ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

(NHC)CuH-Catalyzed Entry to Allenes via Propargylic Carbonate SN2′-Reductions

View Author Information
Organic Chemistry, Dortmund University of Technology, Otto-Hahn-Strasse 6, D-44227 Dortmund, Germany, and Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106
†Dortmund University of Technology.
‡University of California, Santa Barbara.
Cite this: Org. Lett. 2009, 11, 21, 5010–5012
Publication Date (Web):October 5, 2009
https://doi.org/10.1021/ol901868m
Copyright © 2009 American Chemical Society

    Article Views

    2357

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (225 KB)
    Supporting Info (1)»

    Abstract

    Abstract Image

    The copper hydride-catalyzed SN2′-reduction of propargylic carbonates provides an efficient route to functionalized allenes. The method takes advantage of the stabilizing effect of NHC ligands on CuH and combines high reactivity and stereoselectivity with excellent tolerance toward reactive functionalities.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Experimental procedures and selected NMR spectra. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 45 publications.

    1. Hiroki Miura, Yuki Yasui, Yosuke Masaki, Masafumi Doi, Tetsuya Shishido. Deoxygenative Silylation of C(sp3)–O Bonds with Hydrosilane by Cooperative Catalysis of Gold Nanoparticles and Solid Acids. ACS Catalysis 2023, 13 (10) , 6787-6794. https://doi.org/10.1021/acscatal.3c00973
    2. Wen-Ya Lu, Yong You, Ting-Ting Li, Zhen-Hua Wang, Jian-Qiang Zhao, Wei-Cheng Yuan. CuI-Catalyzed Decarboxylative Thiolation of Propargylic Cyclic Carbonates/Carbamates to Access Allenyl Thioethers. The Journal of Organic Chemistry 2021, 86 (9) , 6711-6720. https://doi.org/10.1021/acs.joc.1c00453
    3. Yuna Kim, Hanseul Lee, Sunga Park, Yunmi Lee. Copper-Catalyzed Propargylic Reduction with Diisobutylaluminum Hydride. Organic Letters 2018, 20 (17) , 5478-5481. https://doi.org/10.1021/acs.orglett.8b02413
    4. Melrose Mailig, Avijit Hazra, Megan K. Armstrong, and Gojko Lalic . Catalytic Anti-Markovnikov Hydroallylation of Terminal and Functionalized Internal Alkynes: Synthesis of Skipped Dienes and Trisubstituted Alkenes. Journal of the American Chemical Society 2017, 139 (20) , 6969-6977. https://doi.org/10.1021/jacs.7b02104
    5. Roscoe T. H. Linstadt, Carl. A. Peterson, Carina I. Jette, Zarko V. Boskovic, and Bruce H. Lipshutz . Control of Chemo-, Regio-, and Enantioselectivity in Copper Hydride Reductions of Morita–Baylis–Hillman Adducts. Organic Letters 2017, 19 (2) , 328-331. https://doi.org/10.1021/acs.orglett.6b03464
    6. Abraham J. Jordan, Gojko Lalic, and Joseph P. Sadighi . Coinage Metal Hydrides: Synthesis, Characterization, and Reactivity. Chemical Reviews 2016, 116 (15) , 8318-8372. https://doi.org/10.1021/acs.chemrev.6b00366
    7. T. N. Thanh Nguyen, Niklas O. Thiel, Felix Pape, and Johannes F. Teichert . Copper(I)-Catalyzed Allylic Substitutions with a Hydride Nucleophile. Organic Letters 2016, 18 (10) , 2455-2458. https://doi.org/10.1021/acs.orglett.6b00941
    8. Aaron M Whittaker and Gojko Lalic . Monophasic Catalytic System for the Selective Semireduction of Alkynes. Organic Letters 2013, 15 (5) , 1112-1115. https://doi.org/10.1021/ol4001679
    9. Mingyu Yang, Natsumi Yokokawa, Hirohisa Ohmiya, and Masaya Sawamura . Synthesis of Conjugated Allenes through Copper-Catalyzed γ-Selective and Stereospecific Coupling between Propargylic Phosphates and Aryl- or Alkenylboronates. Organic Letters 2012, 14 (3) , 816-819. https://doi.org/10.1021/ol2033465
    10. Hirohisa Ohmiya, Umi Yokobori, Yusuke Makida, and Masaya Sawamura . General Approach to Allenes through Copper-Catalyzed γ-Selective and Stereospecific Coupling between Propargylic Phosphates and Alkylboranes. Organic Letters 2011, 13 (23) , 6312-6315. https://doi.org/10.1021/ol202866h
    11. Devendra J. Vyas, Chinmoy K. Hazra, and Martin Oestreich . Copper(I)-Catalyzed Regioselective Propargylic Substitution Involving Si–B Bond Activation. Organic Letters 2011, 13 (16) , 4462-4465. https://doi.org/10.1021/ol201811d
    12. Nicole J. Rijs and Richard A. J. O’Hair . Unimolecular Reactions of Organocuprates and Organoargentates. Organometallics 2010, 29 (10) , 2282-2291. https://doi.org/10.1021/om1000875
    13. Guojing Pei, Hui Chen, Wan Xu, Tao Chen, Juan Li. Diboron-controlled product selectivity switch in copper-catalyzed decarboxylative substitutions of alkynyl cyclic carbonates. Organic Chemistry Frontiers 2021, 8 (24) , 6950-6961. https://doi.org/10.1039/D1QO01411K
    14. B. Cornils. IBiox. 2020https://doi.org/10.1002/9783527809080.cataz08714
    15. Yifan Jiang, Yangyang Ma, Enlu Ma, Zhiping Li. Copper‐Catalyzed Selective Cross‐Couplings of Propargylic Ethers with Aryl Grignard Reagents. Asian Journal of Organic Chemistry 2019, 8 (10) , 1834-1837. https://doi.org/10.1002/ajoc.201900409
    16. Jung Tae Han, Jaesook Yun. Asymmetric synthesis of α-chiral β-hydroxy allenes: copper-catalyzed γ-selective borylative coupling of vinyl arenes and propargyl phosphates. Chemical Communications 2019, 55 (66) , 9813-9816. https://doi.org/10.1039/C9CC04165F
    17. T. N. Thanh Nguyen, Niklas O. Thiel, Johannes F. Teichert. Copper( i )-catalysed asymmetric allylic reductions with hydrosilanes. Chem. Commun. 2017, 53 (85) , 11686-11689. https://doi.org/10.1039/C7CC07008J
    18. Gongbao Wang, Erik-Jan Lindeboom, Chris van Heerewaarden, Adriaan J. Minnaard. Synthesis of ene-yne-enes by nickel-catalyzed double S N 2′ substitution of 1,6-dichlorohexa-2,4-diyne. Catalysis Science & Technology 2017, 7 (11) , 2347-2355. https://doi.org/10.1039/C7CY00429J
    19. Theresa M. Locascio, Jon A. Tunge. Palladium-Catalyzed Regiodivergent Substitution of Propargylic Carbonates. Chemistry - A European Journal 2016, 22 (50) , 18140-18146. https://doi.org/10.1002/chem.201603481
    20. Jérôme M. Lavis, Robert E. Maleczka, Vijayanand Chandrasekaran, Steven J. Collier. Polymethylhydrosiloxane. 2016, 1-20. https://doi.org/10.1002/047084289X.rn00062.pub2
    21. Ruwei Shen, Bing Luo, Jianlin Yang, Lixiong Zhang, Li-Biao Han. Convenient synthesis of allenylphosphoryl compounds via Cu-catalysed couplings of P(O)H compounds with propargyl acetates. Chemical Communications 2016, 52 (38) , 6451-6454. https://doi.org/10.1039/C6CC02563C
    22. Yuehui Li, Iván Sorribes, Cristian Vicent, Kathrin Junge, Matthias Beller. Convenient Reductive Methylation of Amines with Carbonates at Room Temperature. Chemistry - A European Journal 2015, 21 (47) , 16759-16763. https://doi.org/10.1002/chem.201502917
    23. Pierre-Alexandre Deyris, Tatiana Cañeque, Yanlan Wang, Pascal Retailleau, Franca Bigi, Raimondo Maggi, Giovanni Maestri, Max Malacria. Catalytic Semireduction of Internal Alkynes with All-Metal Aromatic Complexes. ChemCatChem 2015, 7 (20) , 3266-3269. https://doi.org/10.1002/cctc.201500729
    24. Faïma Lazreg, Fady Nahra, Catherine S.J. Cazin. Copper–NHC complexes in catalysis. Coordination Chemistry Reviews 2015, 293-294 , 48-79. https://doi.org/10.1016/j.ccr.2014.12.019
    25. Faïma Lazreg, Catherine S. J. Cazin. NHC–Copper Complexes and their Applications. 2014, 199-242. https://doi.org/10.1002/9783527671229.ch08
    26. Bruce H. Lipshutz. Organocopper Chemistry. 2013, 1-133. https://doi.org/10.1002/9781118651421.ch1
    27. Tse-Lok Ho, Mary Fieser, Louis Fieser. Aminocarbene-Metal Complexes. 2013https://doi.org/10.1002/9780471264194.fos11693.pub2
    28. Helene Reeker, Per-Ola Norrby, Norbert Krause. Mechanistic Studies of the CuH-Catalyzed Synthesis of α-Hydroxyallenes. Organometallics 2012, 31 (22) , 8024-8030. https://doi.org/10.1021/om3007129
    29. Norbert Krause, Özge Aksin-Artok, Martta Asikainen, Viola Breker, Carl Deutsch, Jörg Erdsack, Hong-Tao Fan, Birgit Gockel, Stefan Minkler, Manojkumar Poonoth, Yoshinari Sawama, Yuka Sawama, Tao Sun, Frank Volz, Christian Winter. Combined coinage metal catalysis for the synthesis of bioactive molecules. Journal of Organometallic Chemistry 2012, 704 , 1-8. https://doi.org/10.1016/j.jorganchem.2012.01.008
    30. Simon Woodward, Darren Willcox. Ligated Organocuprates: An A–Z Routemap of Mechanism and Application. 2012, 233-255. https://doi.org/10.1002/9783527646586.ch11
    31. Norbert Krause. Golden Times for Allenes. 2012, 193-209. https://doi.org/10.1002/9783527646586.ch9
    32. Tao Sun, Carl Deutsch, Norbert Krause. Combined coinage metal catalysis in natural product synthesis: total synthesis of (+)-varitriol and seven analogs. Organic & Biomolecular Chemistry 2012, 10 (30) , 5965. https://doi.org/10.1039/c2ob25069a
    33. Chicco Manzuna Sapu, Jan-E. Bäckvall, Jan Deska. Enantioselective Enzymatic Desymmetrization of Prochiral Allenic Diols. Angewandte Chemie International Edition 2011, 50 (41) , 9731-9734. https://doi.org/10.1002/anie.201103227
    34. Tse-Lok Ho, Mary Fieser, Louis Fieser. Aminocarbene-Metal Complexes. 2011https://doi.org/10.1002/9780471264194.fos11693
    35. Shichao Yu, Shengming Ma. How easy are the syntheses of allenes?. Chemical Communications 2011, 47 (19) , 5384-5418. https://doi.org/10.1039/C0CC05640E
    36. Matthias A. Schade, Shigeyuki Yamada, Paul Knochel. Synthesis of Polyfunctional Allenes by Successive Copper-Mediated Substitutions. Chemistry - A European Journal 2011, 17 (15) , 4232-4237. https://doi.org/10.1002/chem.201003273
    37. Özge Aksın‐Artok, Norbert Krause. Combined Rhodium/Gold Catalysis: From Propargyloxiranes to 2,5‐Dihydrofurans in One Pot. Advanced Synthesis & Catalysis 2011, 353 (2-3) , 385-391. https://doi.org/10.1002/adsc.201000903
    38. Dongfeng Huang, Song Qin, Changwei Hu. Computational investigation on the mechanism and stereochemistry of guanidine-catalyzed enantioselective isomerization of 3-alkynoates to allenoates. Organic & Biomolecular Chemistry 2011, 9 (17) , 6034. https://doi.org/10.1039/c0ob01233e
    39. Nicolas Marion*. NHC–Copper, Silver and Gold Complexes in Catalysis. 2010, 317-344. https://doi.org/10.1039/9781849732161-00317
    40. Devendra J. Vyas, Martin Oestreich. Kupferkatalysierte Si-B-Bindungsaktivierung in der verzweigtselektiven allylischen Substitution linearer Allylchloride. Angewandte Chemie 2010, 122 (45) , 8692-8694. https://doi.org/10.1002/ange.201004658
    41. Devendra J. Vyas, Martin Oestreich. Copper-Catalyzed SiB Bond Activation in Branched-Selective Allylic Substitution of Linear Allylic Chlorides. Angewandte Chemie International Edition 2010, 49 (45) , 8513-8515. https://doi.org/10.1002/anie.201004658
    42. Kati Vehlow, Marta Porta, Siegfried Blechert. Synthesis of a Bioxazoline‐Derived Ru Metathesis Catalyst. ChemCatChem 2010, 2 (7) , 803-806. https://doi.org/10.1002/cctc.201000138
    43. Silvia Díez‐González. N ‐Heterocyclic Carbenes in Copper‐Catalyzed Reactions. 2010, 43-66. https://doi.org/10.1002/9783527630554.ch3
    44. Carl Deutsch, Bruce H. Lipshutz, Norbert Krause. ChemInform Abstract: (NHC)CuH-Catalyzed Entry to Allenes via Propargylic Carbonate S N 2′-Reductions.. ChemInform 2010, 41 (10) https://doi.org/10.1002/chin.201010064
    45. Silvia Díez-González, Eduardo C. Escudero-Adán, Jordi Benet-Buchholz, Edwin D. Stevens, Alexandra M. Z. Slawin, Steven P. Nolan. [(NHC)CuX] complexes: Synthesis, characterization and catalytic activities in reduction reactions and Click Chemistry. On the advantage of using well-defined catalytic systems. Dalton Transactions 2010, 39 (32) , 7595. https://doi.org/10.1039/c0dt00218f

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect