Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
Application of a Novel Protein Biochip Technology for Detection and Identification of Rheumatoid Arthritis Biomarkers in Synovial Fluid
My Activity
    Communication

    Application of a Novel Protein Biochip Technology for Detection and Identification of Rheumatoid Arthritis Biomarkers in Synovial Fluid
    Click to copy article linkArticle link copied!

    View Author Information
    Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan, Ciphergen Biosystems Co., Kamakura., Japan, Hokkaido University, Sapporo, Japan, and Saitama City Hospital, Saitama, Japan.
    Other Access Options

    Journal of Proteome Research

    Cite this: Journal of Proteome Research 2002, 1, 6, 495–499
    Click to copy citationCitation copied!
    https://doi.org/10.1021/pr025531w
    Published September 17, 2002
    Copyright © 2002 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!

    We compared protein profiles of the synovial fluid of patients with rheumatoid arthritis and osteoarthritis by using surface-enhanced laser desorption/ionization mass spectrometry technology. With this approach, we identified a protein expressed specifically in the synovial fluid of the patients with rheumatoid arthritis. During the investigation, we found several reproducible and discriminatory biomarker candidates for distinction between rheumatoid arthritis and osteoarthritis. Among these candidates, a 10 850 Da protein peak was the clearest example of a single signal found specifically in the rheumatoid arthritis samples. This candidate was purified using a size-exclusion spin column followed by gel electrophoresis and subsequently identified by peptide mapping and post-source decay (PSD) analysis. The results clearly indicate that the protein is myeloid-related protein 8, which was verified by the enzyme immunoassay. It is known that the myeloid-related protein 8 level in serum and synovial fluid is related to disease activity in juvenile rheumatoid arthritis. The results suggest that the ProteinChip platform is useful to detect and identify protein biomarkers expressed specifically in diseases or in some stage of diseases.

    Keywords: ProteinChip system • rheumatoid arthritis • myeloid related protein 8 • biomarkers

    Copyright © 2002 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    *

     To whom correspondence should be addressed. Takafumi Uchida, Ph.D., Department of Pathology, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi 980-8575, Japan. Phone:  81-22-717-8511. Fax:  81-22-717-8512. E-mail:  [email protected].

     Institute of Development, Aging and Cancer, Tohoku University.

     Ciphergen Biosystems Co.

    §

     Hokkaido University.

     Saitama City Hospital.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 87 publications.

    1. Haleem J. Issaq,, Zhen Xiao, and, Timothy D. Veenstra. Serum and Plasma Proteomics. Chemical Reviews 2007, 107 (8) , 3601-3620. https://doi.org/10.1021/cr068287r
    2. J. Robert Freije,, Theo Klein,, J. A. Ooms,, Jan Piet Franke, and, Rainer Bischoff. Activity-Based Matrix Metallo-Protease Enrichment Using Automated, Inhibitor Affinity Extractions. Journal of Proteome Research 2006, 5 (5) , 1186-1194. https://doi.org/10.1021/pr050483b
    3. Roland Lehmann,, Christian Melle,, Niko Escher, and, Ferdinand von Eggeling. Detection and Identification of Protein Interactions of S100 Proteins by ProteinChip Technology. Journal of Proteome Research 2005, 4 (5) , 1717-1721. https://doi.org/10.1021/pr050163s
    4. John Marshall,, Andy Jankowski,, Shirley Furesz,, Inga Kireeva,, Lisa Barker,, Mila Dombrovsky,, Weimin Zhu,, Kellie Jacks,, Leslee Ingratta,, Jenny Bruin,, Erika Kristensen,, Rulin Zhang,, Eric Stanton,, Miyoko Takahashi, and, George Jackowski. Human Serum Proteins Preseparated by Electrophoresis or Chromatography Followed by Tandem Mass Spectrometry. Journal of Proteome Research 2004, 3 (3) , 364-382. https://doi.org/10.1021/pr034039p
    5. John Marshall,, Peter Kupchak,, Weimin Zhu,, Jason Yantha,, Tammy Vrees,, Shirley Furesz,, Kellie Jacks,, Chris Smith,, Inga Kireeva,, Rulin Zhang,, Miyoko Takahashi,, Eric Stanton, and, George Jackowski. Processing of Serum Proteins Underlies the Mass Spectral Fingerprinting of Myocardial Infarction. Journal of Proteome Research 2003, 2 (4) , 361-372. https://doi.org/10.1021/pr030003l
    6. Daniel Figeys. Proteomics in 2002:  A Year of Technical Development and Wide-Ranging Applications. Analytical Chemistry 2003, 75 (12) , 2891-2905. https://doi.org/10.1021/ac030142m
    7. Weiqiang Liang, Weining Yan, Xiao Wang, Xinfeng Yan, Qiongzheng Hu, Wenqiang Zhang, Hongzheng Meng, Luxu Yin, Qing He, Chunxia Ma. A single atom cobalt anchored MXene bifunctional platform for rapid, label-free and high-throughput biomarker analysis and tissue imaging. Biosensors and Bioelectronics 2024, 246 , 115903. https://doi.org/10.1016/j.bios.2023.115903
    8. Samantha Louise Smith, Sheree Alexander, Nisha Nair, Sebastien Viatte, Stephen Eyre, Kimme L Hyrich, Ann W Morgan, Anthony G Wilson, John D Isaacs, Darren Plant, Anne Barton. Pre-treatment calprotectin (MRP8/14) provides no added value to testing CRP alone in terms of predicting response to TNF inhibitors in rheumatoid arthritis in a post hoc analysis. Annals of the Rheumatic Diseases 2023, 82 (5) , 611-620. https://doi.org/10.1136/ard-2022-222519
    9. Christina Heidt, Ulrike Kämmerer, Manfred Fobker, Andreas Rüffer, Thorsten Marquardt, Monika Reuss-Borst. Assessment of Intestinal Permeability and Inflammation Bio-Markers in Patients with Rheumatoid Arthritis. Nutrients 2023, 15 (10) , 2386. https://doi.org/10.3390/nu15102386
    10. José Inciarte-Mundo, Beatriz Frade-Sosa, Raimon Sanmartí. From bench to bedside: Calprotectin (S100A8/S100A9) as a biomarker in rheumatoid arthritis. Frontiers in Immunology 2022, 13 https://doi.org/10.3389/fimmu.2022.1001025
    11. Marco Grassi, Paolo Salari, Luca Farinelli, Marco D’Anzeo, Nicoletta Onori, Antonio Gigante. Synovial Biomarkers to Detect Chronic Periprosthetic Joint Infection: A Pilot Study to Compare Calprotectin Rapid Test, Calprotectin ELISA Immunoassay and Leukocyte Esterase Test. The Journal of Arthroplasty 2022, 37 (4) , 781-786. https://doi.org/10.1016/j.arth.2021.12.040
    12. A. S. Avdeeva, M. V. Cherkasova, E. L. Nasonov. Dynamics of the level of calprotectin in patients with rheumatoid arthritis during rituximab biosimilar (Acellbia “Biocad”) therapy. Rheumatology Science and Practice 2021, 59 (4) , 401-405. https://doi.org/10.47360/1995-4484-2021-401-405
    13. Dan Ma, Nana Liang, Liyun Zhang. Establishing Classification Tree Models in Rheumatoid Arthritis Using Combination of Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry and Magnetic Beads. Frontiers in Medicine 2021, 8 https://doi.org/10.3389/fmed.2021.609773
    14. Paolo Salari, Marco Grassi, Barbara Cinti, Nicoletta Onori, Antonio Gigante. Synovial Fluid Calprotectin for the Preoperative Diagnosis of Chronic Periprosthetic Joint Infection. The Journal of Arthroplasty 2020, 35 (2) , 534-537. https://doi.org/10.1016/j.arth.2019.08.052
    15. Irene Di Ceglie, Giuliana Ascone, Niels A. J. Cremers, Annet W. Sloetjes, Birgitte Walgreen, Thomas Vogl, Johannes Roth, J. Sjef Verbeek, Fons A. J. van de Loo, Marije I. Koenders, Peter M. van der Kraan, Arjen B. Blom, Martijn H. J. van den Bosch, Peter L. E. M. van Lent. Fcγ receptor-mediated influx of S100A8/A9-producing neutrophils as inducer of bone erosion during antigen-induced arthritis. Arthritis Research & Therapy 2018, 20 (1) https://doi.org/10.1186/s13075-018-1584-1
    16. A. S. Avdeeva. CLINICAL SIGNIFICANCE OF CALPROTECTIN IN RHEUMATIC DISEASES. Rheumatology Science and Practice 2018, 56 (4) , 494-499. https://doi.org/10.14412/1995-4484-2018-494-499
    17. Francesca Ometto, Lara Friso, Davide Astorri, Costantino Botsios, Bernd Raffeiner, Leonardo Punzi, Andrea Doria. Calprotectin in rheumatic diseases. Experimental Biology and Medicine 2017, 242 (8) , 859-873. https://doi.org/10.1177/1535370216681551
    18. Cristina Ruiz-Romero, Patricia Fernández-Puente, Francisco J. Blanco. Biomarkers in Osteoarthritis: Value of Proteomics. 2017, 831-847. https://doi.org/10.1007/978-94-007-7693-7_44
    19. Magdalena Kopeć-Mędrek, Małgorzata Widuchowska, Eugeniusz J. Kucharz. Calprotectin in rheumatic diseases: a review. Rheumatology 2016, 54 (6) , 306-309. https://doi.org/10.5114/reum.2016.64907
    20. Kailash Karthikeyan, Kristi Barker, Yanyang Tang, Peter Kahn, Peter Wiktor, Al Brunner, Vinicius Knabben, Bharath Takulapalli, Jane Buckner, Gerald Nepom, Joshua LaBaer, Ji Qiu. A Contra Capture Protein Array Platform for Studying Post-translationally Modified (PTM) Auto-antigenomes. Molecular & Cellular Proteomics 2016, 15 (7) , 2324-2337. https://doi.org/10.1074/mcp.M115.057661
    21. Ana Márquez, Javier Martín, F. David Carmona. Emerging aspects of molecular biomarkers for diagnosis, prognosis and treatment response in rheumatoid arthritis. Expert Review of Molecular Diagnostics 2016, 16 (6) , 663-675. https://doi.org/10.1080/14737159.2016.1174579
    22. Emily S. Collins, Aisha Q. Butt, David S. Gibson, Michael J. Dunn, Ursula Fearon, Arno W. van Kuijk, Danielle M. Gerlag, Eliza Pontifex, Douglas J. Veale, Paul P. Tak, Oliver FitzGerald, Stephen R. Pennington. A clinically based protein discovery strategy to identify potential biomarkers of response to anti‐TNF‐α treatment of psoriatic arthritis. PROTEOMICS – Clinical Applications 2016, 10 (6) , 645-662. https://doi.org/10.1002/prca.201500051
    23. Wen Zheng, Xianghong Lu, Zhirong Fu, Lin Zhang, Ximin Li, Xiaobao Xu, Yina Ren, Yongzhuang Lu, Hongwei Fu, Jingkui Tian. Identification of candidate synovial membrane biomarkers after Achyranthes aspera treatment for rheumatoid arthritis. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 2016, 1864 (3) , 308-316. https://doi.org/10.1016/j.bbapap.2015.12.010
    24. Cristina Ruiz-Romero, Patricia Fernández-Puente, Francisco J. Blanco. Biomarkers in Osteoarthritis: Value of Proteomics. 2016, 1-17. https://doi.org/10.1007/978-94-007-7745-3_44-1
    25. Z. Lin, X. Cao, P. Xie, M. Liu, Mehdi Javanmard. PicoMolar level detection of protein biomarkers based on electronic sizing of bead aggregates: theoretical and experimental considerations. Biomedical Microdevices 2015, 17 (6) https://doi.org/10.1007/s10544-015-0022-2
    26. Junji Hayashi, Makoto Kihara, Harubumi Kato, Toshihide Nishimura. A proteomic profile of synoviocyte lesions microdissected from formalin-fixed paraffin-embedded synovial tissues of rheumatoid arthritis. Clinical Proteomics 2015, 12 (1) https://doi.org/10.1186/s12014-015-9091-8
    27. Yuhui Li, Xiaolin Sun, Xuewu Zhang, Yanying Liu, Yuqin Yang, Ru Li, Xu Liu, Rulin Jia, Zhanguo Li. Establishment of a decision tree model for diagnosis of early rheumatoid arthritis by proteomic fingerprinting. International Journal of Rheumatic Diseases 2015, 18 (8) , 835-841. https://doi.org/10.1111/1756-185X.12595
    28. Kwi Young Kang, Soo Hyun Lee, Seung Min Jung, Sung-Hwan Park, Byung-Hwa Jung, Ji Hyeon Ju. Downregulation of Tryptophan-related Metabolomic Profile in Rheumatoid Arthritis Synovial Fluid. The Journal of Rheumatology 2015, 42 (11) , 2003-2011. https://doi.org/10.3899/jrheum.141505
    29. Cristina Ruiz-Romero, Patricia Fernández-Puente, Valentina Calamia, Francisco J Blanco. Lessons from the proteomic study of osteoarthritis. Expert Review of Proteomics 2015, 12 (4) , 433-443. https://doi.org/10.1586/14789450.2015.1065182
    30. Ivy Y Choi, Danielle M Gerlag, Marieke J Herenius, Rogier M Thurlings, Carla A Wijbrandts, Dirk Foell, Thomas Vogl, Johannes Roth, Paul P Tak, Dirk Holzinger. MRP8/14 serum levels as a strong predictor of response to biological treatments in patients with rheumatoid arthritis. Annals of the Rheumatic Diseases 2015, 74 (3) , 499-505. https://doi.org/10.1136/annrheumdis-2013-203923
    31. Antoine Obry, Thierry Lequerré, Julie Hardouin, Olivier Boyer, Patrice Fardellone, Peggy Philippe, Xavier Le Loët, Pascal Cosette, Olivier Vittecoq, . Identification of S100A9 as Biomarker of Responsiveness to the Methotrexate/Etanercept Combination in Rheumatoid Arthritis Using a Proteomic Approach. PLoS ONE 2014, 9 (12) , e115800. https://doi.org/10.1371/journal.pone.0115800
    32. Lavanya Balakrishnan, Mitali Bhattacharjee, Sartaj Ahmad, Raja Sekhar Nirujogi, Santosh Renuse, Yashwanth Subbannayya, Arivusudar Marimuthu, Srinivas M Srikanth, Rajesh Raju, Mukesh Dhillon, Navjyot Kaur, Ramesh Jois, Vivek Vasudev, YL Ramachandra, Nandini A Sahasrabuddhe, TS Keshava Prasad, Sujatha Mohan, Harsha Gowda, Subramanian Shankar, Akhilesh Pandey. Differential proteomic analysis of synovial fluid from rheumatoid arthritis and osteoarthritis patients. Clinical Proteomics 2014, 11 (1) https://doi.org/10.1186/1559-0275-11-1
    33. Daniela Cretu, Eleftherios P. Diamandis, Vinod Chandran. Delineating the synovial fluid proteome: Recent advancements and ongoing challenges in biomarker research. Critical Reviews in Clinical Laboratory Sciences 2013, 50 (2) , 51-63. https://doi.org/10.3109/10408363.2013.802408
    34. Ignacio Ortea, Bernd Roschitzki, Juan Gabriel Ovalles, Javier López Longo, Inmaculada de la Torre, Isidoro González, Juan J. Gómez-Reino, Antonio González. Discovery of serum proteomic biomarkers for prediction of response to infliximab (a monoclonal anti-TNF antibody) treatment in rheumatoid arthritis: An exploratory analysis. Journal of Proteomics 2012, 77 , 372-382. https://doi.org/10.1016/j.jprot.2012.09.011
    35. Xiaoxue Zhang, Zhaolin Yuan, Bo Shen, Min Zhu, Chibo Liu, Wei Xu. Discovery of serum protein biomarkers in rheumatoid arthritis using MALDI-TOF-MS combined with magnetic beads. Clinical and Experimental Medicine 2012, 12 (3) , 145-151. https://doi.org/10.1007/s10238-011-0154-5
    36. Jesús Mateos, Lucía Lourido, Patricia Fernández-Puente, Valentina Calamia, Carlos Fernández-López, Natividad Oreiro, Cristina Ruiz-Romero, Francisco J. Blanco. Differential protein profiling of synovial fluid from rheumatoid arthritis and osteoarthritis patients using LC–MALDI TOF/TOF. Journal of Proteomics 2012, 75 (10) , 2869-2878. https://doi.org/10.1016/j.jprot.2011.12.042
    37. Xiaohua Pan, Liling Huang, Jiakai Chen, Yong Dai, Xiaofen Chen. Analysis of synovial fluid in knee joint of osteoarthritis:5 proteome patterns of joint inflammation based on matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. International Orthopaedics 2012, 36 (1) , 57-64. https://doi.org/10.1007/s00264-011-1258-y
    38. Géza Bálint, Klára Barabás, Zsuzsanna Zeitler, József Bakos, Katalin A. Kékesi, Ákos Pethes, Erzsébet Nagy, Tamás Lakatos, Péter V. Bálint, Zoltán Szekanecz. Ex Vivo Soft-Laser Treatment Inhibits the Synovial Expression of Vimentin and α-Enolase, Potential Autoantigens in Rheumatoid Arthritis. Physical Therapy 2011, 91 (5) , 665-674. https://doi.org/10.2522/ptj.20100065
    39. Mette Koefoed, Claus M. Larsen, Mirjam V. Faulenbach, Allan Vaag, Jan A. Ehses, Marc Y. Donath, James Norton McGuire, Flemming Pociot, Thomas Mandrup-Poulsen. Serum Proteome Pool Changes in Type 2 Diabetic Patients Treated with Anakinra. Clinical Proteomics 2010, 6 (4) , 153-161. https://doi.org/10.1007/s12014-010-9056-x
    40. Dimitrios Iliopoulos, Vasiliki Gkretsi, Aspasia Tsezou. Proteomics of osteoarthritic chondrocytes and cartilage. Expert Review of Proteomics 2010, 7 (5) , 749-760. https://doi.org/10.1586/epr.10.27
    41. N V Kitayeva, N V Frigo, S V Rotanov, R F Khairulin. Prospects of using proteome technologies in the diagnostics of sexually transmitted infections and skin diseases. Vestnik dermatologii i venerologii 2010, 86 (4) , 17-27. https://doi.org/10.25208/vdv876
    42. C. Ruiz-Romero, F.J. Blanco. Proteomics role in the search for improved diagnosis, prognosis and treatment of osteoarthritis. Osteoarthritis and Cartilage 2010, 18 (4) , 500-509. https://doi.org/10.1016/j.joca.2009.11.012
    43. A. Baillet, C. Trocme, S. Berthier, M. Arlotto, L. Grange, J. Chenau, S. Quetant, M. Seve, F. Berger, R. Juvin, F. Morel, P. Gaudin. Synovial fluid proteomic fingerprint: S100A8, S100A9 and S100A12 proteins discriminate rheumatoid arthritis from other inflammatory joint diseases. Rheumatology 2010, 49 (4) , 671-682. https://doi.org/10.1093/rheumatology/kep452
    44. Laura Giusti, Chiara Baldini, Federica Ciregia, Gino Giannaccini, Camillo Giacomelli, Francesca De Feo, Andrea Delle Sedie, Lucrezia Riente, Antonio Lucacchini, Laura Bazzichi, Stefano Bombardieri. Is GRP78/BiP a potential salivary biomarker in patients with rheumatoid arthritis?. PROTEOMICS – Clinical Applications 2010, 4 (3) , 315-324. https://doi.org/10.1002/prca.200900082
    45. Robert M. Plenge, Michael E. Weinblatt. Genomics in the Evaluation and Management of Rheumatoid Arthritis. 2010, 551-565. https://doi.org/10.1016/B978-0-12-374934-5.00043-X
    46. XIAOTIAN CHANG, YAZHOU CUI, MEIJUAN ZONG, YAN ZHAO, XINFENG YAN, YU CHEN, JINXIANG HAN. Identification of Proteins with Increased Expression in Rheumatoid Arthritis Synovial Tissues. The Journal of Rheumatology 2009, 36 (5) , 872-880. https://doi.org/10.3899/jrheum.080939
    47. Emilio Camafeita, José Ramón Lamas, Enrique Calvo, Juan Antonio López, Benjamín Fernández‐Gutiérrez. Proteomics: New insights into rheumatic diseases. PROTEOMICS – Clinical Applications 2009, 3 (2) , 226-241. https://doi.org/10.1002/prca.200800146
    48. Robert M. Plenge, Michael E. Weinblatt. Molecular Basis of Rheumatoid Arthritis. 2009, 1017-1031. https://doi.org/10.1016/B978-0-12-369420-1.00084-6
    49. Kelly Tilleman, Dieter Deforce. Proteomics in rheumatology. Expert Review of Proteomics 2008, 5 (6) , 755-759. https://doi.org/10.1586/14789450.5.6.755
    50. Stijn Lambrecht, Kelly Tilleman, Dirk Elewaut, Dieter Deforce. Proteomics in rheumatology: The beginning of a fairy tale?. PROTEOMICS – Clinical Applications 2008, 2 (3) , 411-419. https://doi.org/10.1002/prca.200780084
    51. Richard Wilson, John F. Bateman. Cartilage proteomics: Challenges, solutions and recent advances. PROTEOMICS – Clinical Applications 2008, 2 (2) , 251-263. https://doi.org/10.1002/prca.200780007
    52. Brendan J McMorran, Severine A Ouvry Patat, John B Carlin, Keith Grimwood, Alun Jones, David S Armstrong, John C Galati, Peter J Cooper, Catherine A Byrnes, Paul W Francis, Colin F Robertson, David A Hume, Christoph H Borchers, Claire E Wainwright, Brandon J Wainwright. Novel Neutrophil-Derived Proteins in Bronchoalveolar Lavage Fluid Indicate an Exaggerated Inflammatory Response in Pediatric Cystic Fibrosis Patients. Clinical Chemistry 2007, 53 (10) , 1782-1791. https://doi.org/10.1373/clinchem.2007.087650
    53. David S. Gibson, Madeleine E. Rooney. The human synovial fluid proteome: A key factor in the pathology of joint disease. PROTEOMICS – Clinical Applications 2007, 1 (8) , 889-899. https://doi.org/10.1002/prca.200700044
    54. Jose L. Luque-Garcia, Thomas A. Neubert. Sample preparation for serum/plasma profiling and biomarker identification by mass spectrometry. Journal of Chromatography A 2007, 1153 (1-2) , 259-276. https://doi.org/10.1016/j.chroma.2006.11.054
    55. Michael Kiehntopf, Robert Siegmund, Thomas Deufel. Anwendung der SELDI-TOF-Massenspektrometrie zur Identifizierung neuer Biomarker: Möglichkeiten und Grenzen / Application of SELDI-TOF-mass spectrometry for biomarker identification: potentials and limitations. LaboratoriumsMedizin 2007, 31 (3) , 93-108. https://doi.org/10.1515/JLM.2007.021
    56. Oliver Driemel, Ulrike Murzik, Niko Escher, Christian Melle, Annett Bleul, Regine Dahse, Torsten Eugen Reichert, Günter Ernst, Ferdinand von Eggeling. Protein profiling of oral brush biopsies: S100A8 and S100A9 can differentiate between normal, premalignant, and tumor cells. PROTEOMICS – Clinical Applications 2007, 1 (5) , 486-493. https://doi.org/10.1002/prca.200600669
    57. Veronika Sharp, Paul J Utz. Technology Insight: can autoantibody profiling improve clinical practice?. Nature Clinical Practice Rheumatology 2007, 3 (2) , 96-103. https://doi.org/10.1038/ncprheum0404
    58. Keith D. Coon, Travis L. Dunckley, Dietrich A. Stephan. A Generic Research Paradigm for Identification and Validation of Early Molecular Diagnostics and New Therapeutics in Common Disorders. Molecular Diagnosis & Therapy 2007, 11 (1) , 1-14. https://doi.org/10.1007/BF03256218
    59. Catherine J. Lee, Edgardo V. Ariztia, David A. Fishman. Conventional and Proteomic Technologies for the Detection of Early Stage Malignancies: Markers for Ovarian Cancer. Critical Reviews in Clinical Laboratory Sciences 2007, 44 (1) , 87-114. https://doi.org/10.1080/10408360600778885
    60. Michael Kiehntopf, Robert Siegmund, Thomas Deufel. Use of SELDI-TOF mass spectrometry for identification of new biomarkers: potential and limitations. Clinical Chemical Laboratory Medicine 2007, 45 (11) https://doi.org/10.1515/CCLM.2007.351
    61. Shen Hu, Joseph A. Loo, David T. Wong. Human body fluid proteome analysis. PROTEOMICS 2006, 6 (23) , 6326-6353. https://doi.org/10.1002/pmic.200600284
    62. Michael Sean Esplin. Preterm Birth: A Review of Genetic Factors and Future Directions for Genetic Study. Obstetrical & Gynecological Survey 2006, 61 (12) , 800-806. https://doi.org/10.1097/01.ogx.0000248747.52343.5f
    63. Wolfgang Hueber, William H. Robinson. Proteomic biomarkers for autoimmune disease. PROTEOMICS 2006, 6 (14) , 4100-4105. https://doi.org/10.1002/pmic.200600017
    64. Lisa GM van Baarsen, Tineke CTM van der Pouw-Kraan, Cornelis L Verweij. A genomic view of subtypes in rheumatoid arthritis: towards personalized medicine. Future Rheumatology 2006, 1 (3) , 311-322. https://doi.org/10.2217/17460816.1.3.311
    65. Christian Melle, Ralf Bogumil, Günther Ernst, Bettina Schimmel, Annett Bleul, Ferdinand von Eggeling. Detection and identification of heat shock protein 10 as a biomarker in colorectal cancer by protein profiling. PROTEOMICS 2006, 6 (8) , 2600-2608. https://doi.org/10.1002/pmic.200500427
    66. Claudio Sorio, Pierluigi Mauri, Paolo Pederzoli, Aldo Scarpa. Non-invasive cancer detection: Strategies for the identification of novel cancer markers. IUBMB Life (International Union of Biochemistry and Molecular Biology: Life) 2006, 58 (4) , 193-198. https://doi.org/10.1080/15216540600719598
    67. Jakob Albrethsen, Rikke Bøgebo, Jesper Olsen, Hans Raskov, Steen Gammeltoft. Preanalytical and analytical variation of surface-enhanced laser desorption-ionization time-of-flight mass spectrometry of human serum. Clinical Chemistry and Laboratory Medicine (CCLM) 2006, 44 (10) https://doi.org/10.1515/CCLM.2006.228
    68. Günther Ernst, Christian Melle, Bettina Schimmel, Annett Bleul, Ferdinand von Eggeling. Proteohistography–Direct Analysis of Tissue with High Sensitivity and High Spatial Resolution Using ProteinChip Technology. Journal of Histochemistry & Cytochemistry 2006, 54 (1) , 13-17. https://doi.org/10.1369/jhc.5C6764.2005
    69. Dominique de Seny, Marianne Fillet, Marie‐Alice Meuwis, Pierre Geurts, Laurence Lutteri, Clio Ribbens, Vincent Bours, Louis Wehenkel, Jacques Piette, Michel Malaise, Marie‐Paule Merville. Discovery of new rheumatoid arthritis biomarkers using the surface‐enhanced laser desorption/ionization time‐of‐flight mass spectrometry ProteinChip approach. Arthritis & Rheumatism 2005, 52 (12) , 3801-3812. https://doi.org/10.1002/art.21607
    70. Marina Ali, Nicholas Manolios. Proteomics in Rheumatology: A New Direction for Old Diseases. Seminars in Arthritis and Rheumatism 2005, 35 (2) , 67-76. https://doi.org/10.1016/j.semarthrit.2005.07.002
    71. K. Tilleman, D. Deforce, D. Elewaut. Rheumatology: a close encounter with proteomics. Rheumatology 2005, 44 (10) , 1217-1226. https://doi.org/10.1093/rheumatology/keh694
    72. Andreas Wiesner. Development of Multi‐marker‐based Diagnostic Assays with the ProteinChip® System. 2005, 1325-1342. https://doi.org/10.1002/9783527620982.ch54
    73. Christian Melle, Günther Ernst, Bettina Schimmel, Annett Bleul, Heike Thieme, Roland Kaufmann, Henning Mothes, Utz Settmacher, Uwe Claussen, Karl-Jürgen Halbhuber, Ferdinand von Eggeling. Discovery and Identification of α-Defensins as Low Abundant, Tumor-Derived Serum Markers in Colorectal Cancer. Gastroenterology 2005, 129 (1) , 66-73. https://doi.org/10.1053/j.gastro.2005.05.014
    74. Jingzhong Guo, Eric C. C. Yang, Leroi DeSouza, Georg Diehl, Mary Joe Rodrigues, Alexander D. Romaschin, Terence J. Colgan, K. W. Michael Siu. A strategy for high-resolution protein identification in surface-enhanced laser desorption/ionization mass spectrometry: Calgranulin A and chaperonin 10 as protein markers for endometrial carcinoma. PROTEOMICS 2005, 5 (7) , 1953-1966. https://doi.org/10.1002/pmic.200401059
    75. Kelly Tilleman, Katrien Van Beneden, Aline Dhondt, Ilse Hoffman, Filip De Keyser, Eric Veys, Dirk Elewaut, Dieter Deforce. Chronically inflamed synovium from spondyloarthropathy and rheumatoid arthritis investigated by protein expression profiling followed by tandem mass spectrometry. PROTEOMICS 2005, 5 (8) , 2247-2257. https://doi.org/10.1002/pmic.200401109
    76. Dan Agranoff, August Stich, Paulo Abel, Sanjeev Krishna. Proteomic fingerprinting for the diagnosis of human African trypanosomiasis. Trends in Parasitology 2005, 21 (4) , 154-157. https://doi.org/10.1016/j.pt.2005.02.003
    77. Mariana Roesch Ely, Matthias Nees, Syrus Karsai, Ira Mägele, Ralf Bogumil, Sonja Vorderwülbecke, Alexandra Ruess, Andreas Dietz, Martina Schnölzer, Franz X. Bosch. Transcript and proteome analysis reveals reduced expression of calgranulins in head and neck squamous cell carcinoma. European Journal of Cell Biology 2005, 84 (2-3) , 431-444. https://doi.org/10.1016/j.ejcb.2005.01.003
    78. György Marko-Varga. Chapter 1 Emerging technologies—the way forward on improving protein analysis. 2005, 1-67. https://doi.org/10.1016/S0166-526X(05)46001-8
    79. Oliver Poetz, Jochen M. Schwenk, Stefan Kramer, Dieter Stoll, Markus F. Templin, Thomas O. Joos. Protein microarrays: catching the proteome. Mechanisms of Ageing and Development 2005, 126 (1) , 161-170. https://doi.org/10.1016/j.mad.2004.09.030
    80. Zhen Xiao, DaRue Prieto, Thomas P. Conrads, Timothy D. Veenstra, Haleem J. Issaq. Proteomic patterns: their potential for disease diagnosis. Molecular and Cellular Endocrinology 2005, 230 (1-2) , 95-106. https://doi.org/10.1016/j.mce.2004.10.010
    81. Harry E. Prince. Biomarkers for diagnosing and monitoring autoimmune diseases. Biomarkers 2005, 10 (sup1) , 44-49. https://doi.org/10.1080/13547500500214194
    82. Hua Liao, Jiang Wu, Eric Kuhn, Wendy Chin, Betty Chang, Michael D. Jones, Steve O'Neil, Karl R. Clauser, Johann Karl, Fritz Hasler, Ronenn Roubenoff, Werner Zolg, Brad C. Guild. Use of mass spectrometry to identify protein biomarkers of disease severity in the synovial fluid and serum of patients with rheumatoid arthritis. Arthritis & Rheumatism 2004, 50 (12) , 3792-3803. https://doi.org/10.1002/art.20720
    83. Christian Melle, Günther Ernst, Bettina Schimmel, Annett Bleul, Sven Koscielny, Andreas Wiesner, Ralf Bogumil, Ursula Möller, Dirk Osterloh, Karl-Jürgen Halbhuber, Ferdinand von Eggeling. A Technical Triade for Proteomic Identification and Characterization of Cancer Biomarkers. Cancer Research 2004, 64 (12) , 4099-4104. https://doi.org/10.1158/0008-5472.CAN-03-3807
    84. Volker Seibert, Andreas Wiesner, Thomas Buschmann, Jörn Meuer. Surface-enhanced laser desorption ionization time-of-flight mass spectrometry (SELDI TOF-MS) and ProteinChip® technology in proteomics research. Pathology - Research and Practice 2004, 200 (2) , 83-94. https://doi.org/10.1016/j.prp.2004.01.010
    85. Susanne Drynda, Bruno Ringel, Monika Kekow, Cornelia Kühne, Andreas Drynda, Michael O Glocker, Hans-Jürgen Thiesen, Jörn Kekow. Proteome analysis reveals disease-associated marker proteins to differentiate RA patients from other inflammatory joint diseases with the potential to monitor anti-TNFα therapy. Pathology - Research and Practice 2004, 200 (2) , 165-171. https://doi.org/10.1016/j.prp.2004.02.011
    86. Ning Tang, Pete Tornatore, Scot R. Weinberger. Current developments in SELDI affinity technology. Mass Spectrometry Reviews 2004, 23 (1) , 34-44. https://doi.org/10.1002/mas.10066
    87. . Current Awareness on Comparative and Functional Genomics. Comparative and Functional Genomics 2003, 356-363. https://doi.org/10.1002/cfg.228

    Journal of Proteome Research

    Cite this: Journal of Proteome Research 2002, 1, 6, 495–499
    Click to copy citationCitation copied!
    https://doi.org/10.1021/pr025531w
    Published September 17, 2002
    Copyright © 2002 American Chemical Society

    Article Views

    664

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.