ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Identification and Analysis of Multivalent Proteolytically Resistant Peptides from Gluten:  Implications for Celiac Sprue

View Author Information
Departments of Chemical Engineering, Medicine, Chemistry and Biochemistry, Stanford University, Stanford California 94305-5025
Cite this: J. Proteome Res. 2005, 4, 5, 1732–1741
Publication Date (Web):August 17, 2005
https://doi.org/10.1021/pr050173t
Copyright © 2005 American Chemical Society

    Article Views

    1275

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (244 KB)
    Supporting Info (3)»

    Abstract

    Abstract Image

    Dietary gluten proteins from wheat, rye, and barley are the primary triggers for the immuno-pathogenesis of Celiac Sprue, a widespread immune disease of the small intestine. Recent molecular and structural analyses of representative gluten proteins, most notably α- and γ-gliadin proteins from wheat, have improved our understanding of these pathogenic mechanisms. In particular, based on the properties of a 33-mer peptide, generated from α-gliadin under physiological conditions, a link between digestive resistance and inflammatory character of gluten has been proposed. Here, we report three lines of investigation in support of this hypothesis. First, biochemical and immunological analysis of deletion mutants of α-2 gliadin confirmed that the DQ2 restricted T cell response to the α-2 gliadin are directed toward the epitopes clustered within the 33-mer. Second, proteolytic analysis of a representative γ-gliadin led to the identification of another multivalent 26-mer peptide that was also resistant to further gastric, pancreatic and intestinal brush border degradation, and was a good substrate of human transglutaminase 2 (TG2). Analogous to the 33-mer, the synthetic 26-mer peptide displayed markedly enhanced T cell antigenicity compared to monovalent control peptides. Finally, in silico analysis of the gluten proteome led to the identification of at least 60 putative peptides that share the common characteristics of the 33-mer and the 26-mer peptides. Together, these results highlight the pivotal role of physiologically generated, proteolytically stable, TG2-reactive, multivalent peptides in the immune response to dietary gluten in Celiac Sprue patients. Prolyl endopeptidase treatment was shown to abolish the antigenicity of both the 33-mer and the 26-mer peptides, and was also predicted to have comparable effects on other proline-rich putatively immunotoxic peptides identified from other polypeptides within the gluten proteome.

    Keywords: Celiac Disease • Celiac Sprue • gliadin • gluten • proteolysis • prolyl endopeptidase

     Department of Chemical Engineering, Stanford University.

     Institute of Immunology, University of Oslo and Rikshospitalet University Hospital, N-0027 Oslo, Norway.

    §

     Department of Chemical Medicine, Stanford University.

     Department of Chemical Chemistry, Stanford University.

    #

     Department of Biochemistry, Stanford University.

    *

     To whom correspondence should be addressed. Phone/FAX:  (650) 723-6538. E-mail:  [email protected].

    Supporting Information Available

    ARTICLE SECTIONS
    Jump To

    This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 207 publications.

    1. Michelle L. Colgrave, Keren Byrne, Malcolm Blundell, Sibylle Heidelberger, Catherine S. Lane, Gregory J. Tanner, and Crispin A. Howitt . Comparing Multiple Reaction Monitoring and Sequential Window Acquisition of All Theoretical Mass Spectra for the Relative Quantification of Barley Gluten in Selectively Bred Barley Lines. Analytical Chemistry 2016, 88 (18) , 9127-9135. https://doi.org/10.1021/acs.analchem.6b02108
    2. Clancey Wolf, Justin B. Siegel, Christine Tinberg, Alessandra Camarca, Carmen Gianfrani, Shirley Paski, Rongjin Guan, Gaetano Montelione, David Baker, and Ingrid S. Pultz . Engineering of Kuma030: A Gliadin Peptidase That Rapidly Degrades Immunogenic Gliadin Peptides in Gastric Conditions. Journal of the American Chemical Society 2015, 137 (40) , 13106-13113. https://doi.org/10.1021/jacs.5b08325
    3. Gianluca Picariello, Gianfranco Mamone, Adele Cutignano, Angelo Fontana, Lucia Zurlo, Francesco Addeo, and Pasquale Ferranti . Proteomics, Peptidomics, and Immunogenic Potential of Wheat Beer (Weissbier). Journal of Agricultural and Food Chemistry 2015, 63 (13) , 3579-3586. https://doi.org/10.1021/acs.jafc.5b00631
    4. Gianfranco Mamone, Chiara Nitride, Gianluca Picariello, Francesco Addeo, Pasquale Ferranti, and Alan Mackie . Tracking the Fate of Pasta (T. Durum Semolina) Immunogenic Proteins by in Vitro Simulated Digestion. Journal of Agricultural and Food Chemistry 2015, 63 (10) , 2660-2667. https://doi.org/10.1021/jf505461x
    5. Gianfranco Mamone, Alessandra Camarca, Olga Fierro, John Sidney, Giuseppe Mazzarella, Francesco Addeo, Salvatore Auricchio, Riccardo Troncone, Alessandro Sette, and Carmen Gianfrani . Immunogenic Peptides Can Be Detected in Whole Gluten by Transamidating Highly Susceptible Glutamine Residues: Implication in the Search for Gluten-free Cereals. Journal of Agricultural and Food Chemistry 2013, 61 (3) , 747-754. https://doi.org/10.1021/jf3040435
    6. Sydney R. Gordon, Elizabeth J. Stanley, Sarah Wolf, Angus Toland, Sean J. Wu, Daniel Hadidi, Jeremy H. Mills, David Baker, Ingrid Swanson Pultz, and Justin B. Siegel . Computational Design of an α-Gliadin Peptidase. Journal of the American Chemical Society 2012, 134 (50) , 20513-20520. https://doi.org/10.1021/ja3094795
    7. Marta Olivares, Moisés Laparra, and Yolanda Sanz . Influence of Bifidobacterium longum CECT 7347 and Gliadin Peptides on Intestinal Epithelial Cell Proteome. Journal of Agricultural and Food Chemistry 2011, 59 (14) , 7666-7671. https://doi.org/10.1021/jf201212m
    8. Siri Dørum, Shuo-Wang Qiao, Ludvig M. Sollid and Burkhard Fleckenstein . A Quantitative Analysis of Transglutaminase 2-Mediated Deamidation of Gluten Peptides: Implications for the T-cell Response in Celiac Disease. Journal of Proteome Research 2009, 8 (4) , 1748-1755. https://doi.org/10.1021/pr800960n
    9. Bin Xiao, Chun Zhang, Junxiu Zhou, Sa Wang, Huan Meng, Miao Wu, Yongxiang Zheng, Rong Yu. Design of SC PEP with enhanced stability against pepsin digestion and increased activity by machine learning and structural parameters modeling. International Journal of Biological Macromolecules 2023, 250 , 125933. https://doi.org/10.1016/j.ijbiomac.2023.125933
    10. Miriam Marín-Sanz, Francisco Barro, Susana Sánchez-León. Unraveling the celiac disease-related immunogenic complexes in a set of wheat and tritordeum genotypes: implications for low-gluten precision breeding in cereal crops. Frontiers in Plant Science 2023, 14 https://doi.org/10.3389/fpls.2023.1171882
    11. Pratibha Banerjee, Ramprasad Chaudhary, Atul Kumar Singh, Pratima Parulekar, Shashank Kumar, Sabyasachi Senapati. Specific Genetic Polymorphisms Contributing in Differential Binding of Gliadin Peptides to HLA-DQ and TCR to Elicit Immunogenicity in Celiac Disease. Biochemical Genetics 2023, 67 https://doi.org/10.1007/s10528-023-10377-x
    12. Renata Auricchio, Martina Galatola, Donatella Cielo, Roberta Rotondo, Fortunata Carbone, Roberta Mandile, Martina Carpinelli, Serena Vitale, Giuseppe Matarese, Carmen Gianfrani, Riccardo Troncone, Salvatore Auricchio, Luigi Greco. Antibody Profile, Gene Expression and Serum Cytokines in At-Risk Infants before the Onset of Celiac Disease. International Journal of Molecular Sciences 2023, 24 (7) , 6836. https://doi.org/10.3390/ijms24076836
    13. Annick Barre, Hervé Benoist, Pierre Rougé. Impacts of Sourdough Technology on the Availability of Celiac Peptides from Wheat α- and γ-Gliadins: In Silico Approach. Allergies 2023, 3 (1) , 39-57. https://doi.org/10.3390/allergies3010004
    14. Ingrid Teixeira Akamine, Felipe R. P. Mansoldo, Alane Beatriz Vermelho. Probiotics in the Sourdough Bread Fermentation: Current Status. Fermentation 2023, 9 (2) , 90. https://doi.org/10.3390/fermentation9020090
    15. Dirk Roggenbuck, Alexander Goihl, Mandy Sowa, Steffi Lopens, Stefan Rödiger, Peter Schierack, Karsten Conrad, Ulrich Sommer, Korinna Jöhrens, Robert Grützmann, Dirk Reinhold, Martin W. Laass. Human glycoprotein-2 expressed in Brunner glands – A putative autoimmune target and link between Crohn's and coeliac disease. Clinical Immunology 2023, 247 , 109214. https://doi.org/10.1016/j.clim.2022.109214
    16. Gianfranco Mamone, Luigia Di Stasio, Serena Vitale, Stefania Picascia, Carmen Gianfrani. Analytical and functional approaches to assess the immunogenicity of gluten proteins. Frontiers in Nutrition 2023, 9 https://doi.org/10.3389/fnut.2022.1049623
    17. Kari Vinzant, Mohammad Rashid, Mariya V. Khodakovskaya. Advanced applications of sustainable and biological nano-polymers in agricultural production. Frontiers in Plant Science 2023, 13 https://doi.org/10.3389/fpls.2022.1081165
    18. Brad A. Palanski, Nielson Weng, Lichao Zhang, Andrew J. Hilmer, Lalla A. Fall, Kavya Swaminathan, Bana Jabri, Carolina Sousa, Nielsen Q. Fernandez-Becker, Chaitan Khosla, Joshua E. Elias. An efficient urine peptidomics workflow identifies chemically defined dietary gluten peptides from patients with celiac disease. Nature Communications 2022, 13 (1) https://doi.org/10.1038/s41467-022-28353-1
    19. Yu-You Liu, I-Chen Lin, Pei-Cih Chen, Cheng-Cheng Lee, Menghsiao Meng. Crystal structure of a Burkholderia peptidase and modification of the substrate-binding site for enhanced hydrolytic activity toward gluten-derived pro-immunogenic peptides. International Journal of Biological Macromolecules 2022, 222 , 2258-2269. https://doi.org/10.1016/j.ijbiomac.2022.10.016
    20. Kalekristos Yohannes Woldemariam, Juanli Yuan, Zhen Wan, Qinglin Yu, Yating Cao, Huijia Mao, Yingli Liu, Jing Wang, Hongyan Li, Baoguo Sun. Celiac Disease and Immunogenic Wheat Gluten Peptides and the Association of Gliadin Peptides with HLA DQ2 and HLA DQ8. Food Reviews International 2022, 38 (7) , 1553-1576. https://doi.org/10.1080/87559129.2021.1907755
    21. Souparni Ghosh, Preeti Khetarpal, Sabyasachi Senapati. Functional implications of the CpG island methylation in the pathogenesis of celiac disease. Molecular Biology Reports 2022, 49 (10) , 10051-10064. https://doi.org/10.1007/s11033-022-07585-w
    22. Sandip K. Wagh, Karen M. Lammers, Manohar V. Padul, Alfonso Rodriguez-Herrera, Veronica I. Dodero. Celiac Disease and Possible Dietary Interventions: From Enzymes and Probiotics to Postbiotics and Viruses. International Journal of Molecular Sciences 2022, 23 (19) , 11748. https://doi.org/10.3390/ijms231911748
    23. Gianfranco Mamone, Maria Cristina Comelli, Serena Vitale, Luigia Di Stasio, Katharina Kessler, Ilaria Mottola, Francesco Siano, Linda Cavaletti, Carmen Gianfrani. E40 glutenase detoxification capabilities of residual gluten immunogenic peptides in in vitro gastrointestinal digesta of food matrices made of soft and durum wheat. Frontiers in Nutrition 2022, 9 https://doi.org/10.3389/fnut.2022.974771
    24. Hodan Qasim, Mohamed Nasr, Amad Mohammad, Mosab Hor, Ahmed M Baradeiya. Dysbiosis and Migraine Headaches in Adults With Celiac Disease. Cureus 2022, 16 https://doi.org/10.7759/cureus.28346
    25. Elena A. Dvoryakova, Maria A. Klimova, Tatiana R. Simonyan, Ivan A. Dombrovsky, Marina V. Serebryakova, Valeriia F. Tereshchenkova, Yakov E. Dunaevsky, Mikhail A. Belozersky, Irina Y. Filippova, Elena N. Elpidina. Recombinant Cathepsin L of Tribolium castaneum and Its Potential in the Hydrolysis of Immunogenic Gliadin Peptides. International Journal of Molecular Sciences 2022, 23 (13) , 7001. https://doi.org/10.3390/ijms23137001
    26. Christian Büchold, Martin Hils, Uwe Gerlach, Johannes Weber, Christiane Pelzer, Andreas Heil, Daniel Aeschlimann, Ralf Pasternack. Features of ZED1227: The First-In-Class Tissue Transglutaminase Inhibitor Undergoing Clinical Evaluation for the Treatment of Celiac Disease. Cells 2022, 11 (10) , 1667. https://doi.org/10.3390/cells11101667
    27. Sofyan Maghaydah, Asma Alkahlout, Mahmoud Abughoush, Nazieh I. Al Khalaileh, Amin N. Olaimat, Murad A. Al-Holy, Radwan Ajo, Imranul Choudhury, Waed Hayajneh. Novel Gluten-Free Cinnamon Rolls by Substituting Wheat Flour with Resistant Starch, Lupine and Flaxseed Flour. Foods 2022, 11 (7) , 1022. https://doi.org/10.3390/foods11071022
    28. Ádám Diós, Bharani Srinivasan, Judit Gyimesi, Katharina Werkstetter, Rudolf Valenta, Sibylle Koletzko, Ilma R. Korponay-Szabó. Changes in Non-Deamidated versus Deamidated Epitope Targeting and Disease Prediction during the Antibody Response to Gliadin and Transglutaminase of Infants at Risk for Celiac Disease. International Journal of Molecular Sciences 2022, 23 (5) , 2498. https://doi.org/10.3390/ijms23052498
    29. Maria Georgina Herrera, Marco Giampà, Nicolo Tonali, Veronica Isabel Dodero. Multimodal methods to study protein aggregation and fibrillation. 2022, 77-102. https://doi.org/10.1016/B978-0-323-90264-9.00006-4
    30. E.A. Dvoryakova, K.S. Vinokurov, V.F. Tereshchenkova, Y.E. Dunaevsky, M.A. Belozersky, B. Oppert, I.Y. Filippova, E.N. Elpidina. Primary digestive cathepsins L of Tribolium castaneum larvae: Proteomic identification, properties, comparison with human lysosomal cathepsin L. Insect Biochemistry and Molecular Biology 2022, 140 , 103679. https://doi.org/10.1016/j.ibmb.2021.103679
    31. Gregory John Tanner. Relative Rates of Gluten Digestion by Nine Commercial Dietary Digestive Supplements. Frontiers in Nutrition 2021, 8 https://doi.org/10.3389/fnut.2021.784850
    32. Maria Georgina Herrera, Veronica Isabel Dodero. Gliadin proteolytical resistant peptides: the interplay between structure and self-assembly in gluten-related disorders. Biophysical Reviews 2021, 13 (6) , 1147-1154. https://doi.org/10.1007/s12551-021-00856-z
    33. Riccardo Vriz, F. Javier Moreno, Frits Koning, Antonio Fernandez. Ranking of immunodominant epitopes in celiac disease: Identification of reliable parameters for the safety assessment of innovative food proteins. Food and Chemical Toxicology 2021, 157 , 112584. https://doi.org/10.1016/j.fct.2021.112584
    34. Yakov E. Dunaevsky, Valeriia F. Tereshchenkova, Mikhail A. Belozersky, Irina Y. Filippova, Brenda Oppert, Elena N. Elpidina. Effective Degradation of Gluten and Its Fragments by Gluten-Specific Peptidases: A Review on Application for the Treatment of Patients with Gluten Sensitivity. Pharmaceutics 2021, 13 (10) , 1603. https://doi.org/10.3390/pharmaceutics13101603
    35. Gyöngyvér Gell, Zsuzsanna Bugyi, Christakis George Florides, Zsófia Birinyi, Dalma Réder, Zsuzsanna Szegő, Edina Mucsi, Eszter Schall, Katalin Ács, Bernadett Langó, Szandra Purgel, Katalin Simon, Balázs Varga, Gyula Vida, Ottó Veisz, Sándor Tömösközi, Ferenc Békés. Investigation of Protein and Epitope Characteristics of Oats and Its Implications for Celiac Disease. Frontiers in Nutrition 2021, 8 https://doi.org/10.3389/fnut.2021.702352
    36. Miguel Ribeiro, Telma de Sousa, Carolina Sabença, Patrícia Poeta, Ana Sofia Bagulho, Gilberto Igrejas. Advances in quantification and analysis of the celiac‐related immunogenic potential of gluten. Comprehensive Reviews in Food Science and Food Safety 2021, 20 (5) , 4278-4298. https://doi.org/10.1111/1541-4337.12828
    37. Maria Georgina Herrera, Francesco Nicoletti, Marion Gras, Philipp W. Dörfler, Nicolo Tonali, Yvonne Hannappel, Inga Ennen, Andreas Hütten, Thomas Hellweg, Karen M. Lammers, Veronica I. Dodero. Pepsin Digest of Gliadin Forms Spontaneously Amyloid‐Like Nanostructures Influencing the Expression of Selected Pro‐Inflammatory, Chemoattractant, and Apoptotic Genes in Caco‐2 Cells: Implications for Gluten‐Related Disorders. Molecular Nutrition & Food Research 2021, 65 (16) https://doi.org/10.1002/mnfr.202100200
    38. Ádám Diós, Rita Elek, Ildikó Szabó, Szilvia Horváth, Judit Gyimesi, Róbert Király, Katharina Werkstetter, Sibylle Koletzko, László Fésüs, Ilma R. Korponay-Szabó. Gamma-gliadin specific celiac disease antibodies recognize p31-43 and p57-68 alpha gliadin peptides in deamidation related manner as a result of cross-reaction. Amino Acids 2021, 53 (7) , 1051-1063. https://doi.org/10.1007/s00726-021-03006-7
    39. Olivia J. Ogilvie, Juliet A. Gerrard, Sarah Roberts, Kevin H. Sutton, Nigel Larsen, Laura J. Domigan. A Case Study of the Response of Immunogenic Gluten Peptides to Sourdough Proteolysis. Nutrients 2021, 13 (6) , 1906. https://doi.org/10.3390/nu13061906
    40. Alma Kurki, Esko Kemppainen, Pilvi Laurikka, Katri Kaukinen, Katri Lindfors. The use of peripheral blood mononuclear cells in celiac disease diagnosis and treatment. Expert Review of Gastroenterology & Hepatology 2021, 15 (3) , 305-316. https://doi.org/10.1080/17474124.2021.1850262
    41. Darina Pronin, Andreas Börner, Katharina Anne Scherf. Old and modern wheat (Triticum aestivum L.) cultivars and their potential to elicit celiac disease. Food Chemistry 2021, 339 , 127952. https://doi.org/10.1016/j.foodchem.2020.127952
    42. Olivia Ogilvie, Sarah Roberts, Kevin Sutton, Juliet Gerrard, Nigel Larsen, Laura Domigan. The effect of baking time and temperature on gluten protein structure and celiac peptide digestibility. Food Research International 2021, 140 , 109988. https://doi.org/10.1016/j.foodres.2020.109988
    43. Charlene B. Van Buiten, Ryan J. Elias. Gliadin Sequestration as a Novel Therapy for Celiac Disease: A Prospective Application for Polyphenols. International Journal of Molecular Sciences 2021, 22 (2) , 595. https://doi.org/10.3390/ijms22020595
    44. Xingxing Wu, Lin Qian, Kexin Liu, Jing Wu, Zhaowei Shan. Gastrointestinal microbiome and gluten in celiac disease. Annals of Medicine 2021, 53 (1) , 1797-1805. https://doi.org/10.1080/07853890.2021.1990392
    45. Bennur Somashekharaiah Rashmi, Devaraja Gayathri, Mahanthesh Vasudha, Chakra Siddappa Prashantkumar, Chidanandamurthy Thippeswamy Swamy, Kumar S. Sunil, Palegar Krishnappa Somaraja, Patil Prakash. Gluten hydrolyzing activity of Bacillus spp isolated from sourdough. Microbial Cell Factories 2020, 19 (1) https://doi.org/10.1186/s12934-020-01388-z
    46. Barbara Lexhaller, Christina Ludwig, Katharina Anne Scherf. Identification of Isopeptides Between Human Tissue Transglutaminase and Wheat, Rye, and Barley Gluten Peptides. Scientific Reports 2020, 10 (1) https://doi.org/10.1038/s41598-020-64143-9
    47. Irina Y. Filippova, Elena A. Dvoryakova, Nikolay I. Sokolenko, Tatiana R. Simonyan, Valeriia F. Tereshchenkova, Nikita I. Zhiganov, Yakov E. Dunaevsky, Mikhail A. Belozersky, Brenda Oppert, Elena N. Elpidina. New Glutamine-Containing Substrates for the Assay of Cysteine Peptidases From the C1 Papain Family. Frontiers in Molecular Biosciences 2020, 7 https://doi.org/10.3389/fmolb.2020.578758
    48. Viia Kõiv, Kaarel Adamberg, Signe Adamberg, Ingrid Sumeri, Sergo Kasvandik, Veljo Kisand, Ülo Maiväli, Tanel Tenson. Microbiome of root vegetables—a source of gluten-degrading bacteria. Applied Microbiology and Biotechnology 2020, 104 (20) , 8871-8885. https://doi.org/10.1007/s00253-020-10852-0
    49. Yakov E. Dunaevsky, Valeriia F. Tereshchenkova, Brenda Oppert, Mikhail A. Belozersky, Irina Y. Filippova, Elena N. Elpidina. Human proline specific peptidases: A comprehensive analysis. Biochimica et Biophysica Acta (BBA) - General Subjects 2020, 1864 (9) , 129636. https://doi.org/10.1016/j.bbagen.2020.129636
    50. Guoxian Wei, Eva J. Helmerhorst, Ghassan Darwish, Gabriel Blumenkranz, Detlef Schuppan. Gluten Degrading Enzymes for Treatment of Celiac Disease. Nutrients 2020, 12 (7) , 2095. https://doi.org/10.3390/nu12072095
    51. Stefania Picascia, Alessandra Camarca, Monica Malamisura, Roberta Mandile, Martina Galatola, Donatella Cielo, Laura Gazza, Gianfranco Mamone, Salvatore Auricchio, Riccardo Troncone, Luigi Greco, Renata Auricchio, Carmen Gianfrani. In Celiac Disease Patients the In Vivo Challenge with the Diploid Triticum monococcum Elicits a Reduced Immune Response Compared to Hexaploid Wheat. Molecular Nutrition & Food Research 2020, 64 (11) https://doi.org/10.1002/mnfr.201901032
    52. Melinda Y Hardy, Amy K Russell, Catherine Pizzey, Claerwen M Jones, Katherine A Watson, Nicole L La Gruta, Donald J Cameron, Jason A Tye-Din. Characterisation of clinical and immune reactivity to barley and rye ingestion in children with coeliac disease. Gut 2020, 69 (5) , 830-840. https://doi.org/10.1136/gutjnl-2019-319093
    53. Zelalem Eshetu Bekalu, Giuseppe Dionisio, Henrik Brinch-Pedersen. Molecular Properties and New Potentials of Plant Nepenthesins. Plants 2020, 9 (5) , 570. https://doi.org/10.3390/plants9050570
    54. María Georgina Herrera, María Florencia Gómez Castro, Eduardo Prieto, Exequiel Barrera, Veronica Isabel Dodero, Sergio Pantano, Fernando Chirdo. Structural conformation and self‐assembly process of p31‐43 gliadin peptide in aqueous solution. Implications for celiac disease. The FEBS Journal 2020, 287 (10) , 2134-2149. https://doi.org/10.1111/febs.15109
    55. Paridhi Gulati, Sandrayee Brahma, Robert A Graybosch, Yuanhong Chen, Devin J Rose. In vitro digestibility of proteins from historical and modern wheat cultivars. Journal of the Science of Food and Agriculture 2020, 100 (6) , 2579-2584. https://doi.org/10.1002/jsfa.10283
    56. Sachin Rustgi, Peter Shewry, Fred Brouns. Health Hazards Associated with Wheat and Gluten Consumption in Susceptible Individuals and Status of Research on Dietary Therapies. 2020, 471-515. https://doi.org/10.1007/978-3-030-34163-3_20
    57. Karla A Bascuñán, Magdalena Araya, Leda Roncoroni, Luisa Doneda, Luca Elli. Dietary Gluten as a Conditioning Factor of the Gut Microbiota in Celiac Disease. Advances in Nutrition 2020, 11 (1) , 160-174. https://doi.org/10.1093/advances/nmz080
    58. Barbara Lexhaller, Michelle L. Colgrave, Katharina A. Scherf. Characterization and Relative Quantitation of Wheat, Rye, and Barley Gluten Protein Types by Liquid Chromatography–Tandem Mass Spectrometry. Frontiers in Plant Science 2019, 10 https://doi.org/10.3389/fpls.2019.01530
    59. Osorio, Mejías, Rustgi. Gluten Detection Methods and their Critical Role in Assuring Safe Diets for Celiac Patients. Nutrients 2019, 11 (12) , 2920. https://doi.org/10.3390/nu11122920
    60. Hiroyuki Yano. Recent practical researches in the development of gluten-free breads. npj Science of Food 2019, 3 (1) https://doi.org/10.1038/s41538-019-0040-1
    61. Linda Cavaletti, Anna Taravella, Lucia Carrano, Giacomo Carenzi, Alessandro Sigurtà, Nicola Solinas, Salvatore De Caro, Luigia Di Stasio, Stefania Picascia, Mariavittoria Laezza, Riccardo Troncone, Carmen Gianfrani, Gianfranco Mamone. E40, a novel microbial protease efficiently detoxifying gluten proteins, for the dietary management of gluten intolerance. Scientific Reports 2019, 9 (1) https://doi.org/10.1038/s41598-019-48299-7
    62. Marta Olivares, Julie Rodriguez, Sarah A. Pötgens, Audrey M. Neyrinck, Patrice D. Cani, Laure B. Bindels, Nathalie M. Delzenne. The Janus Face of Cereals: Wheat‐Derived Prebiotics Counteract the Detrimental Effect of Gluten on Metabolic Homeostasis in Mice Fed a High‐Fat/High‐Sucrose Diet. Molecular Nutrition & Food Research 2019, 63 (24) https://doi.org/10.1002/mnfr.201900632
    63. Chibbar, Dieleman. The Gut Microbiota in Celiac Disease and probiotics. Nutrients 2019, 11 (10) , 2375. https://doi.org/10.3390/nu11102375
    64. Fred Brouns, Gonny van Rooy, Peter Shewry, Sachin Rustgi, Daisy Jonkers. Adverse Reactions to Wheat or Wheat Components. Comprehensive Reviews in Food Science and Food Safety 2019, 18 (5) , 1437-1452. https://doi.org/10.1111/1541-4337.12475
    65. Shakira Yoosuf, Govind K. Makharia. Evolving Therapy for Celiac Disease. Frontiers in Pediatrics 2019, 7 https://doi.org/10.3389/fped.2019.00193
    66. V. F. Tereshchenkova, E. V. Klyachko, S. V. Benevolensky, M. A. Belozersky, Ya. E. Dunaevsky, I. Yu. Filippova, E. N. Elpidina. Preparation and Purification of Recombinant Dipeptidyl Peptidase 4 from Tenebrio molitor. Applied Biochemistry and Microbiology 2019, 55 (3) , 218-223. https://doi.org/10.1134/S0003683819030141
    67. Marco Montemurro, Rossana Coda, Carlo Rizzello. Recent Advances in the Use of Sourdough Biotechnology in Pasta Making. Foods 2019, 8 (4) , 129. https://doi.org/10.3390/foods8040129
    68. María García-Molina, María Giménez, Susana Sánchez-León, Francisco Barro. Gluten Free Wheat: Are We There?. Nutrients 2019, 11 (3) , 487. https://doi.org/10.3390/nu11030487
    69. Timo Stressler, Thomas Eisele, Jacob Ewert, Bertolt Kranz, Lutz Fischer. Proving the synergistic effect of Alcalase, PepX and PepN during casein hydrolysis by complete degradation of the released opioid precursor peptide VYPFPGPIPN. European Food Research and Technology 2019, 245 (1) , 61-71. https://doi.org/10.1007/s00217-018-3140-2
    70. Emmanuelle Escarnot, Sébastien Gofflot, Georges Sinnaeve, Benjamin Dubois, Pierre Bertin, Dominique Mingeot. Reactivity of gluten proteins from spelt and bread wheat accessions towards A1 and G12 antibodies in the framework of celiac disease. Food Chemistry 2018, 268 , 522-532. https://doi.org/10.1016/j.foodchem.2018.06.094
    71. Ángel Cebolla, María Moreno, Laura Coto, Carolina Sousa. Gluten Immunogenic Peptides as Standard for the Evaluation of Potential Harmful Prolamin Content in Food and Human Specimen. Nutrients 2018, 10 (12) , 1927. https://doi.org/10.3390/nu10121927
    72. Martin Haupt-Jorgensen, Laurits Holm, Knud Josefsen, Karsten Buschard. Possible Prevention of Diabetes with a Gluten-Free Diet. Nutrients 2018, 10 (11) , 1746. https://doi.org/10.3390/nu10111746
    73. Thais O. Alves, Carolina T.S. D’Almeida, Verônica C.M. Victorio, Gustavo H.M.F. Souza, L.C. Cameron, Mariana S.L. Ferreira. Immunogenic and allergenic profile of wheat flours from different technological qualities revealed by ion mobility mass spectrometry. Journal of Food Composition and Analysis 2018, 73 , 67-75. https://doi.org/10.1016/j.jfca.2018.07.012
    74. Kathrin Schulz, Lucienne Giesler, Diana Linke, Ralf G. Berger. A prolyl endopeptidase from Flammulina velutipes for the possible degradation of celiac disease provoking toxic peptides in cereal proteins. Process Biochemistry 2018, 73 , 47-55. https://doi.org/10.1016/j.procbio.2018.07.019
    75. Marta Olivares, Valentina Schüppel, Ahmed M. Hassan, Martin Beaumont, Audrey M. Neyrinck, Laure B. Bindels, Alfonso Benítez-Páez, Yolanda Sanz, Dirk Haller, Peter Holzer, Nathalie M. Delzenne. The Potential Role of the Dipeptidyl Peptidase-4-Like Activity From the Gut Microbiota on the Host Health. Frontiers in Microbiology 2018, 9 https://doi.org/10.3389/fmicb.2018.01900
    76. Jonas F Ludvigsson, Carolina Ciacci, Peter HR Green, Katri Kaukinen, Ilma R Korponay-Szabo, Kalle Kurppa, Joseph A Murray, Knut Erik Aslaksen Lundin, Markku J Maki, Alina Popp, Norelle R Reilly, Alfonso Rodriguez-Herrera, David S Sanders, Detlef Schuppan, Sarah Sleet, Juha Taavela, Kristin Voorhees, Marjorie M Walker, Daniel A Leffler. Outcome measures in coeliac disease trials: the Tampere recommendations. Gut 2018, 67 (8) , 1410-1424. https://doi.org/10.1136/gutjnl-2017-314853
    77. Bartosz Brzozowski. Impact of food processing and simulated gastrointestinal digestion on gliadin immunoreactivity in rolls. Journal of the Science of Food and Agriculture 2018, 98 (9) , 3363-3375. https://doi.org/10.1002/jsfa.8847
    78. Miguel Ribeiro, Fernando M. Nunes, Marta Rodriguez-Quijano, Jose Maria Carrillo, Gérard Branlard, Gilberto Igrejas. Next-generation therapies for celiac disease: The gluten-targeted approaches. Trends in Food Science & Technology 2018, 75 , 56-71. https://doi.org/10.1016/j.tifs.2018.02.021
    79. H.G. Watson, A.I. Decloedt, D. Vanderputten, A. Van Landschoot. Variation in gluten protein and peptide concentrations in Belgian barley malt beers. Journal of the Institute of Brewing 2018, 124 (2) , 148-157. https://doi.org/10.1002/jib.487
    80. Carmen V. Ozuna, Francisco Barro. Characterization of gluten proteins and celiac disease-related immunogenic epitopes in the Triticeae: cereal domestication and breeding contributed to decrease the content of gliadins and gluten. Molecular Breeding 2018, 38 (3) https://doi.org/10.1007/s11032-018-0779-0
    81. Karen M. Lammers, Maria G. Herrera, Veronica I. Dodero. Translational Chemistry Meets Gluten-Related Disorders. ChemistryOpen 2018, 7 (3) , 217-232. https://doi.org/10.1002/open.201700197
    82. M. R. Perez-Gregorio, R. Días, N. Mateus, V. de Freitas. Identification and characterization of proteolytically resistant gluten-derived peptides. Food & Function 2018, 9 (3) , 1726-1735. https://doi.org/10.1039/C7FO02027A
    83. Libia Quero Acosta, Cristoba Coronel Rodríguez, Federico Argüelles Martín. Influence of infant feeding on the excretion of gluten immunopeptides in feces. Revista Española de Enfermedades Digestivas 2018, 111 https://doi.org/10.17235/reed.2018.5559/2018
    84. Marijana Simić, Slađana Žilić. The technological, nutritional and medical aspects of wheat proteins. Hrana i ishrana 2018, 59 (2) , 68-73. https://doi.org/10.5937/HraIsh1802068S
    85. Valli De Re, Raffaella Magris, Renato Cannizzaro. New Insights into the Pathogenesis of Celiac Disease. Frontiers in Medicine 2017, 4 https://doi.org/10.3389/fmed.2017.00137
    86. Ruggiero Francavilla, Maria De Angelis, Carlo Giuseppe Rizzello, Noemi Cavallo, Fabio Dal Bello, Marco Gobbetti, . Selected Probiotic Lactobacilli Have the Capacity To Hydrolyze Gluten Peptides during Simulated Gastrointestinal Digestion. Applied and Environmental Microbiology 2017, 83 (14) https://doi.org/10.1128/AEM.00376-17
    87. R T McLean, P Wilson, D St Clair, C J Mustard, J Wei. Differential antibody responses to gliadin-derived indigestible peptides in patients with schizophrenia. Translational Psychiatry 2017, 7 (5) , e1121-e1121. https://doi.org/10.1038/tp.2017.89
    88. M.A. van Leeuwen, L M M Costes, L.A. van Berkel, Y. Simons-Oosterhuis, M.F. du Pré, A.E. Kozijn, H.C. Raatgeep, D.J. Lindenbergh-Kortleve, N. van Rooijen, F. Koning, J.N. Samsom. Macrophage-mediated gliadin degradation and concomitant IL-27 production drive IL-10- and IFN-γ-secreting Tr1-like-cell differentiation in a murine model for gluten tolerance. Mucosal Immunology 2017, 10 (3) , 635-649. https://doi.org/10.1038/mi.2016.76
    89. Li Zhang, Daniel Andersen, Henrik Munch Roager, Martin Iain Bahl, Camilla Hartmann Friis Hansen, Niels Banhos Danneskiold-Samsøe, Karsten Kristiansen, Ilinca Daria Radulescu, Christian Sina, Henrik Lauritz Frandsen, Axel Kornerup Hansen, Susanne Brix, Lars I. Hellgren, Tine Rask Licht. Effects of Gliadin consumption on the Intestinal Microbiota and Metabolic Homeostasis in Mice Fed a High-fat Diet. Scientific Reports 2017, 7 (1) https://doi.org/10.1038/srep44613
    90. Kathrin Schalk, Christina Lang, Herbert Wieser, Peter Koehler, Katharina Anne Scherf. Quantitation of the immunodominant 33-mer peptide from α-gliadin in wheat flours by liquid chromatography tandem mass spectrometry. Scientific Reports 2017, 7 (1) https://doi.org/10.1038/srep45092
    91. Joseph A. Murray, Ciarán P. Kelly, Peter H.R. Green, Annette Marcantonio, Tsung-Teh Wu, Markku Mäki, Daniel C. Adelman, S. Ansari, K. Ayub, A. Basile, C. Behrend, P. Bercik, B. Bressler, V. Byrnes, V.S. Chandan, V. Cheekati, B. Chipps, A. Coates, A. Collatrella, J. Condemi, C. Corder, J. Corren, C. Curtis, M. DeMeo, T. Desta, C. Devereaux, A. DiMarino, M. DuPree, C. Ennis, R. Fedorak, R. Fogel, S. Freeman, B. Freilich, K. Friedenberg, D. Geenen, K. Gill, A. Goldsobel, J. Goldstein, M. Goldstein, G. Gordon, R. Hardi, L. Harris, R. Holmes, K. Jagarlamundi, G. James, M. Kaplan, J. Kirstein, A. Knoll, R. Kotfila, R. Krause, A. Kravitz, M. Kreines, M.L. Lähdeaho, M. Lamet, K. Laskin, B. Lebwohl, D. Leffler, S. Lewis, S. Liakos, K. Lundin, K. Marks, K. Merkes, S. Minton, S. Moussa, V. Narayen, V. Nehra, E. Newton, A. Nyberg, J. Oosthuizen, T. Otrok, D. Patel, C. Pepin, R. Phillips, G. Pyle, M. Reichelderfer, B. Reid, T. Ritter, S. Saini, D. Sanders, M. Schulman, C. Semrad, S. Shah, D. Stockwell, C. Strout, D. Suez, H. Tatum, M.S. Torbenson, M. Turner, P. Varunok, M. Vazquez-Roque, A. Vento, T. Welton, R. Wohlman, M. Wood, S. Woods, K. Yousef. No Difference Between Latiglutenase and Placebo in Reducing Villous Atrophy or Improving Symptoms in Patients With Symptomatic Celiac Disease. Gastroenterology 2017, 152 (4) , 787-798.e2. https://doi.org/10.1053/j.gastro.2016.11.004
    92. R.A. Stein, D.E. Katz. Celiac Disease. 2017, 475-526. https://doi.org/10.1016/B978-0-12-385007-2.00024-3
    93. Barbara Prandi, Tullia Tedeschi, Silvia Folloni, Gianni Galaverna, Stefano Sforza. Peptides from gluten digestion: A comparison between old and modern wheat varieties. Food Research International 2017, 91 , 92-102. https://doi.org/10.1016/j.foodres.2016.11.034
    94. Lin Zhou, Yujie Wu, Youfei Cheng, Jie Wang, Jun Lu, Jinyan Gao, Juanli Yuan, Hongbing Chen. Blocking celiac antigenicity of the glutamine-rich gliadin 33-mer peptide by microbial transglutaminase. RSC Advances 2017, 7 (24) , 14438-14447. https://doi.org/10.1039/C6RA27893K
    95. Nina Heredia-Sandoval, Maribel Valencia-Tapia, Ana Calderón de la Barca, Alma Islas-Rubio. Microbial Proteases in Baked Goods: Modification of Gluten and Effects on Immunogenicity and Product Quality. Foods 2016, 5 (4) , 59. https://doi.org/10.3390/foods5030059
    96. Miguel Ribeiro, Marta Rodriguez-Quijano, Fernando M. Nunes, Jose Maria Carrillo, Gérard Branlard, Gilberto Igrejas. New insights into wheat toxicity: Breeding did not seem to contribute to a prevalence of potential celiac disease’s immunostimulatory epitopes. Food Chemistry 2016, 213 , 8-18. https://doi.org/10.1016/j.foodchem.2016.06.043
    97. Martial Rey, Menglin Yang, Linda Lee, Ye Zhang, Joey G. Sheff, Christoph W. Sensen, Hynek Mrazek, Petr Halada, Petr Man, Justin L McCarville, Elena F. Verdu, David C. Schriemer. Addressing proteolytic efficiency in enzymatic degradation therapy for celiac disease. Scientific Reports 2016, 6 (1) https://doi.org/10.1038/srep30980
    98. Gianluca Picariello, Pasquale Ferranti, Francesco Addeo. Use of brush border membrane vesicles to simulate the human intestinal digestion. Food Research International 2016, 88 , 327-335. https://doi.org/10.1016/j.foodres.2015.11.002
    99. Margherita Maggioni, Milda Stuknytė, Paola De Luca, Stefano Cattaneo, Amelia Fiorilli, Ivano De Noni, Anita Ferraretto. Transport of wheat gluten exorphins A5 and C5 through an in vitro model of intestinal epithelium. Food Research International 2016, 88 , 319-326. https://doi.org/10.1016/j.foodres.2015.11.030
    100. María José Martínez-Esteso, Jørgen Nørgaard, Marcel Brohée, Reka Haraszi, Alain Maquet, Gavin O'Connor. Defining the wheat gluten peptide fingerprint via a discovery and targeted proteomics approach. Journal of Proteomics 2016, 147 , 156-168. https://doi.org/10.1016/j.jprot.2016.03.015
    Load more citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect