ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Fluoroacrylate-Bound Fluorous-Phase Soluble Hydrogenation Catalysts

View Author Information
Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas 77842-3012
Cite this: Org. Lett. 2000, 2, 3, 393–395
Publication Date (Web):January 20, 2000
https://doi.org/10.1021/ol991352h
Copyright © 2000 American Chemical Society

    Article Views

    369

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (96 KB)
    Supporting Info (1)»

    Abstract

    Abstract Image

    Fluoroacrylate polymer-bound hydrogenation catalysts are described. N-Acryloxysuccinimide-containing fluoroacrylate polymers were converted into phosphine ligands and subsequently into analogues of Wilkinson's catalyst by amidation of N-acryloxysuccinimide active ester residues and Rh exchange. The resulting catalysts have excellent activity and can be reused following fluorous biphasic liquid/liquid separation and extraction.

    *

    In papers with more than one author, the asterisk indicates the name of the author to whom inquiries about the paper should be addressed.

    Supporting Information Available

    ARTICLE SECTIONS
    Jump To

    Experimental procedures for the formation of the copolymers 3, 5, and 6 along with spectra data, molecular weight data, and elemental analyses. This material is available free of charge via the Internet at http:pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 42 publications.

    1. Ying-Hua Fu, Camila Perales, Todd Eliason, David E. Bergbreiter. 110th Anniversary: Reversible Solubilization of Polar Polymers and Polymeric Catalysts in Nonpolar Solvents. Industrial & Engineering Chemistry Research 2019, 58 (31) , 14579-14587. https://doi.org/10.1021/acs.iecr.9b02373
    2. Anindita Das and Patrick Theato . Activated Ester Containing Polymers: Opportunities and Challenges for the Design of Functional Macromolecules. Chemical Reviews 2016, 116 (3) , 1434-1495. https://doi.org/10.1021/acs.chemrev.5b00291
    3. Tae Gyu Lee, Seo Young Kim, Kwang Ho Song, Jaehoon Choe, and Ji Hyeon Kim . Liquid–Liquid Equilibria for the Ternary Systems of Perfluorohexane or Perfluamine + Hydrofluoroether + Tetrahydrofuran at 298.15 K or 273.15 K. Journal of Chemical & Engineering Data 2013, 58 (7) , 2035-2043. https://doi.org/10.1021/je400227m
    4. David E. Bergbreiter, Jianhua Tian and Chayanant Hongfa. Using Soluble Polymer Supports To Facilitate Homogeneous Catalysis. Chemical Reviews 2009, 109 (2) , 530-582. https://doi.org/10.1021/cr8004235
    5. Jinni Lu and Patrick H. Toy. Organic Polymer Supports for Synthesis and for Reagent and Catalyst Immobilization. Chemical Reviews 2009, 109 (2) , 815-838. https://doi.org/10.1021/cr8004444
    6. Qingwei Yao and, Yiliang Zhang. Poly(fluoroalkyl acrylate)-Bound Ruthenium Carbene Complex:  A Fluorous and Recyclable Catalyst for Ring-Closing Olefin Metathesis. Journal of the American Chemical Society 2004, 126 (1) , 74-75. https://doi.org/10.1021/ja037394p
    7. David E. Bergbreiter. Using Soluble Polymers To Recover Catalysts and Ligands. Chemical Reviews 2002, 102 (10) , 3345-3384. https://doi.org/10.1021/cr010343v
    8. David E. Bergbreiter,, Philip L. Osburn, and, Chunmei Li. Soluble Polymer-Supported Catalysts Containing Azo Dyes. Organic Letters 2002, 4 (5) , 737-740. https://doi.org/10.1021/ol017198s
    9. Cassandra L. Fraser,, Adam P. Smith, and, Xufeng Wu. Metal Template-Assisted Block Copolymer Synthesis:  Use of Solvent Polarity to Control Chain Conformation and Reactivity at the Metal Core. Journal of the American Chemical Society 2000, 122 (37) , 9026-9027. https://doi.org/10.1021/ja001360p
    10. David E. Bergbreiter,, Philip L. Osburn,, Allan Wilson, and, Erin M. Sink. Palladium-Catalyzed C−C Coupling under Thermomorphic Conditions. Journal of the American Chemical Society 2000, 122 (38) , 9058-9064. https://doi.org/10.1021/ja001708g
    11. B. Cornils. Rf (R f ). 2020https://doi.org/10.1002/9783527809080.cataz14380
    12. László T. Mika, István T. Horváth. Fluorous Catalysis. 2018, 219-268. https://doi.org/10.1002/9781119288152.ch10
    13. . Reduction–Hydrogenation. 2017, 863-957. https://doi.org/10.1002/9781119390541.ch11
    14. Richard C. Larock, Xiaoxia Zhang. Formation of Alkanes and Arenes by Reduction. 2017, 1-189. https://doi.org/10.1002/9781118662083.cot01-001
    15. Henning Sand, Ralf Weberskirch. Bipyridine copper functionalized polymer resins as support materials for the aerobic oxidation of alcohols. Polymer International 2017, 66 (3) , 428-435. https://doi.org/10.1002/pi.5277
    16. Tse‐Lok Ho, Mary Fieser, Louis Fieser. Fluorous Reagents and Ligands. 2017https://doi.org/10.1002/9780471264194.fos05341.pub5
    17. Zhen-Zhen Yang, Yanfei Zhao, Guipeng Ji, Hongye Zhang, Bo Yu, Xiang Gao, Zhimin Liu. Fluoro-functionalized polymeric ionic liquids: highly efficient catalysts for CO 2 cycloaddition to cyclic carbonates under mild conditions. Green Chemistry 2014, 16 (8) , 3724. https://doi.org/10.1039/C4GC00730A
    18. Tse-Lok Ho, Mary Fieser, Louis Fieser. Fluorous reagents and ligands. 2013, 221-222. https://doi.org/10.1002/9780471264194.fos05341.pub4
    19. Qing-Wen Song, Liang-Nian He, Jin-Quan Wang, Hiroyuki Yasuda, Toshiyasu Sakakura. Catalytic fixation of CO 2 to cyclic carbonates by phosphonium chlorides immobilized on fluorous polymer. Green Chem. 2013, 15 (1) , 110-115. https://doi.org/10.1039/C2GC36210D
    20. László T. Mika, István T. Horváth. Fluorous Catalysis. 2012, 137-184. https://doi.org/10.1002/9780470711828.ch6
    21. A. Ravve. Polymeric Materials for Special Applications. 2012, 695-790. https://doi.org/10.1007/978-1-4614-2212-9_10
    22. Xi Zhao, Dongmei He, László T. Mika, István T. Horváth. Fluorous Hydrogenation. 2011, 233-245. https://doi.org/10.1007/128_2011_281
    23. Tse-Lok Ho, Mary Fieser, Louis Fieser, Rick Danheiser, William Roush, Janice Smith. Rhodium(II) carboxylates. 2010, 000-000. https://doi.org/10.1002/9780471264194.fos08768.pub3
    24. Tse-Lok Ho, Mary Fieser, Louis Fieser, Rick Danheiser, William Roush, Janice Smith. Rhodium(II) carboxylates. 2009https://doi.org/10.1002/9780471264194.fos08768.pub2
    25. Ernst Wiebus, Boy Cornils. Water as a Reaction Solvent – an Industry Perspective. 2007, 366-397. https://doi.org/10.1002/9780470988817.ch12
    26. N.E. Leadbeater. Polymer-supported Organometallic Catalysts. 2007, 663-753. https://doi.org/10.1016/B0-08-045047-4/00179-5
    27. Tse-Lok Ho, Mary Fieser, Louis Fieser. Fluorous reagents and ligands. 2006https://doi.org/10.1002/9780471264194.fos05341
    28. Elwin De Wolf, Berth‐Jan Deelman. Fluorous Catalysts and Fluorous Phase Catalyst Separation for Hydrogenation Catalysis. 2006, 1377-1388. https://doi.org/10.1002/9783527619382.ch40
    29. David E. Bergbreiter, Jonathon D. Frels, Jeffrey Rawson, Jun Li, Joseph H. Reibenspies. Synthesis and characterization of electronically varied XCX palladacycles with functional arene groups. Inorganica Chimica Acta 2006, 359 (6) , 1912-1922. https://doi.org/10.1016/j.ica.2005.09.030
    30. Ernst Wiebus, Boy Cornils. Biphasic Systems: Water — Organic. 2006, 105-143. https://doi.org/10.1007/1-4020-4087-3_5
    31. Siegfried Schneider, Carl Christoph Tzschucke, Willi Bannwarth. State‐of‐the‐Art and Typical Reactions. 2005, 346-402. https://doi.org/10.1002/9783527619597.ch4b
    32. Jianliang Xiao. Environmental Catalysis in Organic Synthesis. 2005, 547-590. https://doi.org/10.1201/9781420027679.ch21
    33. Rosenildo Corrêa da Costa, J. A. Gladysz. Transition Metal‐Based Fluorous Catalysts. 2004, 527-543. https://doi.org/10.1002/9783527619405.ch6b
    34. Edward A. Karakhanov, Anton L. Maximov. Catalysis by Soluble Macromolecular Metal Complexes. 2003, 457-501. https://doi.org/10.1002/9783527610778.ch11
    35. Boy Cornils, Wolfgang A. Herrmann. Concepts in homogeneous catalysis: the industrial view. Journal of Catalysis 2003, 216 (1-2) , 23-31. https://doi.org/10.1016/S0021-9517(02)00128-8
    36. Weiping Chen, Lijin Xu, Yulai Hu, Anna M Banet Osuna, Jianliang Xiao. New approaches to fluorinated ligands and their application in catalysis. Tetrahedron 2002, 58 (20) , 3889-3899. https://doi.org/10.1016/S0040-4020(02)00213-2
    37. Philip L Osburn, David E Bergbreiter. Molecular engineering of organic reagents and catalysts using soluble polymers. Progress in Polymer Science 2001, 26 (10) , 2015-2081. https://doi.org/10.1016/S0079-6700(01)00032-6
    38. Cameron Alexander. Synthetic polymer systems in drug development. Expert Opinion on Emerging Drugs 2001, 6 (2) , 331-343. https://doi.org/10.1517/14728214.6.2.331
    39. David E. Bergbreiter. Using polymers to control substrate, ligand, or catalyst solubility. Journal of Polymer Science Part A: Polymer Chemistry 2001, 39 (14) , 2351-2363. https://doi.org/10.1002/pola.1212
    40. Jennifer A. Loch, Cornelia Borgmann, Robert H. Crabtree. Synthesis of PEG–iridium conjugates and their use as hydrogenation catalysts in a water/substrate two-phase medium. Journal of Molecular Catalysis A: Chemical 2001, 170 (1-2) , 75-80. https://doi.org/10.1016/S1381-1169(01)00084-X
    41. Miriam Meseguer, Marcial Moreno-Mañas, Adelina Vallribera. Conjugate addition to diethyl azodicarboxylate under organic-perfluorinated biphasic homogeneous catalysis by nickel(II) species. Tetrahedron Letters 2000, 41 (21) , 4093-4095. https://doi.org/10.1016/S0040-4039(00)00549-9
    42. David E. Bergbreiter. Thermomorphic Catalysts. , 117-153. https://doi.org/10.1002/9780470682005.ch6

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect