ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Mechanism of the Alkoxycarbonylation of Alkynes in the Presence of the Pd(OAc)2/PPh2Py/CH3SO3H Catalytic System

View Author Information
Dipartimento di Chimica, Università di Venezia, Calle Larga S. Marta, 2137, 30123 Venezia, Italy
Cite this: Organometallics 1998, 17, 4, 630–635
Publication Date (Web):January 27, 1998
https://doi.org/10.1021/om9705968
Copyright © 1998 American Chemical Society

    Article Views

    1214

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (119 KB)

    Abstract

    The mechanism of the carbonylation of alkynes promoted by the Pd(OAc)2/2-pyridyldiphenylphosphine/methanesulfonic acid catalytic system has been studied. The carbonylation of 2-butyne in the presence of methanol affords stereospecifically the methyl ester of (E)-2-methyl-2-butenoic acid, indicating that the addition of H and COOCH3 moieties proceeds with cis stereochemistry. Experiments carried out using 1-alkynes and CH3OD reveal that the catalyst also promotes the exchange of the terminal hydrogen of the alkyne with the deuterium of the alcohol. 1H NMR experiments show that upon addition of phenylacetylene to a CD2Cl2 solution containing the catalyst and CH3OH a palladium complex having a 2-styryl group bound to the metal center, Pd−C(C6H5)CH2, is formed. This species can be invoked as an intermediate to account for both the H/D exchange and the carbonylation reaction. Carbonylation of 2-butyne in the presence of a 1/1 mixture of CH3OH and CH3OD indicates that a fairly large isotope effect (kH/kD = 6.4) is operative. All these results suggest that the carbonylation of alkynes proceeds via the protonation of a Pd(0)−alkyne species to give a Pd−vinyl complex, followed by CO insertion and alcoholysis.

    *

    In papers with more than one author, the asterisk indicates the name of the author to whom inquiries about the paper should be addressed.

    Cited By

    This article is cited by 76 publications.

    1. Ding Liu, Tong Ru, Zhixin Deng, Luyun Zhang, Yingtang Ning, Fen-Er Chen. Sulfonate-Modified Picolinamide Diphosphine: A Ligand for Room-Temperature Palladium-Catalyzed Hydrocarboxylation in Water with High Branched Selectivity. ACS Catalysis 2023, 13 (19) , 12868-12876. https://doi.org/10.1021/acscatal.3c03372
    2. Peter Kucmierczyk, Ricarda Duehren, Rui Sang, Ralf Jackstell, Matthias Beller, Robert Franke. Palladium-Catalyzed Methoxycarbonylation Investigated by Design of Experiments. ACS Sustainable Chemistry & Engineering 2022, 10 (15) , 4822-4830. https://doi.org/10.1021/acssuschemeng.1c05871
    3. Ling Zhu, Ling-Jun Liu, Yuan-Ye Jiang, Peng Liu, Xia Fan, Qi Zhang, Yulei Zhao, Siwei Bi. Mechanism and Origin of Ligand-Controlled Chemo- and Regioselectivities in Palladium-Catalyzed Methoxycarbonylation of Alkynes. The Journal of Organic Chemistry 2020, 85 (11) , 7136-7151. https://doi.org/10.1021/acs.joc.0c00533
    4. Wenlong Ren, Fei Sun, Jianxiao Chu, Yian Shi. A Pd-Catalyzed Site-Controlled Isomerization of Terminal Olefins. Organic Letters 2020, 22 (5) , 1868-1873. https://doi.org/10.1021/acs.orglett.0c00168
    5. Aroonroj Mekareeya, P. Ross Walker, Almudena Couce-Rios, Craig D. Campbell, Alan Steven, Robert S. Paton, and Edward A. Anderson . Mechanistic Insight into Palladium-Catalyzed Cycloisomerization: A Combined Experimental and Theoretical Study. Journal of the American Chemical Society 2017, 139 (29) , 10104-10114. https://doi.org/10.1021/jacs.7b05436
    6. L. Ellis Crawford, David J. Cole-Hamilton, Michael Bühl. Uncovering the Mechanism of Homogeneous Methyl Methacrylate Formation with P,N Chelating Ligands and Palladium: Favored Reaction Channels and Selectivities. Organometallics 2015, 34 (2) , 438-449. https://doi.org/10.1021/om500970k
    7. Werner Oberhauser, Andrea Ienco, Francesco Vizza, Barbara Trettenbrein, Dennis Oberhuber, Christof Strabler, Teresa Ortner, and Peter Brüggeller . Regioselective Hydromethoxycarbonylation of Terminal Alkynes Catalyzed by Palladium(II)–Tetraphos Complexes. Organometallics 2012, 31 (13) , 4832-4837. https://doi.org/10.1021/om3003812
    8. Ruwei Shen, Tieqiao Chen, Yalei Zhao, Renhua Qiu, Yongbo Zhou, Shuangfeng Yin, Xiangbo Wang, Midori Goto, and Li-Biao Han . Facile Regio- and Stereoselective Hydrometalation of Alkynes with a Combination of Carboxylic Acids and Group 10 Transition Metal Complexes: Selective Hydrogenation of Alkynes with Formic Acid. Journal of the American Chemical Society 2011, 133 (42) , 17037-17044. https://doi.org/10.1021/ja2069246
    9. Douglas B. Grotjahn, John E. Kraus, Hani Amouri, Marie-Noelle Rager, Andrew L. Cooksy, Amy J. Arita, Sara A. Cortes-Llamas, Arthur A. Mallari, Antonio G. DiPasquale, Curtis E. Moore, Louise M. Liable-Sands, James D. Golen, Lev N. Zakharov and Arnold L. Rheingold. Multimodal Study of Secondary Interactions in Cp*Ir Complexes of Imidazolylphosphines Bearing an NH Group. Journal of the American Chemical Society 2010, 132 (23) , 7919-7934. https://doi.org/10.1021/ja906712g
    10. M. Victoria Jiménez, Jesús J. Pérez-Torrente, M. Isabel Bartolomé, Eugenio Vispe, Fernando J. Lahoz and Luis A. Oro. Cationic Rhodium Complexes with Hemilabile Phosphine Ligands as Polymerization Catalyst for High Molecular Weight Stereoregular Poly(phenylacetylene). Macromolecules 2009, 42 (21) , 8146-8156. https://doi.org/10.1021/ma901549g
    11. Yingsheng Zhao, Liqun Jin, Peng Li and Aiwen Lei. Palladium-Catalyzed Oxidative Carbonylation of Alkyl and Aryl Indium Reagents with CO under Mild Conditions. Journal of the American Chemical Society 2008, 130 (29) , 9429-9433. https://doi.org/10.1021/ja801116s
    12. Yu Li,, Howard Alper, and, Zhengkun Yu. Palladium-Catalyzed Regiospecific Aminocarbonylation of Alkynes in the Ionic Liquid [bmim][Tf2N]. Organic Letters 2006, 8 (23) , 5199-5201. https://doi.org/10.1021/ol061675v
    13. Jeroen. J. M. de Pater,, C. Elizabeth P. Maljaars,, Elwin de Wolf,, Martin Lutz,, Anthony L. Spek,, Berth-Jan Deelman,, Cornelis J. Elsevier, and, Gerard van Koten. (Perfluoro)alkylsilyl-Substituted 2-[Bis(4-aryl)phosphino]pyridines:  Synthesis and Comparison of Their Palladium Complexes in Methoxycarbonylation of Phenylacetylene in Regular Solvents and Supercritical CO2. Organometallics 2005, 24 (22) , 5299-5310. https://doi.org/10.1021/om050479+
    14. Piet W. N. M. van Leeuwen,, Martin A. Zuideveld,, Bert H. G. Swennenhuis,, Zoraida Freixa,, Paul C. J. Kamer,, Kees Goubitz,, Jan Fraanje,, Martin Lutz, and, Anthony L. Spek. Alcoholysis of Acylpalladium(II) Complexes Relevant to the Alternating Copolymerization of Ethene and Carbon Monoxide and the Alkoxycarbonylation of Alkenes:  the Importance of Cis-Coordinating Phosphines. Journal of the American Chemical Society 2003, 125 (18) , 5523-5539. https://doi.org/10.1021/ja029341y
    15. Peter Kucmierczyk, Stephan Behrens, Christoph Kubis, Wolfgang Baumann, Zhihong Wei, Haijun Jiao, Kaiwu Dong, Anke Spannenberg, Helfried Neumann, Ralf Jackstell, Armin Börner, Robert Franke, Matthias Beller. ( In situ ) spectroscopic studies on state-of-the-art Pd( ii ) catalysts in solution for the alkoxycarbonylation of alkenes. Catalysis Science & Technology 2022, 12 (10) , 3175-3189. https://doi.org/10.1039/D0CY02248A
    16. Yunjie Ding, Li Yan, Xiangen Song. The Multifunctional Materials for Heterogenous Carboxylation: From Fundamental Understanding to Industrial Applications. 2022, 289-324. https://doi.org/10.1002/9783527831883.ch7
    17. Ding Liu, Miaolin Ke, Tong Ru, Yingtang Ning, Fen-Er Chen. Room-temperature Pd-catalyzed methoxycarbonylation of terminal alkynes with high branched selectivity enabled by bisphosphine-picolinamide ligand. Chemical Communications 2022, 58 (7) , 1041-1044. https://doi.org/10.1039/D1CC06098H
    18. Carlton P. Folster, Robin P. Harkins, Shao-Yu Lo, Janaya D. Sachs, Ian A. Tonks. Development and applications of selective hydroesterification reactions. Trends in Chemistry 2021, 3 (6) , 469-484. https://doi.org/10.1016/j.trechm.2021.03.002
    19. Shahbaz Ahmad, Michael Bühl. Computational modelling of Pd-catalysed alkoxycarbonylation of alkenes and alkynes. Physical Chemistry Chemical Physics 2021, 14 https://doi.org/10.1039/D1CP02426D
    20. Shahbaz Ahmad, Michael Bühl. Design of a Highly Active Pd Catalyst with P,N Hemilabile Ligands for Alkoxycarbonylation of Alkynes and Allenes: A Density Functional Theory Study. Chemistry – A European Journal 2019, 25 (50) , 11625-11629. https://doi.org/10.1002/chem.201902402
    21. Shahbaz Ahmad, Ashley Lockett, Timothy A. Shuttleworth, Alexandra M. Miles-Hobbs, Paul G. Pringle, Michael Bühl. Palladium-catalysed alkyne alkoxycarbonylation with P,N-chelating ligands revisited: a density functional theory study. Physical Chemistry Chemical Physics 2019, 21 (16) , 8543-8552. https://doi.org/10.1039/C9CP01471C
    22. Kaiwu Dong, Rui Sang, Zhihong Wei, Jie Liu, Ricarda Dühren, Anke Spannenberg, Haijun Jiao, Helfried Neumann, Ralf Jackstell, Robert Franke, Matthias Beller. Cooperative catalytic methoxycarbonylation of alkenes: uncovering the role of palladium complexes with hemilabile ligands. Chemical Science 2018, 9 (9) , 2510-2516. https://doi.org/10.1039/C7SC02964K
    23. A. Scrivanti, V. Beghetto, M. Bertoldini. New insights into the alkoxycarbonylation of propargyl alcohol. Molecular Catalysis 2017, 443 , 38-42. https://doi.org/10.1016/j.mcat.2017.09.029
    24. Matthias Beller, Bradley A. Steinhoff, Joseph R. Zoeller, David J. Cole‐Hamilton, Eite Drent, Xiao‐Feng Wu, Helfried Neumann, Shingo Ito, Kyoko Nozaki. Carbonylation. 2017, 91-190. https://doi.org/10.1002/9783527651733.ch3
    25. . Carbonylation and Carboxylation. 2017, 509-568. https://doi.org/10.1002/9781119390541.ch7
    26. Hamed Chegini, Ali Morsali, Mohammad Reza Bozorgmehr, S. Ali Beyramabadi. Density Functional Theoretical Study on the Mechanism of Alcoholysis of Acylpalladium(II) Complexes. Progress in Reaction Kinetics and Mechanism 2017, 42 (1) , 52-61. https://doi.org/10.3184/146867816X14764496131511
    27. Timothy A. Shuttleworth, Alexandra M. Miles-Hobbs, Paul G. Pringle, Hazel A. Sparkes. 2-Pyridyl substituents enhance the activity of palladium–phospha-adamantane catalysts for the methoxycarbonylation of phenylacetylene. Dalton Transactions 2017, 46 (1) , 125-137. https://doi.org/10.1039/C6DT03983A
    28. Dexin Guan, A. Jonathan Holmes, Joaquín López-Serrano, Simon B. Duckett. Following palladium catalyzed methoxycarbonylation by hyperpolarized NMR spectroscopy: a parahydrogen based investigation. Catalysis Science & Technology 2017, 7 (10) , 2101-2109. https://doi.org/10.1039/C7CY00252A
    29. Xingkun Chen, Hejun Zhu, Wenlong Wang, Hong Du, Tao Wang, Li Yan, Xiangping Hu, Yunjie Ding. Multifunctional Single‐Site Catalysts for Alkoxycarbonylation of Terminal Alkynes. ChemSusChem 2016, 9 (17) , 2451-2459. https://doi.org/10.1002/cssc.201600660
    30. Mansur B. Ibrahim, Rami Suleiman, Bassam El Ali. New palladium- bis (oxazoline)-phosphine complexes: synthesis, characterization and catalytic application in alkoxycarbonylation of alkynes. Journal of Coordination Chemistry 2016, 69 (8) , 1346-1357. https://doi.org/10.1080/00958972.2016.1163688
    31. Xingkun Chen, Hejun Zhu, Tao Wang, Cunyao Li, Li Yan, Miao Jiang, Jia Liu, Xueping Sun, Zheng Jiang, Yunjie Ding. The 2V-P,N polymer supported palladium catalyst for methoxycarbonylation of acetylene. Journal of Molecular Catalysis A: Chemical 2016, 414 , 37-46. https://doi.org/10.1016/j.molcata.2015.12.025
    32. Samuel Quintero-Duque, Katrin Marie Dyballa, Ivana Fleischer. Metal-catalyzed carbonylation of alkynes: key aspects and recent development. Tetrahedron Letters 2015, 56 (21) , 2634-2650. https://doi.org/10.1016/j.tetlet.2015.04.043
    33. Michele Queirolo, Adriano Vezzani, Raffaella Mancuso, Bartolo Gabriele, Mirco Costa, Nicola Della Ca’. Neutral vs anionic palladium iodide-catalyzed carbonylation of terminal arylacetylenes. Journal of Molecular Catalysis A: Chemical 2015, 398 , 115-126. https://doi.org/10.1016/j.molcata.2014.11.028
    34. L. Ellis Crawford, David J. Cole‐Hamilton, Eite Drent, Michael Bühl. Mechanism of Alkyne Alkoxycarbonylation at a Pd Catalyst with P,N Hemilabile Ligands: A Density Functional Study. Chemistry – A European Journal 2014, 20 (43) , 13923-13926. https://doi.org/10.1002/chem.201403983
    35. Alberto Scrivanti, Matteo Bertoldini, Manuela Aversa, Valentina Beghetto, Aurora Zancanaro, Stefano Paganelli, Ugo Matteoli. Fluorinated acrylates via alkoxycarbonylation of 1-alkynes with fluorinated alcohols. Tetrahedron 2014, 70 (35) , 5434-5438. https://doi.org/10.1016/j.tet.2014.06.123
    36. A. Haynes. Carbonylation Reactions. 2013, 1-24. https://doi.org/10.1016/B978-0-08-097774-4.00601-X
    37. Agnieszka Bartoszewicz, Rocío Marcos, Suman Sahoo, A. Ken Inge, Xiaodong Zou, Belén Martín‐Matute. A Highly Active Bifunctional Iridium Complex with an Alcohol/Alkoxide‐Tethered N‐Heterocyclic Carbene for Alkylation of Amines with Alcohols. Chemistry – A European Journal 2012, 18 (45) , 14510-14519. https://doi.org/10.1002/chem.201201845
    38. . Multi‐Route Mechanisms in Reactions Involving Metal Complexes. 2012, 239-333. https://doi.org/10.1002/9781119966227.ch3
    39. Fang Li, Qiong Chen, Chen-Chen Liu, Yue-Hong Wu, Xiao-Peng Liu, Guang-Fu Yang. Hydrogen–Deuterium Exchange Reaction of 2-Benzylthio-5-Methyl-1,2,4-Triazolo[1,5-a]Pyrimidine Under Basic Conditions. Applied Magnetic Resonance 2012, 42 (2) , 169-177. https://doi.org/10.1007/s00723-011-0294-5
    40. Alexander P. Sadimenko. Organometallic Complexes of Phosphinopyridines and Related Ligands. 2011, 391-475. https://doi.org/10.1016/B978-0-12-388406-0.00003-8
    41. Hitoshi Kuniyasu, Takahiro Yoshizawa, Nobuaki Kambe. Palladium-catalyzed hydrophenoxycarbonylation of internal alkynes by phenol and CO: the use of Zn for the formation of active catalyst. Tetrahedron Letters 2010, 51 (52) , 6818-6821. https://doi.org/10.1016/j.tetlet.2010.10.017
    42. Douglas B. Grotjahn. Bifunctional Organometallic Catalysis and Reactivity Using Heterocyclic Phosphines and Metallated Heterocycles. Chemistry Letters 2010, 39 (9) , 908-914. https://doi.org/10.1246/cl.2010.908
    43. Douglas B. Grotjahn. Structures, Mechanisms, and Results in Bifunctional Catalysis and Related Species Involving Proton Transfer. Topics in Catalysis 2010, 53 (15-18) , 1009-1014. https://doi.org/10.1007/s11244-010-9571-z
    44. Jianke Liu, Chacko Jacob, Kelly J. Sheridan, Firas Al-Mosule, Brian T. Heaton, Jonathan A. Iggo, Mark Matthews, Jeremie Pelletier, Robin Whyman, Jamie F. Bickley, Alexander Steiner. The synthesis of, and characterization of the dynamic processes occurring in Pd(ii) chelate complexes of 2-pyridyldiphenylphosphine. Dalton Transactions 2010, 39 (34) , 7921. https://doi.org/10.1039/b918162h
    45. Lorenzo Bettucci, Claudio Bianchini, Werner Oberhauser, Matthias Vogt, Hansjörg Grützmacher. Chemoselective methoxycarbonylation of terminal alkynes catalyzed by Pd(ii)-TROPP complexes. Dalton Transactions 2010, 39 (28) , 6509. https://doi.org/10.1039/c002976a
    46. A. Alberto Núñez Magro, Lynzi-Marie Robb, Peter J. Pogorzelec, Alexandra M. Z. Slawin, Graham R. Eastham, David J. Cole-Hamilton. Highly selective formation of unsaturated esters or cascade reactions to α,ω-diesters by the methoxycarbonylation of alkynes catalysed by palladium complexes of 1,2-bis(ditertbutylphosphinomethyl)benzene. Chemical Science 2010, 1 (6) , 723. https://doi.org/10.1039/c0sc00276c
    47. Anne Brennführer, Helfried Neumann, Matthias Beller. Palladium‐Catalyzed Carbonylation Reactions of Alkenes and Alkynes. ChemCatChem 2009, 1 (1) , 28-41. https://doi.org/10.1002/cctc.200900062
    48. Lukas Hintermann, Tuan Thanh Dang, Aurélie Labonne, Thomas Kribber, Li Xiao, Pance Naumov. The AZARYPHOS Family of Ligands for Ambifunctional Catalysis: Syntheses and Use in Ruthenium‐Catalyzed anti‐Markovnikov Hydration of Terminal Alkynes. Chemistry – A European Journal 2009, 15 (29) , 7167-7179. https://doi.org/10.1002/chem.200900563
    49. A. Scrivanti, M. Bertoldini, V. Beghetto, U. Matteoli, A. Venzo. Protonation of palladium(II)-allyl and palladium(0)-olefin complexes containing 2-pyridyldiphenylphosphine. Journal of Organometallic Chemistry 2009, 694 (1) , 131-136. https://doi.org/10.1016/j.jorganchem.2008.09.063
    50. Benudhar Punji, Joel T. Mague, Shaikh M. Mobin, Maravanji S. Balakrishna. Copper(I) complexes of a thioether-functionalized short-bite aminobis(phosphonite), [PhN{P(–OC10H6(μ-S)C10H6O–)}2]. Polyhedron 2009, 28 (1) , 101-106. https://doi.org/10.1016/j.poly.2008.10.014
    51. Simon Doherty, Julian G. Knight, Catherine H. Smyth. Recent Developments in Alkyne Carbonylation. 2008, 251-290. https://doi.org/10.1002/9783527621545.ch10
    52. Douglas B. Grotjahn. Bifunctional catalysts and related complexes: structures and properties. Dalton Transactions 2008, 35 (46) , 6497. https://doi.org/10.1039/b809274e
    53. A. Scrivanti, F. Benetollo, A. Venzo, M. Bertoldini, V. Beghetto, U. Matteoli. Cationic palladium(II)-allyl-complexes containing 2-pyridyldiphenylphosphine: X-ray crystal structure of the binuclear complex [Pd(η3-2-Me-allyl)(μ-Ph2PPy)]2(BF4)2. Detection of an intramolecular C(allyl)–H⋯phenyl ring π-interaction. Journal of Organometallic Chemistry 2007, 692 (16) , 3577-3582. https://doi.org/10.1016/j.jorganchem.2007.04.021
    54. Virginia Díez, Gustavo Espino, Félix A. Jalón, Blanca R. Manzano, Mercedes Pérez-Manrique. Synthesis and structure of new palladium complexes with the ligand 2-(diphenylphosphino)-1-methylimidazole: Evidence of hemilability. Journal of Organometallic Chemistry 2007, 692 (7) , 1482-1495. https://doi.org/10.1016/j.jorganchem.2006.11.045
    55. C.J. Elsevier, M.R. Eberhard. Palladium–Carbon σ-Bonded Complexes. 2007, 269-314. https://doi.org/10.1016/B0-08-045047-4/00103-5
    56. Simon Doherty, Julian G. Knight, Michael Betham. The first insoluble polymer-bound palladium complexes of 2-pyridyldiphenylphosphine: highly efficient catalysts for the alkoxycarbonylation of terminal alkynes. Chem. Commun. 2006, 43 (1) , 88-90. https://doi.org/10.1039/B512556A
    57. Douglas B. Grotjahn. Bifunctional Organometallic Catalysts Involving Proton Transfer or Hydrogen Bonding. Chemistry – A European Journal 2005, 11 (24) , 7146-7153. https://doi.org/10.1002/chem.200500253
    58. Valentin Miranda-Soto, Miguel Parra-Hake, David Morales-Morales, Ruben A. Toscano, Grant Boldt, Anatol Koch, Douglas B. Grotjahn. A Binding Pocket for Coordinated Water Formed by the Metal Center and Two Heterocyclic Nitrogens in Chelating Bis-thioethers of the Complexes {Cp*M[Im‘S(CH 2 ) 2 SIm‘](H 2 O)} 2+ (M = Rh, Ir; Im‘ = 1-alkyl-4- tert -butylimidazol-2-yl). Organometallics 2005, 24 (23) , 5569-5575. https://doi.org/10.1021/om050448e
    59. E. Tyrrell. Alkynes. 2005, 1083-1176. https://doi.org/10.1016/B0-08-044655-8/00021-0
    60. Yusuke Izawa, Isao Shimizu, Akio Yamamoto. Palladium-Catalyzed Oxidative Carbonylation of 1-Alkynes into 2-Alkynoates with Molecular Oxygen as Oxidant. Bulletin of the Chemical Society of Japan 2004, 77 (11) , 2033-2045. https://doi.org/10.1246/bcsj.77.2033
    61. U Matteoli, A Scrivanti, V Beghetto. Aminocarbonylation of phenylacetylene catalysed by palladium acetate in combination with (2-pyridyl)diphenylphosphine and methanesulfonic acid. Journal of Molecular Catalysis A: Chemical 2004, 213 (2) , 183-186. https://doi.org/10.1016/j.molcata.2003.12.012
    62. Gianpiero Calabrò, Dario Drommi, Claudia Graiff, Felice Faraone, Antonio Tiripicchio. Rhodium( I ), Palladium( II ) and Platinum( II ) Coordination Chemistry of the Short‐Bite Chiral Ligands ( S c )‐ N , N ‐Bis(diphenylphosphanyl)‐ sec ‐butylamine, ( R a , R a )‐ N , N ‐Bis(binaphthylphosphonito)phenylamine and ( R a , S c )‐ N ‐(Diphenylphosphanyl)‐ N ‐(binaphthylphosphonito)‐ sec ‐butylamine. European Journal of Inorganic Chemistry 2004, 2004 (7) , 1447-1453. https://doi.org/10.1002/ejic.200300568
    63. GianPiero Calabrò, Dario Drommi, Giuseppe Bruno, Felice Faraone. Effect of chelating vs. bridging coordination of chiral short-bite P–X–P (X = C, N, O) ligands in enantioselective palladium-catalysed allylic substitution reactions. Dalton Trans. 2004, 93 (1) , 81-89. https://doi.org/10.1039/B309385A
    64. P.W.N.M. Van Leeuwen, C. Claver. Metal Complexes as Catalysts for Addition of Carbon Monoxide. 2003, 141-206. https://doi.org/10.1016/B0-08-043748-6/09020-4
    65. Claudio Bianchini, Andrea Meli. Alternating copolymerization of carbon monoxide and olefins by single-site metal catalysis. Coordination Chemistry Reviews 2002, 225 (1-2) , 35-66. https://doi.org/10.1016/S0010-8545(01)00405-2
    66. Crestina S Consorti, Gunter Ebeling, Jaı̈rton Dupont. Carbonylation of alkynols catalyzed by Pd(II)/2-PyPPh 2 dissolved in organic solvents and in ionic liquids: a facile entry to α-methylene γ- and δ-lactones. Tetrahedron Letters 2002, 43 (5) , 753-755. https://doi.org/10.1016/S0040-4039(01)02309-7
    67. Douglas B. Grotjahn, Christopher D. Incarvito, Arnold L. Rheingold. Combined Effects of Metal and Ligand Capable of Accepting a Proton or Hydrogen Bond Catalyze Anti-Markovnikov Hydration of Terminal Alkynes. Angewandte Chemie 2001, 113 (20) , 4002-4005. https://doi.org/10.1002/1521-3757(20011015)113:20<4002::AID-ANGE4002>3.0.CO;2-R
    68. Douglas B. Grotjahn, Christopher D. Incarvito, Arnold L. Rheingold. Combined Effects of Metal and Ligand Capable of Accepting a Proton or Hydrogen Bond Catalyze Anti-Markovnikov Hydration of Terminal Alkynes. Angewandte Chemie International Edition 2001, 40 (20) , 3884-3887. https://doi.org/10.1002/1521-3773(20011015)40:20<3884::AID-ANIE3884>3.0.CO;2-7
    69. A Scrivanti, U Matteoli, V Beghetto, S Antonaroli, R Scarpelli, B Crociani. Iminophosphine-palladium(0) complexes as catalysts in the alkoxycarbonylation of terminal alkynes. Journal of Molecular Catalysis A: Chemical 2001, 170 (1-2) , 51-56. https://doi.org/10.1016/S1381-1169(01)00069-3
    70. Alberto Scrivanti, Valentina Beghetto, Eleonora Campagna, Ugo Matteoli. (2-Furyl)phenyl(2-pyridyl)phosphine as a new ligand in the alkoxycarbonylation of terminal alkynes. Journal of Molecular Catalysis A: Chemical 2001, 168 (1-2) , 75-80. https://doi.org/10.1016/S1381-1169(00)00539-2
    71. Alberto Scrivanti, Valentina Beghetto, Monica Zanato, Ugo Matteoli. Carbonylation of terminal alkynes catalysed by Pd complexes in combination with tri(2-furyl)phosphine and methanesulfonic acid. Journal of Molecular Catalysis A: Chemical 2000, 160 (2) , 331-336. https://doi.org/10.1016/S1381-1169(00)00309-5
    72. M. Akao, S. Sugawara, K. Amino, Y. Inoue. Regioselective hydroesterification of 1-alkynes catalyzed by palladium–phosphine complexes. Journal of Molecular Catalysis A: Chemical 2000, 157 (1-2) , 117-122. https://doi.org/10.1016/S1381-1169(00)00053-4
    73. Piet W. N. M. van Leeuwen. Introduction to hydroformylation. 2000, 1-13. https://doi.org/10.1007/0-306-46947-2_1
    74. Simon Doherty, Graham R. Eastham, Robert P. Tooze, Tom H. Scanlan, Dilys Williams, Mark R. J. Elsegood, William Clegg. Palladium Complexes of C 2 -, C 3 -, and C 4 -Bridged Bis(phospholyl) Ligands:  Remarkably Active Catalysts for the Copolymerization of Ethylene and Carbon Monoxide. Organometallics 1999, 18 (18) , 3558-3560. https://doi.org/10.1021/om990346m
    75. Ugo Matteoli, Carlo Botteghi, Federico Sbrogiò, Valentina Beghetto, Stefano Paganelli, Alberto Scrivanti. Esters and N,N-dialkylamides of 2-(trifluoromethyl)acrylic acid (TFMAA) through Pd-catalysed carbonylation of fluorinated unsaturated substrates. Journal of Molecular Catalysis A: Chemical 1999, 143 (1-3) , 287-295. https://doi.org/10.1016/S1381-1169(98)00396-3
    76. Philippe Kalck, Martine Urrutigoïty, Odile Dechy-Cabaret. Hydroxy- and Alkoxycarbonylations of Alkenes and Alkynes. , 97-123. https://doi.org/10.1007/3418_018

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect