ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

A Molecular Model To Explain and Predict the Stereoselectivity in Rhodium-Catalyzed Hydroformylation

View Author Information
Anorganisch-chemisches Institut, Technische Universität München, Lichtenbergstrasse 4, D-85747 Garching, Germany, and Department of Chemistry, University of Calgary, 2500 University Drive, Northwest, Calgary, Alberta, Canada T2N 1N4
Cite this: Organometallics 1998, 17, 11, 2141–2143
Publication Date (Web):May 5, 1998
https://doi.org/10.1021/om9801397
Copyright © 1998 American Chemical Society

    Article Views

    366

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    By example of the bidentate phosphine−phosphite ligand BINAPHOS 1, [(2-diphenylphosphino)-1,1‘-binaphthalen-2‘-yl)(1,1‘-binaphthalen-2,2‘-diyl)phosphite], a semiquantitative theoretical model elucidates the origin of stereodifferentiation in rhodium-catalyzed hydroformylation. It is demonstrated that the outstanding properties of 1 are due to the synergistic combination of three factors:  (i) pronounced coordination preferences for steric and electronic reasons; (ii) adequate number of chirality centers; (iii) correct configuration of the binaphthyl fragments. The model is, in principle, applicable to all kinds of bidentate phosphine ligands.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

     Dedicated to Professor Heinrich Nöth on the occasion of his 70th birthday.

     Technische Universität München.

    §

     University of Calgary.

    *

     To whom correspondence should be addressed. E-mail:  [email protected].

    Supporting Information Available

    ARTICLE SECTIONS
    Jump To

    Tables of force field parameters, force field potentials, and coordinates of several structures (8 pages). Ordering information is given on any current masthead page.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 62 publications.

    1. Bo Qu, Renchang Tan, Madison R. Herling, Nizar Haddad, Nelu Grinberg, Marisa C. Kozlowski, Xumu Zhang, Chris H. Senanayake. Enantioselective Synthesis of 4-Methyl-3,4-dihydroisocoumarin via Asymmetric Hydroformylation of Styrene Derivatives. The Journal of Organic Chemistry 2019, 84 (8) , 4915-4920. https://doi.org/10.1021/acs.joc.8b02813
    2. Manoj Kumar, Raghunath V. Chaudhari, Bala Subramaniam, and Timothy A. Jackson . Importance of Long-Range Noncovalent Interactions in the Regioselectivity of Rhodium-Xantphos-Catalyzed Hydroformylation. Organometallics 2015, 34 (6) , 1062-1073. https://doi.org/10.1021/om5012775
    3. Ming Lei, Zhidong Wang, Xiaojie Du, Xin Zhang, and Yanhui Tang . Asymmetric Hydroformylation Catalyzed by RhH(CO)2[(R,S)-Yanphos]: Mechanism and Origin of Enantioselectivity. The Journal of Physical Chemistry A 2014, 118 (39) , 8960-8970. https://doi.org/10.1021/jp501941b
    4. Robert Franke, Detlef Selent, and Armin Börner . Applied Hydroformylation. Chemical Reviews 2012, 112 (11) , 5675-5732. https://doi.org/10.1021/cr3001803
    5. Héctor Fernández-Pérez, Pablo Etayo, Armen Panossian, and Anton Vidal-Ferran . Phosphine−Phosphinite and Phosphine−Phosphite Ligands: Preparation and Applications in Asymmetric Catalysis. Chemical Reviews 2011, 111 (3) , 2119-2176. https://doi.org/10.1021/cr100244e
    6. E. Zuidema,, E. Daura-Oller,, J. J. Carbó,, C. Bo, and, P. W. N. M. van Leeuwen. Electronic Ligand Effects on the Regioselectivity of the Rhodium−Diphosphine-Catalyzed Hydroformylation of Propene. Organometallics 2007, 26 (9) , 2234-2242. https://doi.org/10.1021/om060981+
    7. David A. Aubry,, Novella N. Bridges,, Kerri Ezell, and, George G. Stanley. Polar Phase Hydroformylation:  The Dramatic Effect of Water on Mono- and Dirhodium Catalysts. Journal of the American Chemical Society 2003, 125 (37) , 11180-11181. https://doi.org/10.1021/ja035926w
    8. Pavel Kočovský,, Štěpán Vyskočil, and, Martin Smrčina. Non-Symmetrically Substituted 1,1‘-Binaphthyls in Enantioselective Catalysis. Chemical Reviews 2003, 103 (8) , 3213-3246. https://doi.org/10.1021/cr9900230
    9. Stephen A. Decker and, Thomas R. Cundari. DFT Study of the Ethylene Hydroformylation Catalytic Cycle Employing a HRh(PH3)2(CO) Model Catalyst. Organometallics 2001, 20 (13) , 2827-2841. https://doi.org/10.1021/om010019q
    10. Dieter Gleich and, Wolfgang A. Herrmann. Why Do Many C2-Symmetric Bisphosphine Ligands Fail in Asymmetric Hydroformylation? Theory in Front of Experiment. Organometallics 1999, 18 (21) , 4354-4361. https://doi.org/10.1021/om990393e
    11. Dieter Gleich,, Rochus Schmid, and, Wolfgang A. Herrmann. A Combined QM/MM Method for the Determination of Regioselectivities in Rhodium-Catalyzed Hydroformylation. Organometallics 1998, 17 (22) , 4828-4834. https://doi.org/10.1021/om980459q
    12. Joris Langlois, Martine Urrutigoïty, Cyril Godard. Comprehensive Chirality. 2022https://doi.org/10.1016/B978-0-32-390644-9.00019-6
    13. Toshiki Tazawa, Andreas Phanopoulos, Kyoko Nozaki, . Enantioselective Hydroformylation. 2021, 1-564. https://doi.org/10.1002/0471264180.or107.01
    14. K Meyer, J-P Ruiken, M Illner, A Paul, D Müller, E Esche, G Wozny, M Maiwald. Process spectroscopy in microemulsions—setup and multi-spectral approach for reaction monitoring of a homogeneous hydroformylation process. Measurement Science and Technology 2017, 28 (3) , 035501. https://doi.org/10.1088/1361-6501/aa54f3
    15. Anton Cunillera, Cyril Godard, Aurora Ruiz. Asymmetric Hydroformylation Using Rhodium. 2017, 99-143. https://doi.org/10.1007/3418_2017_176
    16. John R. Coombs, James P. Morken. Catalytic Enantioselective Functionalization of Unactivated Terminal Alkenes. Angewandte Chemie International Edition 2016, 55 (8) , 2636-2649. https://doi.org/10.1002/anie.201507151
    17. John R. Coombs, James P. Morken. Katalytische enantioselektive Funktionalisierung von nichtaktivierten terminalen Alkenen. Angewandte Chemie 2016, 128 (8) , 2682-2696. https://doi.org/10.1002/ange.201507151
    18. Tamás Kégl. Computational aspects of hydroformylation. RSC Advances 2015, 5 (6) , 4304-4327. https://doi.org/10.1039/C4RA13121E
    19. Khadichakhan Rafikova, Nurzhamal Kystaubayeva, Murat Aydemir, Cezmi Kayan, Yusuf Selim Ocak, Hamdi Temel, Alexey Zazybin, Nevin Gürbüz, İsmail Özdemir. Transfer hydrogenation of ketones catalyzed by new rhodium and iridium complexes of aminophosphine containing cyclohexyl moiety and photosensing behaviors of rhodium and iridium based devices. Journal of Organometallic Chemistry 2014, 758 , 1-8. https://doi.org/10.1016/j.jorganchem.2014.01.025
    20. Samir H. Chikkali, Jarl Ivar van der Vlugt, Joost N.H. Reek. Hybrid diphosphorus ligands in rhodium catalysed asymmetric hydroformylation. Coordination Chemistry Reviews 2014, 262 , 1-15. https://doi.org/10.1016/j.ccr.2013.10.024
    21. Cezmi Kayan, Nermin Meriç, Murat Aydemir, Yusuf Selim Ocak, Ak𝚤n Baysal, Hamdi Temel. Novel cyclohexyl‐based aminophosphine ligands and use of their Ru(II) complexes in transfer hydrogenation of ketones. Applied Organometallic Chemistry 2014, 28 (2) , 127-133. https://doi.org/10.1002/aoc.3096
    22. Murat Aydemir, Nermin Meric, Akın Baysal. Applications of transition metal complexes containing 3,3′-bis(diphenylphosphinoamine)-2,2′-bipyridine ligand to transfer hydrogenation of ketones. Journal of Organometallic Chemistry 2012, 720 , 38-45. https://doi.org/10.1016/j.jorganchem.2012.08.031
    23. Cezmi Kayan, Nermin Biricik, Murat Aydemir, Rosario Scopelliti. Synthesis and reactivity of bis(diphenylphosphino)amine ligands and their application in Suzuki cross-coupling reactions. Inorganica Chimica Acta 2012, 385 , 164-169. https://doi.org/10.1016/j.ica.2012.01.057
    24. Sonia Aguado‐Ullate, Sergi Saureu, Laura Guasch, Jorge J. Carbó. Theoretical Studies of Asymmetric Hydroformylation Using the Rh( R,S )‐BINAPHOS Catalyst—Origin of Coordination Preferences and Stereoinduction. Chemistry – A European Journal 2012, 18 (3) , 995-1005. https://doi.org/10.1002/chem.201101230
    25. Sonia Aguado-Ullate, Laura Guasch, Manuel Urbano-Cuadrado, Carles Bo, Jorge J. Carbó. 3D-QSPR models for predicting the enantioselectivity and the activity for asymmetric hydroformylation of styrene catalyzed by Rh–diphosphane. Catalysis Science & Technology 2012, 2 (8) , 1694. https://doi.org/10.1039/c2cy20089a
    26. R. Tanaka, K. Nozaki. 5.14 Reduction: Hydroformylation C–H and C–C. 2012, 334-342. https://doi.org/10.1016/B978-0-08-095167-6.00516-4
    27. Murat Aydemir, Akın Baysal, Bahattin Gümgüm. A modular design of metal catalysts for the transfer hydrogenation of aromatic ketones. Applied Organometallic Chemistry 2012, 26 (1) , 1-8. https://doi.org/10.1002/aoc.1853
    28. Murat Aydemir, Akin Baysal, Ertan Sahin, Bahattin Gumgum, Saim Ozkar. Aminophosphine–palladium(II) complexes: Synthsesis, structure and applications in Suzuki and Heck cross-coupling reactions. Inorganica Chimica Acta 2011, 378 (1) , 10-18. https://doi.org/10.1016/j.ica.2011.07.056
    29. László T. Mika, Ferenc Ungváry. Hydroformylation—Homogeneous. 2011https://doi.org/10.1002/0471227617.eoc108.pub2
    30. . Hydroformylation. 2010, 1516-1520. https://doi.org/10.1002/9780470638859.conrr339
    31. Xiaowei Zhang, Bonan Cao, Yongjun Yan, Shichao Yu, Baoming Ji, Xumu Zhang. Synthesis and Application of Modular Phosphine–Phosphoramidite Ligands in Asymmetric Hydroformylation: Structure–Selectivity Relationship. Chemistry – A European Journal 2010, 16 (3) , 871-877. https://doi.org/10.1002/chem.200902238
    32. Murat Aydemir, Akın Baysal, Feyyaz Durap, Bahattin Gümgüm, Saim Özkar, Leyla Tatar Yıldırım. Synthesis and characterization of transition metal complexes of thiophene‐2‐methylamine: X‐ray crystal structure of palladium (II) and platinum (II) complexes and use of palladium(II) complexes as pre‐catalyst in Heck and Suzuki cross‐coupling reactions. Applied Organometallic Chemistry 2009, 23 (11) , 467-475. https://doi.org/10.1002/aoc.1547
    33. Nicolas Vriamont, Bernadette Govaerts, Pierre Grenouillet, Claude de Bellefon, Olivier Riant. Design of a Genetic Algorithm for the Simulated Evolution of a Library of Asymmetric Transfer Hydrogenation Catalysts. Chemistry – A European Journal 2009, 15 (25) , 6267-6278. https://doi.org/10.1002/chem.200802192
    34. Erik Zuidema, Laura Escorihuela, Tanja Eichelsheim, Jorge J. Carbó, Carles Bo, Paul C. J. Kamer, Piet W. N. M. van Leeuwen. The Rate‐Determining Step in the Rhodium–Xantphos‐Catalysed Hydroformylation of 1‐Octene. Chemistry – A European Journal 2008, 14 (6) , 1843-1853. https://doi.org/10.1002/chem.200700727
    35. Samuel B. Owens, Abha A. Kaisare, Gary M. Gray. X-ray Crystal Structures of [Et3NH][{(CO)5Mo(P(OCH2CMe2CH2O)O)}2H] and (CO)5Mo{μ-Ph2POPPh2}Mo(CO)5, Two Complexes Derived from the Hydrolysis of Coordinated Chloro-Phosphorous-Donor Ligands. Journal of Chemical Crystallography 2007, 37 (10) , 655-661. https://doi.org/10.1007/s10870-007-9223-8
    36. M. Yamashita, K. Nozaki. Hydroformylation, Other Hydrocarbonylations, and Oxidative Alkoxycarbonylation. 2007, 435-471. https://doi.org/10.1016/B0-08-045047-4/00158-8
    37. P.W.N.M. van Leeuwen, Z. Freixa. Application of Rhodium Complexes in Homogeneous Catalysis with Carbon Monoxide. 2007, 237-265. https://doi.org/10.1016/B0-08-045047-4/00196-5
    38. Katherine J. Haxton, David J. Cole-Hamilton, Russell E. Morris. Silsesquioxane dendrimers as catalysts: A bite-sized molecular dynamics study. Dalton Transactions 2007, 372 (31) , 3415. https://doi.org/10.1039/b703156d
    39. Bahattin Gümgüm, Osman Akba, Feyyaz Durap, Leyla Tatar Yıldırım, Dinçer Ülkü, Saim Özkar. Synthesis, characterization, crystal and molecular structure of diphenyloxophosphinoethylenediamines. Polyhedron 2006, 25 (16) , 3133-3137. https://doi.org/10.1016/j.poly.2006.05.035
    40. Benudhar Punji, Joel T. Mague, Maravanji S. Balakrishna. Ruthenium(II), copper(I) and silver(I) complexes of large bite bisphosphinite, bis(2-diphenylphosphinoxynaphthalen-1-yl)methane: Application of Ru(II) complexes towards the hydrogenation of styrene and phenylacetylene. Journal of Organometallic Chemistry 2006, 691 (20) , 4265-4272. https://doi.org/10.1016/j.jorganchem.2006.06.040
    41. Jorge J. Carbó, Agustí Lledós, Dieter Vogt, Carles Bo. Origin of Stereoinduction by Chiral Aminophosphane Phosphinite Ligands in Enantioselective Catalysis: Asymmetric Hydroformylation. Chemistry – A European Journal 2006, 12 (5) , 1457-1467. https://doi.org/10.1002/chem.200500606
    42. Benudhar Punji, Joel T. Mague, Maravanji S. Balakrishna. Bis(2-diphenylphosphinoxynaphthalen-1-yl)methane: transition metal chemistry, Suzuki cross-coupling reactions and homogeneous hydrogenation of olefins. Dalton Trans. 2006, 16 (10) , 1322-1330. https://doi.org/10.1039/B510589G
    43. M. S. Balakrishna, P. P. George, J. T. Mague. Synthesis and single crystal X-ray structures of N,N′-bis(diphenylphosphinothioyl)piperzine and bis(diphenylphosphinoselenoyl)piperzine. Phosphorus, Sulfur, and Silicon and the Related Elements 2006, 181 (1) , 141-146. https://doi.org/10.1080/104265090969225
    44. Jan‐Willem Handgraaf, Joost N. H. Reek, Luca Bellarosa, Francesco Zerbetto. Continuous Chirality Measure in Reaction Pathways of Ruthenium‐Catalyzed Transfer Hydrogenation of Ketones. Advanced Synthesis & Catalysis 2005, 347 (6) , 792-802. https://doi.org/10.1002/adsc.200404342
    45. Maravanji S. Balakrishna, P.P. George, Shaikh M. Mobin. A new diphosphinite derived from cyclohexane-1,4-diol: oxidation reactions, metal complexes, P–O bond cleavage and X-ray crystal structures of Ph2P(E)O(C6H10)OP(E)Ph2 (E=S, Se). Polyhedron 2005, 24 (4) , 475-480. https://doi.org/10.1016/j.poly.2004.12.009
    46. Dieter Gleich, Jürg Hutter. Computational Approaches to Activity in Rhodium‐Catalysed Hydroformylation. Chemistry – A European Journal 2004, 10 (10) , 2435-2444. https://doi.org/10.1002/chem.200305179
    47. Gregori Ujaque, Feliu Maseras. Applications of Hybrid DFT/Molecular Mechanics to Homogeneous Catalysis. 2004, 117-150. https://doi.org/10.1007/b97938
    48. Maravanji S. Balakrishna, P. P. George, Joel T. Mague. Synthesis and Single Crystal X-Ray Structure of N,N ′-Bis(Diphenylphosphino)Piperazine. Journal of Chemical Research 2003, 2003 (9) , 576-577. https://doi.org/10.3184/030823403322597379
    49. Montserrat Diéguez, Aurora Ruiz, Carmen Claver. Tunable furanoside diphosphite ligands. A powerful approach in asymmetric catalysis. Dalton Trans. 2003, vol. 1 (15) , 2957-2963. https://doi.org/10.1039/B303303A
    50. Maravanji S. Balakrishna, Robert McDonald. Synthesis, spectroscopic study and X-ray crystal structure of unsymmetrical bis(phosphine)-platinum complex, [PtCl 2 {η 2 -Ph 2 POCH 2 CH 2 N(CH 3 )PPh 2 ]. Inorganic Chemistry Communications 2002, 5 (10) , 782-786. https://doi.org/10.1016/S1387-7003(02)00558-0
    51. Ferenc Ungváry. Hydroformylation – Homogeneous. 2002https://doi.org/10.1002/0471227617.eoc108
    52. Jorge J. Carbó, Feliu Maseras, Carles Bo. Rhodium Diphosphine Hydroformylation. 2002, 161-187. https://doi.org/10.1007/0-306-47718-1_7
    53. A. Köckritz, S. Bischoff, M. Kant, R. Siefken. Asymmetric hydroformylation and hydrogenation catalyzed by chiral rhodium and ruthenium complexes of phosphorylated 2,2′-bis(diphenyl-phosphino)-1,1′-binaphthyls. Journal of Molecular Catalysis A: Chemical 2001, 174 (1-2) , 119-126. https://doi.org/10.1016/S1381-1169(01)00193-5
    54. Maravanji S. Balakrishna, Mrinalini G. Walawalker. Transition metal chemistry of phosphorus based ligands: synthesis and transition metal chemistry of N,N′-dimethyl,-bis(diphenylphosphino)ethylenediamine. The crystal and molecular structure of [ReBr(CO)3{Ph2PN(Me)CH2CH2(Me)NPPh2}]. Journal of Organometallic Chemistry 2001, 628 (1) , 76-80. https://doi.org/10.1016/S0022-328X(01)00764-1
    55. Iwao Ojima, Chung-Ying Tsai, Maria Tzamarioudaki, Dominique Bonafoux. The Hydroformylation Reaction. 2000, 1-354. https://doi.org/10.1002/0471264180.or056.01
    56. Manfred T. Reetz, Mireia Pastó. Mixed bidentate ligands: the first chiral phosphonite-phosphite. Tetrahedron Letters 2000, 41 (18) , 3315-3317. https://doi.org/10.1016/S0040-4039(00)00386-5
    57. Myriam Laly, Roland Broussier, Bernard Gautheron. Ferrocene-based phosphonite–phosphine ligands, Pd and Rh complexes. Tetrahedron Letters 2000, 41 (8) , 1183-1185. https://doi.org/10.1016/S0040-4039(99)02276-5
    58. Carmen Claver, Piet W. N. M. van Leeuwen. Asymmetric hydroformylation. 2000, 107-144. https://doi.org/10.1007/0-306-46947-2_5
    59. Ferenc Ungváry. Application of transition metals in hydroformylation annual survey covering the year 1998. Coordination Chemistry Reviews 1999, 188 (1) , 263-296. https://doi.org/10.1016/S0010-8545(99)00037-5
    60. Montserrat Diéguez, Mariette M Pereira, Anna M Masdeu-Bultó, Carmen Claver, J.Carles Bayón. Rhodium-diphosphine catalysts for the hydroformylation of styrene: the influence of the excess of ligand and the chelate ring size on the reaction selectivity. Journal of Molecular Catalysis A: Chemical 1999, 143 (1-3) , 111-122. https://doi.org/10.1016/S1381-1169(98)00373-2
    61. Florian A Rampf, Michael Spiegler, Wolfgang A Herrmann. Water-soluble metal complexes and catalysts. Journal of Organometallic Chemistry 1999, 582 (2) , 204-210. https://doi.org/10.1016/S0022-328X(99)00036-4
    62. Carmen Claver, Montserrat Diéguez, Oscar Pàmies, Sergio Castillón. Asymmetric Hydroformylation. , 35-64. https://doi.org/10.1007/3418_016

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect