Oleg I. Afanasyev, Vasilii A. Fastovskiy, Alexander P. Molotkov, Karim M. Muratov, Gleb L. Denisov, Semen S. Zlotskii, Alexander F. Smol'yakov, Dmitry A. Loginov, Denis Chusov. Reductive amination catalyzed by iridium complexes using carbon monoxide as a reducing agent. Organic & Biomolecular Chemistry 2017, 15 (30) , 6384-6387. https://doi.org/10.1039/C7OB01005B
    24. Oleg I. Afanasyev, Dmitry L. Usanov, Denis Chusov. Hydrogen-free reductive amination using iron pentacarbonyl as a reducing agent. Organic & Biomolecular Chemistry 2017, 15 (48) , 10164-10166. https://doi.org/10.1039/C7OB02795H
    25. Fei Ye, Mansour Haddad, Véronique Michelet, Virginie Ratovelomanana-Vidal. Solvent-free ruthenium trichloride-mediated [2 + 2 + 2] cycloaddition of α,ω-diynes and cyanamides: a convenient access to 2-aminopyridines. Organic Chemistry Frontiers 2017, 4 (6) , 1063-1068. https://doi.org/10.1039/C7QO00058H
    26. Viviane de Souza, Cristiane Oliveira, Thiago de Souza, Paulo Menezes, Severino Alves, Ricardo Longo, Ivani Malvestiti. A Green Approach for Allylations of Aldehydes and Ketones: Combining Allylborate, Mechanochemistry and Lanthanide Catalyst. Molecules 2016, 21 (11) , 1539. https://doi.org/10.3390/molecules21111539
    27. Andrea Ambrosi, Scott E. Denmark. Die Wassergas‐Shift‐Reaktion in der organischen Synthese. Angewandte Chemie 2016, 128 (40) , 12348-12374. https://doi.org/10.1002/ange.201601803
    28. Andrea Ambrosi, Scott E. Denmark. Harnessing the Power of the Water‐Gas Shift Reaction for Organic Synthesis. Angewandte Chemie International Edition 2016, 55 (40) , 12164-12189. https://doi.org/10.1002/anie.201601803
    29. Takeo Nakano, Kohei Endo, Yutaka Ukaji. Silver-Catalyzed Allylation of Ketones and Intramolecular Cyclization through Carbene Intermediates from Cyclopropenes Under Ambient Conditions. Chemistry - An Asian Journal 2016, 11 (5) , 713-721. https://doi.org/10.1002/asia.201501196
    30. Jeremy Jacquet, Anne-Laure Auvinet, Anil Kumar Mandadapu, Mansour Haddad, Virginie Ratovelomanana-Vidal, Véronique Michelet. Practical Solvent-Free Ruthenium Trichloride-Mediated Benzannulation Approach to Fused Functionalized Arenes. Advanced Synthesis & Catalysis 2015, 357 (7) , 1387-1392. https://doi.org/10.1002/adsc.201500186
    31. Hirokazu Tsukamoto, Ayumu Kawase, Takayuki Doi. Asymmetric palladium-catalyzed umpolung cyclization of allylic acetate-aldehyde using formate as a reductant. Chemical Communications 2015, 51 (38) , 8027-8030. https://doi.org/10.1039/C5CC02176F
    32. Scott E. Denmark, Zachery D. Matesich. Catalytic, Nucleophilic Allylation of Aldehydes with 2-Substituted Allylic Acetates: Carbon–Carbon Bond Formation Driven by the Water–Gas Shift Reaction. The Journal of Organic Chemistry 2014, 79 (13) , 5970-5986. https://doi.org/10.1021/jo501004j
    33. Zhuozhen Tan, Xiaolong Wan, Zhenhua Zang, Qun Qian, Wei Deng, Hegui Gong. Ni-catalyzed asymmetric reductive allylation of aldehydes with allylic carbonates. Chem. Commun. 2014, 50 (29) , 3827-3830. https://doi.org/10.1039/C3CC49859J
    34. Nianyuan Tan, Yi Chen, Yongbo Zhou, Chak-Tong Au, Shuang-Feng Yin. Synthesis and Structure of Organobismuth Chlorides and Triflates Containing (C,E)-Chelating Ligands (E=O, S) and Their Catalytic Application in the Allylation of Aldehydes with Tetraallyltin. ChemPlusChem 2013, 78 (11) , 1363-1369. https://doi.org/10.1002/cplu.201300288
    35. Túlio R. Couto, Juliano C.R. Freitas, Italo H. Cavalcanti, Roberta A. Oliveira, Paulo H. Menezes. Allylation of aldehydes with potassium allyltrifluoroborate catalyzed by Amberlyst A-15. Tetrahedron 2013, 69 (34) , 7006-7010. https://doi.org/10.1016/j.tet.2013.06.050
    36. Bum Seok Lee, Doo Ok Jang. A Mild and Efficient Three-Component Synthesis of Secondary and Tertiary Homoallylic Hydrazides. European Journal of Organic Chemistry 2013, 2013 (15) , 3123-3130. https://doi.org/10.1002/ejoc.201201757
    37. Fernanda Barbosa, Juliano Freitas, Caio Melo, Paulo Menezes, Roberta Oliveira. Allylation of Functionalized Aldehydes by Potassium Allyltrifluoroborate Catalyzed by 18-Crown-6 in Aqueous Media. Molecules 2012, 17 (12) , 14099-14110. https://doi.org/10.3390/molecules171214099
    38. Peter S. Blencowe, Anthony G.M. Barrett. Synthesis of 6-substituted salicylates via biomimetic aromatization utilizing the cross metathesis of a vinyl dioxinone with homoallylic alcohols. Canadian Journal of Chemistry 2012, 90 (11) , 975-984. https://doi.org/10.1139/v2012-071
    39. Bo Yao, Yan Liu, Meng-Ke Wang, Jin-Heng Li, Ri-Yuan Tang, Xing-Guo Zhang, Chen-Liang Deng. Palladium-Catalyzed Heck-Type Reactions of Allylic Esters with Arylboronic Acids or Potassium Aryltrifluoroborates. Advanced Synthesis & Catalysis 2012, 354 (6) , 1069-1076. https://doi.org/10.1002/adsc.201100889
    40. Joseph Moran, Michael J. Krische. Formation of C–C bonds via ruthenium-catalyzed transfer hydrogenation. Pure and Applied Chemistry 2012, 84 (8) , 1729-1739. https://doi.org/10.1351/PAC-CON-11-10-18
    41. Thomas Cochet, Didier Roche, Véronique Bellosta, Janine Cossy. ( E )‐Dimethyl 2‐Oxopent‐3‐enylphosphonate: An Excellent Substrate for Cross‐Metathesis – Easy Access to Functionalized Heterocycles. European Journal of Organic Chemistry 2012, 2012 (4) , 801-809. https://doi.org/10.1002/ejoc.201101398
    42. Florence J. Williams, Robin E. Grote, Elizabeth R. Jarvo. Rhodium-catalyzed redox allylation reactions of ketones. Chem. Commun. 2012, 48 (10) , 1496-1498. https://doi.org/10.1039/C1CC14691B
    43. Yi Cui, Yasuhiro Yamashita, Shū Kobayashi. Facile preparation of allylzinc species from allylboronates and zinc amide via a boron-to-zinc exchange process and their reactions with carbonyl compounds, imines and hydrazones. Chemical Communications 2012, 48 (83) , 10319. https://doi.org/10.1039/c2cc34340a
    44. B. A. Murray. Reactions of Aldehydes and Ketones and their Derivatives. 2011, 1-73. https://doi.org/10.1002/9781119972471.ch1
    45. Tse‐Lok Ho, Mary Fieser, Louis Fieser, Janice Smith. Ruthenium( III ) Chloride. 2011, 504-505. https://doi.org/10.1002/9780471264194.fos08807.pub4
    46. Hong Zhao, Jian Peng, Ruian Xiao, Wenyan Hao, Ming-Zhong Cai. Carbonyl allylation of aldehydes and ketones with allylic chlorides catalyzed by immobilization of palladium in MCM-41. Journal of Organometallic Chemistry 2011, 696 (10) , 2030-2034. https://doi.org/10.1016/j.jorganchem.2010.10.055
    47. Étienne Bélanger, Jean-François Paquin. Allyl Acetate. 2011https://doi.org/10.1002/047084289X.rn01274
    48. Suguru Ito, Akira Hayashi, Hirotomo Komai, Hitoshi Yamaguchi, Yoshihiro Kubota, Masatoshi Asami. Mesoporous aluminosilicate-catalyzed allylation of carbonyl compounds and acetals. Tetrahedron 2011, 67 (11) , 2081-2089. https://doi.org/10.1016/j.tet.2011.01.055
    49. John F. Bower, Michael J. Krische. Formation of C–C Bonds via Iridium-Catalyzed Hydrogenation and Transfer Hydrogenation. 2011, 107-138. https://doi.org/10.1007/978-3-642-15334-1_5
    50. Suren Husinec, Milka Jadranin, Rade Markovic, Milos Petkovic, Vladimir Savic, Nina Todorovic. Palladium-catalysed synthesis of allyl acetates from allenes. Tetrahedron Letters 2010, 51 (31) , 4066-4068. https://doi.org/10.1016/j.tetlet.2010.05.136
    51. Zhengyin Du, Fen Wang, Wanwei Zhou, Jin-Xian Wang. Indium-mediated Barbier-type Allylation Reaction in PEG400 and PEG400/H 2 O. Journal of Chemical Research 2010, 34 (8) , 475-477. https://doi.org/10.3184/030823410X12813608471242
    52. Li Zhang, Zhenggen Zha, Zhenlei Zhang, Yunfeng Li, Zhiyong Wang. An electrochemical tandem reaction: one-pot synthesis of homoallylic alcohols from alcohols in aqueous media. Chemical Communications 2010, 46 (38) , 7196. https://doi.org/10.1039/c0cc01964j
    53. Scott E. Denmark, Son T. Nguyen. ChemInform Abstract: Catalytic, Nucleophilic Allylation of Aldehydes with Allyl Acetate.. ChemInform 2009, 40 (25) https://doi.org/10.1002/chin.200925060
    54. In Su Kim, Soo Bong Han, Michael J. Krische. anti -Diastereo- and Enantioselective Carbonyl Crotylation from the Alcohol or Aldehyde Oxidation Level Employing a Cyclometallated Iridium Catalyst: α-Methyl Allyl Acetate as a Surrogate to Preformed Crotylmetal Reagents. Journal of the American Chemical Society 2009, 131 (7) , 2514-2520. https://doi.org/10.1021/ja808857w
    55. Soo Bong Han, In Su Kim, Michael J. Krische. Enantioselective iridium-catalyzed carbonyl allylation from the alcohol oxidation level via transfer hydrogenation: minimizing pre-activation for synthetic efficiency. Chemical Communications 2009, 254 (47) , 7278. https://doi.org/10.1039/b917243m

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect