ACS Publications. Most Trusted. Most Cited. Most Read
Metal and Ligand-Substituent Effects in the Immortal Polymerization of rac-Lactide with Li, Na, and K Phenoxo-imine Complexes
My Activity
    Article

    Metal and Ligand-Substituent Effects in the Immortal Polymerization of rac-Lactide with Li, Na, and K Phenoxo-imine Complexes
    Click to copy article linkArticle link copied!

    View Author Information
    Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá, Campus Universitario, 28871 Alcalá de Henares, Spain
    Other Access OptionsSupporting Information (2)

    Organometallics

    Cite this: Organometallics 2015, 34, 2, 477–487
    Click to copy citationCitation copied!
    https://doi.org/10.1021/om501000b
    Published January 14, 2015
    Copyright © 2015 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    A series of lithium, sodium, and potassium complexes with phenoxo-imine ligands M[(O-2-(RN═CH)C6H4] [R = C6H5; 2-tBuC6H5; 2,6-iPr2C6H3] and [O-2-(RN═CH)-4,6-tBu2C6H4] [R = C6H5; 2-tBuC6H5; 2,6-iPr2C6H3] 13(af) have been synthesized. The molecular structures in the solid state of some of these complexes have been determined by X-ray diffraction. These compounds show different nuclearities and geometries around the metal center depending on the nature and the pocket of the ligand substituents. Of particular interest is the structure of compound 3e, being the first example of a potassium cubane complex obtained with this kind of ligand. The structural behavior in solution has also been studied by diffusion-ordered NMR spectroscopy (DOSY), showing a direct correlation between aggregation behavior and polymerization activity. Compounds 13(af) are extremely active catalysts in the ring-opening polymerization (ROP) of rac-lactide, achieving conversions of 100% in less than 1 min and heterorich-PLA that is modified by the metal atom and the ligand substituents. BnOH was used as co-initiator, and the presence of large amounts of the alcohol produces the immortal polymerization of rac-lactide in a more controlled process. Stoichiometric reactions involving the catalysts, BnOH, and lactide demonstrated an activated monomer mechanism for the polymerization of rac-lactide.

    Copyright © 2015 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Experimental details, X-ray crystallographic data (CIF), and additional characterization data. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 102 publications.

    1. Utku Yolsal, Peter J. Shaw, Phoebe A. Lowy, Raju Chambenahalli, Jennifer A. Garden. Exploiting Multimetallic Cooperativity in the Ring-Opening Polymerization of Cyclic Esters and Ethers. ACS Catalysis 2024, 14 (2) , 1050-1074. https://doi.org/10.1021/acscatal.3c05103
    2. L. Reginald Mills, David Gygi, Eric M. Simmons, Steven R. Wisniewski, Junho Kim, Paul J. Chirik. Mechanistic Investigations of Phenoxyimine–Cobalt(II)-Catalyzed C(sp2)–C(sp3) Suzuki–Miyaura Cross-Coupling. Journal of the American Chemical Society 2023, 145 (31) , 17029-17041. https://doi.org/10.1021/jacs.3c02103
    3. Dong Xia, Hehua Li, Tang Li, Haiyan Ma. Isoselective Polymerization of rac-Lactide by Magnesium Initiators Bearing Achiral Di(2-pyridyl)methyl Substituted Aminophenolate Ligands. Inorganic Chemistry 2023, 62 (27) , 10792-10804. https://doi.org/10.1021/acs.inorgchem.3c01398
    4. Chenyang Hu, Xing Chen, Mingxin Niu, Qi Zhang, Ranlong Duan, Xuan Pang. Immortal Ring-Opening Copolymerization of Epoxide and Isocyanate Using a Commercial Manganese Catalyst. Macromolecules 2022, 55 (2) , 652-657. https://doi.org/10.1021/acs.macromol.1c02331
    5. Anna Hanft, Malte Jürgensen, Laura Wolz, Krzysztof Radacki, Crispin Lichtenberg. Salicylaldimines: Formation via Ring Contraction and Synthesis of Mono- and Heterobimetallic Alkali Metal Heterocubanes. Inorganic Chemistry 2020, 59 (23) , 17678-17688. https://doi.org/10.1021/acs.inorgchem.0c02920
    6. Shaofeng Liu, Yanhong Xing, Quande Zheng, Yutong Jia, Zhibo Li. Synthesis of Anthracene-Bridged Dinuclear Phenoxyiminato Organotitanium Catalysts with Enhanced Activity, Thermal Stability, and Comonomer Incorporation Ability toward Ethylene (Co)polymerization. Organometallics 2020, 39 (17) , 3268-3274. https://doi.org/10.1021/acs.organomet.0c00477
    7. María Fernández-Millán, Paula Ortega, Tomás Cuenca, Jesus Cano, Marta E. G. Mosquera. Alkali-Metal Compounds with Bio-Based Ligands as Catalysts for Isoselective Lactide Polymerization: Influence of the Catalyst Aggregation on the Polymerization Control. Organometallics 2020, 39 (12) , 2278-2286. https://doi.org/10.1021/acs.organomet.0c00237
    8. Federica Santulli, Ilaria D’Auria, Laura Boggioni, Simona Losio, Matteo Proverbio, Chiara Costabile, Mina Mazzeo. Bimetallic Aluminum Complexes Bearing Binaphthyl-Based Iminophenolate Ligands as Catalysts for the Synthesis of Polyesters. Organometallics 2020, 39 (8) , 1213-1220. https://doi.org/10.1021/acs.organomet.0c00016
    9. Francisco M. García-Valle, Vanessa Tabernero, Tomás Cuenca, Marta E. G. Mosquera, Jesús Cano. Intramolecular C–F Activation in Schiff-Base Alkali Metal Complexes. Organometallics 2019, 38 (4) , 894-904. https://doi.org/10.1021/acs.organomet.8b00868
    10. Yaqin Cui, Jinxing Jiang, Xiaoyang Mao, Jincai Wu. Mononuclear Salen–Sodium Ion Pairs as Catalysts for Isoselective Polymerization of rac-Lactide. Inorganic Chemistry 2019, 58 (1) , 218-227. https://doi.org/10.1021/acs.inorgchem.8b02290
    11. Eszter Fazekas, Gary S. Nichol, Jennifer A. Garden, Michael P. Shaver. IronIII Half Salen Catalysts for Atom Transfer Radical and Ring-Opening Polymerizations. ACS Omega 2018, 3 (12) , 16945-16953. https://doi.org/10.1021/acsomega.8b02432
    12. Ranlong Duan, Chenyang Hu, Zhiqiang Sun, Xuan Pang, Xuesi Chen. Zinc and Magnesium Complexes Bearing Oxazoline-Derived Ligands and Their Application for Ring Opening Polymerization of Cyclic Esters. ACS Omega 2018, 3 (9) , 11703-11709. https://doi.org/10.1021/acsomega.8b01997
    13. Francisco M. García-Valle, Vanessa Tabernero, Tomás Cuenca, Marta E. G. Mosquera, Jesús Cano, Stefano Milione. Biodegradable PHB from rac-β-Butyrolactone: Highly Controlled ROP Mediated by a Pentacoordinated Aluminum Complex. Organometallics 2018, 37 (6) , 837-840. https://doi.org/10.1021/acs.organomet.7b00843
    14. Adimulam Harinath, Jayeeta Bhattacharjee, Alok Sarkar, Hari Pada Nayek, Tarun K. Panda. Ring Opening Polymerization and Copolymerization of Cyclic Esters Catalyzed by Group 2 Metal Complexes Supported by Functionalized P–N Ligands. Inorganic Chemistry 2018, 57 (5) , 2503-2516. https://doi.org/10.1021/acs.inorgchem.7b02847
    15. Chao Kan, Jianwen Hu, Yang Huang, Haobing Wang, and Haiyan Ma . Highly Isoselective and Active Zinc Catalysts for rac-Lactide Polymerization: Effect of Pendant Groups of Aminophenolate Ligands. Macromolecules 2017, 50 (20) , 7911-7919. https://doi.org/10.1021/acs.macromol.7b01420
    16. Changjuan Chen, Yaqin Cui, Xiaoyang Mao, Xiaobo Pan, and Jincai Wu . Suppressing Cyclic Polymerization for Isoselective Synthesis of High-Molecular-Weight Linear Polylactide Catalyzed by Sodium/Potassium Sulfonamidate Complexes. Macromolecules 2017, 50 (1) , 83-96. https://doi.org/10.1021/acs.macromol.6b02271
    17. Sarah M. Kirk, Gabriele Kociok-Köhn, and Matthew D. Jones . Zirconium vs Aluminum Salalen Initiators for the Production of Biopolymers. Organometallics 2016, 35 (22) , 3837-3843. https://doi.org/10.1021/acs.organomet.6b00718
    18. Hsiu-Wei Ou, Kai-Hsuan Lo, Wei-Ting Du, Wei-Yi Lu, Wan-Jung Chuang, Bor-Hunn Huang, Hsuan-Ying Chen, and Chu-Chieh Lin . Synthesis of Sodium Complexes Supported with NNO-Tridentate Schiff Base Ligands and Their Applications in the Ring-Opening Polymerization of l-Lactide. Inorganic Chemistry 2016, 55 (4) , 1423-1432. https://doi.org/10.1021/acs.inorgchem.5b02043
    19. Yangyang Sun, Jiao Xiong, Zhongran Dai, Xiaobo Pan, Ning Tang, and Jincai Wu . Stereoselective Alkali-Metal Catalysts for Highly Isotactic Poly(rac-lactide) Synthesis. Inorganic Chemistry 2016, 55 (1) , 136-143. https://doi.org/10.1021/acs.inorgchem.5b02709
    20. Zhongran Dai, Yangyang Sun, Jiao Xiong, Xiaobo Pan, and Jincai Wu . Alkali-Metal Monophenolates with a Sandwich-Type Catalytic Center as Catalysts for Highly Isoselective Polymerization of rac-Lactide. ACS Macro Letters 2015, 4 (5) , 556-560. https://doi.org/10.1021/acsmacrolett.5b00209
    21. Eszter Fazekas, Alvaro Etcheverry-Berrios, Gary S. Nichol, Stergios Piligkos, Euan K. Brechin, Jennifer A. Garden. Robust Y and Lu TrenSal catalysts for ring-opening polymerisation. Polyhedron 2025, 266 , 117308. https://doi.org/10.1016/j.poly.2024.117308
    22. Angela Milinkovic, Antoine Dupé, Nadia C. Mösch‐Zanetti. Vanadium(V/IV) Oxido Complexes: Potential as Bases in Frustrated Lewis Pairs. European Journal of Inorganic Chemistry 2024, 27 (35) https://doi.org/10.1002/ejic.202400473
    23. Edyta Nizioł, Aleksandra Marszałek-Harych, Wiktor Zierkiewicz, Łukasz John, Jolanta Ejfler. Structural subtleties and catalytic activity of sodium aminophenolate complexes in polylactide degradation: towards sustainable waste management solutions. Dalton Transactions 2024, 53 (31) , 12893-12904. https://doi.org/10.1039/D4DT01270D
    24. W. A. Munzeiwa, Bernard Owaga Omondi, V. O. Nyamori. A perspective into ring-opening polymerization of ε-caprolactone and lactides: effect of, ligand, catalyst structure and system dynamics, on catalytic activity and polymer properties. Polymer Bulletin 2024, 81 (11) , 9419-9464. https://doi.org/10.1007/s00289-024-05149-5
    25. Miguel Palenzuela, Esther Mula, Carlos Blanco, Valentina Sessini, Rama M. Shakaroun, Hui Li, Sophie M. Guillaume, Marta E. G. Mosquera. Copolymerization of β‐Butyrolactones into Functionalized Polyhydroxyalkanoates Using Aluminum Catalysts: Influence of the Initiator in the Ring‐Opening Polymerization Mechanism. Macromolecular Rapid Communications 2024, 45 (14) https://doi.org/10.1002/marc.202400091
    26. Rafał Petrus, Adrian Kowaliński, Tadeusz Lis. Recycling primary lithium batteries using a coordination chemistry approach: recovery of lithium and manganese residues in the form of industrially important materials. Dalton Transactions 2024, 53 (17) , 7450-7469. https://doi.org/10.1039/D4DT00648H
    27. Phoebe A. Lowy, Maisarah Abdul Rahman, Gary S. Nichol, Carole A. Morrison, Jennifer A. Garden. To Be or Not To Be… Cooperative? Trimetallic Catalysts for the Ring‐Opening Polymerisation of Cyclic Esters. ChemCatChem 2024, 16 (8) https://doi.org/10.1002/cctc.202301338
    28. Jack W. J. Hughes, Dawid J. Babula, Findlay Stowers-Veitch, Kang Yuan, Marina Uzelac, Gary S. Nichol, Michael J. Ingleson, Jennifer A. Garden. NacNac-zinc-pyridonate mediated ε-caprolactone ROP. Dalton Transactions 2023, 52 (47) , 17767-17775. https://doi.org/10.1039/D3DT03344A
    29. Qi Zhang, Chenyang Hu, Xuan Pang. Multinuclear Catalyst: An Efficient Tool for the Synthesis of Polyesters and Polycarbonates by Ring-opening Polymerization. Fundamental Research 2023, 3 https://doi.org/10.1016/j.fmre.2023.06.016
    30. Jiahao Gao, Wenjuan Zhang, Xing Wang, Rui Wang, Mingyang Han, Furong Cao, Xiang Hao. Isoselective Ring-Opening Polymerization of rac-Lactide Catalyzed by Simple Potassium Amidate Complexes Containing Polycyclic Aryl Group. Catalysts 2023, 13 (4) , 770. https://doi.org/10.3390/catal13040770
    31. Aurélie Macé, Khaoula Hamrouni, Paola Matozzo, Max Coehlo, Jakub Firlej, Faouzi Aloui, Nicolas Vanthuyne, Elsa Caytan, Marie Cordier, Grégory Pieters, Monika Srebro‐Hooper, Fabienne Berrée, Bertrand Carboni, Jeanne Crassous. Synthesis, structural characterization, and chiroptical properties of planarly and axially chiral boranils. Chirality 2023, 35 (4) , 227-246. https://doi.org/10.1002/chir.23537
    32. Edyta Nizioł, Dawid Jędrzkiewicz, Agata Wiencierz, Wojciech Paś, Danuta Trybuła, Wiktor Zierkiewicz, Aleksandra Marszałek-Harych, Jolanta Ejfler. Sodium complexes as precise tools for cutting polymer chains. Exploration of PLA degradation by unique cooperation of sodium centers. Inorganic Chemistry Frontiers 2023, 10 (4) , 1076-1090. https://doi.org/10.1039/D2QI01938H
    33. Cristina Ruiz Martínez, Juana M. Pérez, Francisco M. Arrabal-Campos, Antonio Rodríguez-Diéguez, Duane Choquesillo-Lazarte, Juan A. Martínez-Lao, Manuel A. Ortuño, Ignacio Fernández. Lithium anthraquinoids as catalysts in the ROP of lactide and caprolactone into cyclic polymers. Polymer Chemistry 2023, 14 (4) , 452-461. https://doi.org/10.1039/D2PY01076C
    34. Shweta Sagar, Kulsum Bano, Alok Sarkar, Kuntal Pal, Tarun K. Panda. Magnesium Promoted Active and Isoselective ROP of rac ‐Lactide and ϵ‐Caprolactone Under Mild Conditions. European Journal of Inorganic Chemistry 2022, 2022 (34) https://doi.org/10.1002/ejic.202200494
    35. Fangping Ren, Xinlei Li, Ji Xian, Xinning Han, Luya Cao, Xiaobo Pan, Jincai Wu. Bench‐stable potassium complexes for living and isoselective ring‐opening polymerization of rac‐lactide. Journal of Polymer Science 2022, 60 (20) , 2847-2854. https://doi.org/10.1002/pol.20220269
    36. Christian Rentero, Jesús Damián, Asier Medel, María Fernández-Millán, Yolanda Rusconi, Giovanni Talarico, Tomás Cuenca, Valentina Sessini, Marta E. G. Mosquera. Ring-Opening Polymerization of L-Lactide Catalyzed by Potassium-Based Complexes: Mechanistic Studies. Polymers 2022, 14 (15) , 2982. https://doi.org/10.3390/polym14152982
    37. Rafał Petrus, Tadeusz Lis, Adrian Kowaliński. Use of heterometallic alkali metal–magnesium aryloxides in ring-opening polymerization of cyclic esters. Dalton Transactions 2022, 51 (23) , 9144-9158. https://doi.org/10.1039/D2DT00731B
    38. Yali Zhou, Gary S. Nichol, Jennifer A. Garden. Incorporating Sodium to Boost the Activity of Aluminium TrenSal Complexes towards rac ‐Lactide Polymerisation. European Journal of Inorganic Chemistry 2022, 2022 (16) https://doi.org/10.1002/ejic.202200134
    39. Laura E. English, Matthew D. Jones, David J. Liptrot. N‐Heterocyclic Phosphines as Precatalysts for the Highly Selective Degradation of Poly(lactic acid). ChemCatChem 2022, 14 (5) https://doi.org/10.1002/cctc.202101904
    40. Damilola C. Akintayo, Wisdom A. Munzeiwa, Sreekantha B. Jonnalagadda, Bernard Omondi. Influence of nuclearity and coordination geometry on the catalytic activity of Zn(II) carboxylate complexes in ring-opening polymerization of ε-caprolactone and lactides. Inorganica Chimica Acta 2022, 532 , 120715. https://doi.org/10.1016/j.ica.2021.120715
    41. Minggang Hu, Xinfeng Song, Fugui Wang, Wenzhi Zhang, Wenhui Ma, Fuzhong Han. Ring-opening polymerization of rac -lactide catalyzed by magnesium and zinc complexes supported by an NNO ligand. New Journal of Chemistry 2022, 46 (3) , 1175-1181. https://doi.org/10.1039/D1NJ05157A
    42. Weronika Gruszka, Jennifer A. Garden. Advances in heterometallic ring-opening (co)polymerisation catalysis. Nature Communications 2021, 12 (1) https://doi.org/10.1038/s41467-021-23192-y
    43. Yali Zhou, Gary S. Nichol, Jennifer A. Garden. Lithium Half‐Salen Complexes: Synthesis, Structural Characterization and Studies as Catalysts for rac ‐Lactide Ring‐Opening Polymerization. European Journal of Organic Chemistry 2021, 2021 (40) , 5557-5568. https://doi.org/10.1002/ejoc.202100981
    44. Damilola C. Akintayo, Wisdom A. Munzeiwa, Sreekantha B. Jonnalagadda, Bernard Omondi. Ring-opening polymerization of cyclic esters by 3- and 4-pyridinyl Schiff base Zn(II) and Cu(II) paddlewheel complexes: kinetic, mechanistic and tacticity studies. Arabian Journal of Chemistry 2021, 14 (10) , 103313. https://doi.org/10.1016/j.arabjc.2021.103313
    45. Cristina Ruiz Martínez, Juana M. Pérez, Francisco M. Arrabal-Campos, María Batuecas, Manuel A. Ortuño, Ignacio Fernández. Cyclic polylactide synthesis initiated by a lithium anthraquinoid: understanding the selectivity through DFT and diffusion NMR. Polymer Chemistry 2021, 12 (28) , 4083-4092. https://doi.org/10.1039/D1PY00547B
    46. Ilaria D'Auria, Marina Lamberti, Raffaella Rescigno, Vincenzo Venditto, Mina Mazzeo. Copolymerization of L-Lactide and ε-Caprolactone promoted by zinc complexes with phosphorus based ligands. Heliyon 2021, 7 (7) , e07630. https://doi.org/10.1016/j.heliyon.2021.e07630
    47. Feng-Jie Lai, Cheng-Hsun Lee, Kuo-Hui Wu, Yu-Lun Chang, Yi-Chun Lai, Hsuan-Ying Chen, Shangwu Ding, Chian-Hui Lai. Ring-opening polymerization of L-lactide by using sodium complexes bearing amide as catalysts in high polar solvent. Polymer Bulletin 2021, 78 (5) , 2813-2827. https://doi.org/10.1007/s00289-020-03240-1
    48. Thomas X. Gentner, Robert E. Mulvey. Alkali‐Metal Mediation: Diversity of Applications in Main‐Group Organometallic Chemistry. Angewandte Chemie International Edition 2021, 60 (17) , 9247-9262. https://doi.org/10.1002/anie.202010963
    49. Thomas X. Gentner, Robert E. Mulvey. Alkalimetall‐Mediatoren: Vielfältige Anwendungen in der metallorganischen Chemie der Hauptgruppenelemente. Angewandte Chemie 2021, 133 (17) , 9331-9348. https://doi.org/10.1002/ange.202010963
    50. Assunta D'Amato, Rosaria Schettini, Giovanni Pierri, Irene Izzo, Fabia Grisi, Consiglia Tedesco, Francesco De Riccardis, Chiara Costabile. Synthesis and characterization of new Na + complexes of N -benzyl cyclic peptoids and their role in the ring opening polymerization of l -lactide. New Journal of Chemistry 2021, 45 (12) , 5410-5420. https://doi.org/10.1039/D0NJ05931E
    51. Ross F. Koby, Timothy P. Hanusa. Lithium, Sodium, Potassium, Rubidium, and Cesium. 2021, 2-48. https://doi.org/10.1016/B978-0-12-409547-2.14700-6
    52. Jiahao Gao, Wenjuan Zhang, Furong Cao, Gregory A. Solan, Xiuqin Zhang, Youshu Jiang, Xiang Hao, Wen-Hua Sun. Potassium N-arylbenzimidates as readily accessible and benign (pre)catalysts for the ring opening polymerization of ε-CL and L-LA. Molecular Catalysis 2020, 498 , 111280. https://doi.org/10.1016/j.mcat.2020.111280
    53. Orlando Santoro, Xin Zhang, Carl Redshaw. Synthesis of Biodegradable Polymers: A Review on the Use of Schiff-Base Metal Complexes as Catalysts for the Ring Opening Polymerization (ROP) of Cyclic Esters. Catalysts 2020, 10 (7) , 800. https://doi.org/10.3390/catal10070800
    54. R. Anwander. immortal polymerization. 2020https://doi.org/10.1002/9783527809080.cataz08855
    55. Katalin Devaine-Pressing, Fabio J. Oldenburg, Jan P. Menzel, Maximilian Springer, Louise N. Dawe, Christopher M. Kozak. Lithium, sodium, potassium and calcium amine-bis(phenolate) complexes in the ring-opening polymerization of rac -lactide. Dalton Transactions 2020, 49 (5) , 1531-1544. https://doi.org/10.1039/C9DT04561A
    56. Ziyao Fan, Peng Wang, Chen Wu, Zhimin Liu, Xia Chen. The Facile Synthesis of Lithium 2‐R‐Hydroquinolinide Complexes and Their High Activity toward ROP of ε ‐Caprolactone. European Journal of Inorganic Chemistry 2020, 2020 (4) , 400-406. https://doi.org/10.1002/ejic.201901309
    57. Jiahao Gao, Dongzhi Zhu, Wenjuan Zhang, Gregory A. Solan, Yanping Ma, Wen-Hua Sun. Recent progress in the application of group 1, 2 & 13 metal complexes as catalysts for the ring opening polymerization of cyclic esters. Inorganic Chemistry Frontiers 2019, 6 (10) , 2619-2652. https://doi.org/10.1039/C9QI00855A
    58. Francisco M. García-Valle, Ma Teresa Muñoz, Tomás Cuenca, Stefano Milione, Marta E.G. Mosquera, Jesús Cano. Fluorinated alkali metal catalysts for the Ring-Opening Polymerization (ROP) of rac-lactide. Effect of the M···F interactions in the polymerization control. Journal of Organometallic Chemistry 2019, 898 , 120854. https://doi.org/10.1016/j.jorganchem.2019.07.005
    59. Hao Zhang, Yilin Dong, Keke Huang, Jingsheng Liu, Bo Dong, Feng Wang. Immortal Ring Opening Polymerization of ε-caprolactone and rac-lactide by magnesium precatalysts bearing sterically congested phenoxide ligands. European Polymer Journal 2019, 118 , 633-641. https://doi.org/10.1016/j.eurpolymj.2019.06.029
    60. Wei‐Chu Wang, Shih‐Hsien Hsu, Yu‐Chia Su, Hsuan‐Ying Chen, Chu‐Chieh Lin. Dual zinc catalysts for L ‐lactide polymerization and reaction of CO 2 with cyclohexene oxide. Journal of the Chinese Chemical Society 2019, 66 (9) , 1211-1220. https://doi.org/10.1002/jccs.201900168
    61. Adimulam Harinath, Jayeeta Bhattacharjee, Alok Sarkar, Tarun K. Panda. Alkali metal complex-mediated ring-opening polymerization of rac -LA, ε-caprolactone, and δ-valerolactone. New Journal of Chemistry 2019, 43 (23) , 8882-8891. https://doi.org/10.1039/C9NJ01130G
    62. Marta E. G. Mosquera, Miguel Palenzuela, María Fernández-Millán. Influence of Noncovalent Interactions in Catalytic Ring-opening Polymerization Processes. 2019, 415-439. https://doi.org/10.1039/9781788016490-00415
    63. Qian Hu, Suyun Jie, Pierre Braunstein, Bo-Geng Li. Highly active tridentate amino-phenol zinc complexes for the catalytic ring-opening polymerization of ε-caprolactone. Journal of Organometallic Chemistry 2019, 882 , 1-9. https://doi.org/10.1016/j.jorganchem.2018.12.013
    64. Francisco M. García-Valle, Vanessa Tabernero, Tomás Cuenca, Jesús Cano, Marta E. G. Mosquera. Aluminates with Fluorinated Schiff Bases: Influence of the Alkali Metal–Fluorine Interactions in Structure Stabilization. Molecules 2018, 23 (12) , 3108. https://doi.org/10.3390/molecules23123108
    65. Minggang Hu, Wenzhi Zhang, Wenhui Ma, Fuzhong Han, Weiming Song. Preparation of titanium complexes containing unsymmetric N2O2-ligands and their catalytic properties for polymerization of rac-lactide. Polymer 2018, 153 , 445-452. https://doi.org/10.1016/j.polymer.2018.08.043
    66. Alessandra Caovilla, Juliana S. Penning, Adriana C. Pinheiro, Frédéric Hild, Rafael Stieler, Samuel Dagorne, Osvaldo L. Casagrande, Marcelo P. Gil. Zinc bis-pyrrolide-imine complexes: Synthesis, structure and application in ring-opening polymerization of rac-lactide. Journal of Organometallic Chemistry 2018, 863 , 95-101. https://doi.org/10.1016/j.jorganchem.2018.03.040
    67. Wei-Yi Lu, Hsiu-Wei Ou, Chieh-Ning Lee, Jaya Kishore Vandavasi, Hsuan-Ying Chen, Chu-Chieh Lin. Synthesis, characterization, and catalytic activity of lithium complexes bearing NNO-tridentate Schiff base ligands toward ring-opening polymerization of -lactide. Polymer 2018, 139 , 1-10. https://doi.org/10.1016/j.polymer.2018.02.002
    68. Jiao Xiong, Yangyang Sun, Jitao Jiang, Changjuan Chen, Xiaobo Pan, Cheng Wang, Jincai Wu. Metal-size influence of alkali metal complexes for polymerization of rac-lactide. Polyhedron 2018, 141 , 118-124. https://doi.org/10.1016/j.poly.2017.11.046
    69. Francisco M. García-Valle, Vanessa Tabernero, Tomás Cuenca, Jesús Cano, Marta E. G. Mosquera. Schiff-base - ate derivatives with main group metals: generation of a tripodal aluminate metalloligand. Dalton Transactions 2018, 47 (18) , 6499-6506. https://doi.org/10.1039/C8DT00835C
    70. Jean-Marie E. P. Cols, Victoria G. Hill, Stella K. Williams, Ruaraidh D. McIntosh. Aggregated initiators: defining their role in the ROP of rac -lactide. Dalton Transactions 2018, 47 (31) , 10626-10635. https://doi.org/10.1039/C8DT01229F
    71. Eszter Fazekas, Gary S. Nichol, Michael P. Shaver, Jennifer A. Garden. Stable Fe( iii ) phenoxyimines as selective and robust CO 2 /epoxide coupling catalysts. Dalton Transactions 2018, 47 (37) , 13106-13112. https://doi.org/10.1039/C8DT02919A
    72. Yancheng Han, Aihong Gao, Yongfang Zhang, Wei Yao, Haibin Guan. Zinc complexes supported by N,O-bidentate amino-alkoxyl ligands: Synthesis, characterization and catalytic property for the ring-opening polymerization of l-lactide. Polyhedron 2018, 139 , 243-248. https://doi.org/10.1016/j.poly.2017.10.038
    73. Lu-Lu Tian, Bing-Bing Wu, Zhong-Xia Wang. Crown ether complexes of sodium and potassium 2-(benzotriazol-2-yl)phenolates: Synthesis and catalysis towards the ring-opening polymerization of rac -lactide. Journal of Macromolecular Science, Part A 2017, 54 (12) , 944-950. https://doi.org/10.1080/10601325.2017.1381925
    74. Wisdom A. Munzeiwa, Bernard Omondi, Vincent O. Nyamori. Synthesis and polymerization kinetics of ε-caprolactone and ʟ-lactide to low molecular weight polyesters catalyzed by Zn(II) and Cu(II) N -hydroxy- N , N ′-diarylformamidine complexes. Polyhedron 2017, 138 , 295-305. https://doi.org/10.1016/j.poly.2017.09.029
    75. Helena C. Quilter, Rachel H. Drewitt, Mary F. Mahon, Gabriele Kociok-Köhn, Matthew D. Jones. Synthesis of Li(I), Zn(II) and Mg(II) complexes of amine bis(phenolates) and their exploitation for the ring opening polymerisation of rac-lactide. Journal of Organometallic Chemistry 2017, 848 , 325-331. https://doi.org/10.1016/j.jorganchem.2017.08.014
    76. Pavel V. Ivchenko, Andrey V. Shlyakhtin, Ilya E. Nifant’ev. Ring-opening polymerization of glycolide and rac -lactide, catalyzed by aryloxy magnesium complexes: DFT study of reaction profile and stereocontrol mechanism. Mendeleev Communications 2017, 27 (3) , 278-280. https://doi.org/10.1016/j.mencom.2017.05.020
    77. Seoung Hyun Ahn, Min Kyung Chun, Eunhee Kim, Jong Hwa Jeong, Saira Nayab, Hyosun Lee. Copper(II) complexes containing N,N′-bidentate N-substituted N-(pyridin-2-ylmethyl)amine: Synthesis, structure and application towards polymerization of rac-lactide. Polyhedron 2017, 127 , 51-58. https://doi.org/10.1016/j.poly.2017.01.050
    78. I. E. Nifant’ev, P. V. Ivchenko, A. V. Shlyakhtin, A. V. Ivanyuk. Polymerization of trimethylene carbonate and lactones in the presence of magnesium monoionolate: A comparative theoretical and experimental study. Polymer Science, Series B 2017, 59 (2) , 147-156. https://doi.org/10.1134/S1560090417020075
    79. Minggang Hu, Fuzhong Han, Wenzhi Zhang, Wenhui Ma, Qigang Deng, Weiming Song, Hailong Yan, Guohua Dong. Preparation of zirconium and hafnium complexes containing chiral N atoms from asymmetric tertiary amine ligands, and their catalytic properties for polymerization of rac-lactide. Catalysis Science & Technology 2017, 7 (6) , 1394-1403. https://doi.org/10.1039/C6CY02618D
    80. Yaqin Cui, Changjuan Chen, Yangyang Sun, Jincai Wu, Xiaobo Pan. Isoselective mechanism of the ring-opening polymerization of rac-lactide catalyzed by chiral potassium binolates. Inorganic Chemistry Frontiers 2017, 4 (2) , 261-269. https://doi.org/10.1039/C6QI00449K
    81. Chenhui Yao, Yang Yang, Shaoan Xu, Haiyan Ma. Potassium complexes supported by monoanionic tetradentate amino-phenolate ligands: synthesis, structure and catalysis in the ring-opening polymerization of rac-lactide. Dalton Transactions 2017, 46 (18) , 6087-6097. https://doi.org/10.1039/C7DT00812K
    82. L.-E. Chile, T. Ebrahimi, A. Wong, D. C. Aluthge, S. G. Hatzikiriakos, P. Mehrkhodavandi. Impact of aryloxy initiators on the living and immortal polymerization of lactide. Dalton Transactions 2017, 46 (20) , 6723-6733. https://doi.org/10.1039/C7DT00990A
    83. Qiurui Zhang, Wenjuan Zhang, Natesan Mannangatti Rajendran, Tongling Liang, Wen-Hua Sun. Thermo-enhanced ring-opening polymerization of ε-caprolactone: the synthesis, characterization, and catalytic behavior of aluminum hydroquinolin-8-olates. Dalton Transactions 2017, 46 (24) , 7833-7843. https://doi.org/10.1039/C7DT01720K
    84. Baolong Wang, Huanqin Zhao, Liying Wang, Junmin Sun, Yongfeng Zhang, Zhenzhu Cao. Immortal ring-opening polymerization of lactides with super high monomer to catalyst ratios initiated by zirconium and titanium complexes containing multidentate amino-bis(phenolate) ligands. New Journal of Chemistry 2017, 41 (13) , 5669-5677. https://doi.org/10.1039/C7NJ00483D
    85. Bing-Bing Wu, Zhong-Xia Wang. Crown ether complexes of potassium quinolin-8-olates: synthesis, characterization and catalysis toward the ring-opening polymerization of rac-lactide. RSC Advances 2017, 7 (19) , 11657-11664. https://doi.org/10.1039/C7RA01186E
    86. Bing-Bing Wu, Lu-Lu Tian, Zhong-Xia Wang. Ring-opening polymerization of rac-lactide catalyzed by crown ether complexes of sodium and potassium iminophenoxides. RSC Advances 2017, 7 (39) , 24055-24063. https://doi.org/10.1039/C7RA03394J
    87. Xiang-Xin Zheng, Zhong-Xia Wang. Synthesis of aluminum complexes supported by 2-(1,10-phenanthrolin-2-yl)phenolate ligands and their catalysis in the ring-opening polymerization of cyclic esters. RSC Advances 2017, 7 (44) , 27177-27188. https://doi.org/10.1039/C7RA03831C
    88. Ilya E. Nifant'ev, Andrey V. Shlyakhtin, Alexander N. Tavtorkin, Pavel V. Ivchenko, Roman S. Borisov, Andrei V. Churakov. Monomeric and dimeric magnesium mono-BHT complexes as effective ROP catalysts. Catalysis Communications 2016, 87 , 106-111. https://doi.org/10.1016/j.catcom.2016.09.018
    89. Zhong-Ran Dai, Chang-Feng Yin, Cheng Wang, Jin-Cai Wu. Zinc bis-Schiff base complexes: Synthesis, structure, and application in ring-opening polymerization of rac-lactide. Chinese Chemical Letters 2016, 27 (11) , 1649-1654. https://doi.org/10.1016/j.cclet.2016.05.001
    90. Xiang-Xin Zheng, Zhong-Xia Wang. Synthesis of di- and trinuclear zinc complexes bearing pyrrole-based ligands and their catalysis toward the ROP of rac-lactides. Journal of Organometallic Chemistry 2016, 823 , 14-22. https://doi.org/10.1016/j.jorganchem.2016.09.002
    91. Mengtao Ma, Xingchao Shen, Weifan Wang, Jia Li, Weiwei Yao, Lijun Zhu. Syntheses of Sterically Bulky Schiff‐Base Magnesium Complexes and Their Application in the Hydrosilylation of Ketones. European Journal of Inorganic Chemistry 2016, 2016 (31) , 5057-5062. https://doi.org/10.1002/ejic.201600899
    92. Miao Huang, Haiyan Ma. Magnesium and Zinc Complexes Supported by N,N,O Tridentate Ligands: Synthesis and Catalysis in the Ring‐Opening Polymerization of rac ‐Lactide and α‐Methyltrimethylene Carbonate. European Journal of Inorganic Chemistry 2016, 2016 (23) , 3791-3803. https://doi.org/10.1002/ejic.201600441
    93. Carlos Gallegos, Ruth Camacho, Mercedes Valiente, Tomás Cuenca, Jesús Cano. Cyclopentadienyl-based Mg complexes in the intramolecular hydroamination of aminoalkenes: mechanistic evidence for cationic versus neutral magnesium derivatives. Catalysis Science & Technology 2016, 6 (13) , 5134-5143. https://doi.org/10.1039/C5CY01040C
    94. Zhongran Dai, Yangyang Sun, Jiao Xiong, Xiaobo Pan, Ning Tang, Jincai Wu. Simple sodium and potassium phenolates as catalysts for highly isoselective polymerization of rac-lactide. Catalysis Science & Technology 2016, 6 (2) , 515-520. https://doi.org/10.1039/C5CY01194A
    95. Yingguo Li, Hongwei Zhao, Xiaoyang Mao, Xiaobo Pan, Jincai Wu. Structures of potassium calix[4]arene crown ether inclusion complexes and application in polymerization of rac-lactide. Dalton Transactions 2016, 45 (23) , 9636-9645. https://doi.org/10.1039/C6DT01417H
    96. Qiurui Zhang, Wenjuan Zhang, Shengdong Wang, Gregory A. Solan, Tongling Liang, Natesan Mannangatti Rajendran, Wen-Hua Sun. Sodium iminoquinolates with cubic and hexagonal prismatic motifs: synthesis, characterization and their catalytic behavior toward the ROP of rac-lactide. Inorganic Chemistry Frontiers 2016, 3 (9) , 1178-1189. https://doi.org/10.1039/C6QI00155F
    97. Wan-Jung Chuang, Yen-Tzu Huang, Yu-Hsieh Chen, Yu-Shan Lin, Wei-Yi Lu, Yi-Chun Lai, Michael Y. Chiang, Sodio C. N. Hsu, Hsuan-Ying Chen. Synthesis, characterization, and catalytic activity of sodium ketminiate complexes toward the ring-opening polymerization of l -lactide. RSC Advances 2016, 6 (39) , 33014-33021. https://doi.org/10.1039/C6RA00373G
    98. Joëlle Char, Olesia G. Kulyk, Emilie Brulé, Frédéric de Montigny, Vincent Guérineau, Thierry Roisnel, Mathieu J.-L. Tschan, Christophe M. Thomas. Microstructurally controlled polymers of rac-lactide by lithium complexes. Comptes Rendus. Chimie 2016, 19 (1-2) , 167-172. https://doi.org/10.1016/j.crci.2015.05.018
    99. Juan Li, Yuan Deng, Suyun Jie, Bo-Geng Li. Zinc complexes supported by (benzimidazolyl)pyridine alcohol ligands as highly efficient initiators for ring-opening polymerization of ε-caprolactone. Journal of Organometallic Chemistry 2015, 797 , 76-82. https://doi.org/10.1016/j.jorganchem.2015.08.002
    100. Carlos Gallegos, Vanessa Tabernero, Marta E. G. Mosquera, Tomás Cuenca, Jesús Cano. Comparative Study of Lactide Polymerization with Lithium, Sodium, Potassium, Magnesium, Calcium, and Zinc Azo­naphthoxide Complexes. European Journal of Inorganic Chemistry 2015, 2015 (30) , 5124-5132. https://doi.org/10.1002/ejic.201500818
    Load all citations

    Organometallics

    Cite this: Organometallics 2015, 34, 2, 477–487
    Click to copy citationCitation copied!
    https://doi.org/10.1021/om501000b
    Published January 14, 2015
    Copyright © 2015 American Chemical Society

    Article Views

    2610

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.