ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Reactions of a Triazacyclononane-Supported Tantalum−Lithium Bridging Alkylidene with Organic Substrates

View Author Information
Department of Chemistry, University of California at Berkeley and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720-1460
Cite this: Organometallics 2002, 21, 16, 3426–3433
Publication Date (Web):July 2, 2002
https://doi.org/10.1021/om020175c
Copyright © 2002 American Chemical Society

    Article Views

    301

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    The reactivity of a range of electrophilic organic substrates with a heterobimetallic tantalum−lithium bridging alkylidene [(Me3SiCH2)(ArN)Ta(μ-CHSiMe3)(μ-η13-iPr2-tacn)Li, 3] is presented. Proton sources of widely varying acidity react to protonate the alkylidene ligand, leading to an interesting tantalum−lithium bridging hydride complex in the case of H2. The alkylidene 3 undergoes a series of insertion reactions with unsaturated substrates, such as acetonitrile, carbon monoxide, and carbon disulfide; it also reacts with an acid chloride to yield a tantalum enolate species featuring return of the iPr2-tacn- ligand to a tridentate coordination mode. The incorporated lithium in 3 played an important role, at least structurally, in the chemistry observed.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    *

     Corresponding author. E-mail:  [email protected].

    Supporting Information Available

    ARTICLE SECTIONS
    Jump To

    This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 29 publications.

    1. Marina Perez-Jimenez, Natalia Curado, Celia Maya, Jesus Campos, Jesus Jover, Santiago Alvarez, Ernesto Carmona. Coordination of LiH Molecules to Mo≣Mo Bonds: Experimental and Computational Studies on Mo2LiH2, Mo2Li2H4, and Mo6Li9H18 Clusters. Journal of the American Chemical Society 2021, 143 (13) , 5222-5230. https://doi.org/10.1021/jacs.1c01602
    2. Alan F. Heyduk, Ryan A. Zarkesh, and Andy I. Nguyen . Designing Catalysts for Nitrene Transfer Using Early Transition Metals and Redox-Active Ligands. Inorganic Chemistry 2011, 50 (20) , 9849-9863. https://doi.org/10.1021/ic200911b
    3. Ross Campbell, Daniel Cannon, Pablo García-Álvarez, Alan R. Kennedy, Robert E. Mulvey, Stuart D. Robertson, Jörg Saßmannshausen, and Tell Tuttle . Main Group Multiple C–H/N–H Bond Activation of a Diamine and Isolation of A Molecular Dilithium Zincate Hydride: Experimental and DFT Evidence for Alkali Metal–Zinc Synergistic Effects. Journal of the American Chemical Society 2011, 133 (34) , 13706-13717. https://doi.org/10.1021/ja205547h
    4. Hayato Tsurugi, Takashi Ohno, Tsuyoshi Kanayama, Rocío A. Arteaga-Müller and Kazushi Mashima. Tantalum−Benzylidene Complexes Supported by C5Me5 and Diazadiene Ligands: Synthesis, Kinetic Analysis of the Formation, and Reactive Studies. Organometallics 2009, 28 (6) , 1950-1960. https://doi.org/10.1021/om8012019
    5. Andy I. Nguyen, Karen J. Blackmore, Shawn M. Carter, Ryan A. Zarkesh and Alan F. Heyduk. One- and Two-Electron Reactivity of a Tantalum(V) Complex with a Redox-Active Tris(amido) Ligand. Journal of the American Chemical Society 2009, 131 (9) , 3307-3316. https://doi.org/10.1021/ja808542j
    6. Andrew L. Gott, Patrick C. McGowan and Claire N. Temple. Controlling the Coordination Mode of 1,4,7-Triazacyclononane Complexes of Rhodium and Iridium and Evaluating Their Behavior as Phenylacetylene Polymerization Catalysts. Organometallics 2008, 27 (12) , 2852-2860. https://doi.org/10.1021/om800180a
    7. Steven D. Brown and, Jonas C. Peters. Hydrogenolysis of [PhBP3]Fe⋮N-p-tolyl:  Probing the Reactivity of an Iron Imide with H2. Journal of the American Chemical Society 2004, 126 (14) , 4538-4539. https://doi.org/10.1021/ja0399122
    8. Kazushi Mashima,, Hirotaka Yonekura,, Tsuneaki Yamagata, and, Kazuhide Tani. Synthesis, Characterization, and Reactions of a Half-Metallocene Benzylidene Complex of Tantalum Bearing 2,3-Dimethyl-1,3-butadiene and Pentamethylcyclopentadienyl Ligands. Organometallics 2003, 22 (18) , 3766-3772. https://doi.org/10.1021/om030313d
    9. Marina Pérez‐Jiménez, Jesús Campos, Jesús Jover, Santiago Álvarez, Ernesto Carmona. Supported σ‐Complexes of Li−C Bonds from Coordination of Monomeric Molecules of LiCH 3 , LiCH 2 CH 3 and LiC 6 H 5 to Mo≣Mo Bonds. Angewandte Chemie 2022, 134 (8) https://doi.org/10.1002/ange.202116009
    10. Marina Pérez‐Jiménez, Jesús Campos, Jesús Jover, Santiago Álvarez, Ernesto Carmona. Supported σ‐Complexes of Li−C Bonds from Coordination of Monomeric Molecules of LiCH 3 , LiCH 2 CH 3 and LiC 6 H 5 to Mo≣Mo Bonds. Angewandte Chemie International Edition 2022, 61 (8) https://doi.org/10.1002/anie.202116009
    11. Kotohiro Nomura. Organometallic Complexes of Group 5 Metals With Metal-Carbon Sigma and Multiple Bonds. 2022, 587-650. https://doi.org/10.1016/B978-0-12-820206-7.00042-1
    12. Hsiang-Hua Hsieh, Meng-Hsiu Tu, Yu-Chia Su, Baoz-Tsan Ko, Amitabha Datta, Jui-Hsien Huang. Synthesis and molecular geometry of unique lithium isopropoxide assisted tantalum isopropoxide cluster containing bidentate N,O-ketiminate ligands. Journal of Organometallic Chemistry 2021, 933 , 121660. https://doi.org/10.1016/j.jorganchem.2020.121660
    13. Hassan Osseili, Khai‐Nghi Truong, Thomas P. Spaniol, Laurent Maron, Ulli Englert, Jun Okuda. Alkalimetallamid‐stabilisierte Titancarben‐Komplexe. Angewandte Chemie 2019, 131 (6) , 1847-1851. https://doi.org/10.1002/ange.201812579
    14. Hassan Osseili, Khai‐Nghi Truong, Thomas P. Spaniol, Laurent Maron, Ulli Englert, Jun Okuda. Titanium Carbene Complexes Stabilized by Alkali Metal Amides. Angewandte Chemie International Edition 2019, 58 (6) , 1833-1837. https://doi.org/10.1002/anie.201812579
    15. Robin M. Porter, Gillian Reid, Andreas A. Danopoulos. Diamido tantalum(V) complexes derived from a diazamacrocycle. Polyhedron 2018, 149 , 34-38. https://doi.org/10.1016/j.poly.2018.04.019
    16. S. Schnitzler, P. Cui, T. P. Spaniol, J. Okuda. Molecular magnesium hydrides supported by an anionic triazacyclononane-type ligand. Dalton Transactions 2017, 46 (6) , 1761-1765. https://doi.org/10.1039/C6DT04654A
    17. Takashi Kurogi, Yutaka Ishida, Tsubasa Hatanaka, Hiroyuki Kawaguchi. Reduction of carbon monoxide by a tetrakis(aryloxide)diniobium complex having four bridging hydrides. Dalton Trans. 2013, 42 (21) , 7510-7513. https://doi.org/10.1039/C2DT32798H
    18. José Vicente. Synthesis of Metal Enolato Complexes. 2010https://doi.org/10.1002/9780470682531.pat0421
    19. Wayne A. Chomitz, John Arnold. Use of Tetradentate Monoanionic Ligands for Stabilizing Reactive Metal Complexes. Chemistry – A European Journal 2009, 15 (9) , 2020-2030. https://doi.org/10.1002/chem.200801069
    20. K. Mashima. Tantalum Organometallics. 2007, 101-200. https://doi.org/10.1016/B0-08-045047-4/00068-6
    21. Hiroyuki Kawaguchi, Tsukasa Matsuo. Complexes of tantalum with triaryloxides: Ligand and solvent effects on formation of hydride derivatives. Journal of Organometallic Chemistry 2005, 690 (23) , 5333-5345. https://doi.org/10.1016/j.jorganchem.2005.05.002
    22. Ruitao Wang, Ziling Xue. Niobium & Tantalum: Organometallic ChemistryBased in part on the article Niobium & Tantalum: Organometallic Chemistry by David E. Wigley which appeared in the Encyclopedia of Inorganic Chemistry, First Edition .. 2005https://doi.org/10.1002/0470862106.ia154
    23. Ruitao Wang, Ziling Xue. Niobium & Tantalum: Organometallic ChemistryBased in part on the article Niobium & Tantalum: Organometallic Chemistry by David E. Wigley which appeared in the Encyclopedia of Inorganic Chemistry, First Edition .. 2005https://doi.org/10.1002/9781119951438.eibc0144
    24. Kazushi Mashima. Ligand Architecture on Stereocontrol of Half‐Metallocene Benzylidene Complexes of Tantalum. Advanced Synthesis & Catalysis 2005, 347 (2-3) , 323-328. https://doi.org/10.1002/adsc.200404272
    25. James W Herndon. The chemistry of the carbon–transition metal double and triple bond: annual survey covering the year 2002. Coordination Chemistry Reviews 2004, 248 (1-2) , 3-79. https://doi.org/10.1016/j.cct.2003.11.001
    26. Andrew L. Gott, Patrick C. McGowan, Claire N. Temple. The formation, reactivity and interconversion of novel η 1 - and η 3 -triazacyclononane complexes of rhodium( i ) and rhodium( iii ). Dalton Trans. 2004, 21 (12) , 1841-1845. https://doi.org/10.1039/B401877J
    27. Chunming Cui, Garth R. Giesbrecht, Joseph A.R. Schmidt, John Arnold. A cationic aluminum methyl complex supported by an anionic tacn ligand. Inorganica Chimica Acta 2003, 351 , 404-408. https://doi.org/10.1016/S0020-1693(03)00124-5
    28. T. Waters, A.G. Wedd, M. Ziolek, I. Nowak. Niobium and Tantalum. 2003, 241-312. https://doi.org/10.1016/B0-08-043748-6/03031-0
    29. John Malito. 11  Vanadium, niobium and tantalum. Annu. Rep. Prog. Chem., Sect. A: Inorg. Chem. 2003, 99 , 149-163. https://doi.org/10.1039/B211511P

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect